DATA STRUCTURES
"ALGORITHMS

in C++

FOURTH EDITION

Chapter 2: Complexity Analysis

Objectives

Looking ahead — in this chapter, we’ll consider:
* Computational and Asymptotic Complexity
* Big-O Notation

* Properties of the Big-O Notation

() and O Notations

* Possible Problems with the Notation

Edited from: Data Structures and Algorithms in C++, Fourth Edition

Objectives (continued)

 Examples of Complexities

* Finding Asymptotic Complexity
* Best, Average, and Worst Cases
 Amortized Complexity

* NP-Completeness

Data Structures and Algorithms in C++, Fourth Edition

Computational and Asymptotic Complexity

* Algorithms are an essential aspect of data structures

e Data structures are implemented using algorithms
 Some algorithms are more efficient than others

* Efficiency is preferred; we need metrics to compare them

* An algorithm’s complexity is a function describing the
efficiency of the algorithm in terms of the amount of data the
algorithm must process

* There are two main complexity measures of efficiency

Data Structures and Algorithms in C++, Fourth Edition

Computational and Asymptotic Complexity

* Time complexity describes the amount of time an algorithm
takes in terms of the amount of input

* Space complexity describes the amount of memory (space) an
algorithm takes in terms of the amount of input

* For both measures, we are interested in the algorithm’s
asymptotic complexity

* This asks: when n (number of input items) goes to infinity,
what happens to the algorithm’s performance?

Data Structures and Algorithms in C++, Fourth Edition

Computational and Asymptotic Complexity

* To illustrate this, consider f(n) = n> + 100n + log,,n + 1000

* Asthe value of nincreases, the importance of each term
shifts until for large n, only the n? term is significant

n fin) n* 100n log,gn 1,000
Value Value % Value % Value % Value %
1 1,101 1 0.1 100 9.1 0 0.0 1,000 90.83
10 2,101 100 476 1,000 47.6 1 0.05 1,000 47.60
100 21,002 10,000 47.6 10,000 47.6 2 0.001 1,000 4.76
1,000 1,101,003 1,000,000 90.8 100,000 9.1 3 0.0003 1,000 0.09
10,000 101,001,004 100,000,000 99.0 1,000,000 0.99 4 0.0 1,000 0.001
100,000 10,010,001,005 10,000,000,000 999 10,000,000 0.099 5 0.0 1,000 0.00

Fig. 2-1 The growth rate of all terms of function f (n) = n> + 100n + log,, n + 1,000.

Data Structures and Algorithms in C++, Fourth Edition

Big-O Notation

* The most commonly used notation for asymptotic complexity
used is "big-O" notation

* In the previous example we would say n? + 100n + log,,n + 1000
= O(n?) (read "big-oh of n squared")

Definition: Let f(n) and g(n) be functions, where n € Zis a positive
integer. We write f(n) = O(g(n)) if and only if there exists a real
number ¢ and positive integer N satisfying 0 < f(n) < cg(n) for

all n > N. (And we say, "f of n is big-oh of g of n.“)

* This means that functions like n? + n, 4n>-nlog n + 12, n?/5 -
100n, n log n, and so forth are all O(n?)

Data Structures and Algorithms in C++, Fourth Edition

Properties of Big-O Notation

* The following is a list of useful facts you can
use to simplify big-O calculations

— Big-O is transitive: if f(n) = O(g(n)) and g(n)
is O(h(n)), then f(n) = O(h(n))

— If f(n) = O(h(n)) and g(n) is O(h(n)), then f(n) + g(n)
= O(h(n))

— A function an* = O(n¥) for any a >0
— Any kth degree polynomial is O(n**¥) for anyj >0

Data Structures and Algorithms in C++, Fourth Edition

Properties of Big-O Notation (continued)

 f(n)=0(g(n)) is true if lim___ f(n)/g(n) is a constant. Put
another way, if f(n) = cg(n), then f(n) = O(g(n))

* log,n = O(log, n) for any a, b > 1. This means, except for a few
cases, we don’t care what base our logarithms are

* Given the preceding, we can use just one base and rewrite the
relationship as log,n = O(lg n) for positive a # 1 and Ig n = log,n

Data Structures and Algorithms in C++, Fourth Edition

Q) and © Notations

Big-O only gives us the upper bound of a function

So if we ignore constant factors and let n get big enough, some
function will never be bigger than some other function

This can give us too much freedom

Consider that selection sort is O(n3), since n? is O(n3) - but O(n?)
is @ more meaningful upper bound

We need a lower bound, a function that always grows more
slowly than f(n), and a tight bound, a function that grows at
about the same rate as f(n)

Section 2.4 gives a good introduction to these concepts; let’s
look at a different way to approach this

Data Structures and Algorithms in C++, Fourth Edition

QQ and O Notations (continued)

* Big-Q is for lower bounds what big-O is for upper bounds

Definition: Let f(n) and g(n) be functions, where n is a positive
integer. We write f(n) = Q(g(n)) if and only if g(n) = O(f(n)). We
say 'f of nis omega of g of n.“

 Sogisalower bound for f; after a certain n, and without
regard to multiplicative constants, f will never go below g

* Finally, theta notation combines upper bounds with lower
bounds to get tight bound

Definition: Let f(n) and g(n) be functions, where n is a positive
integer. We write f(n) = ©(g(n)) if and only if g(n) = O(f(n))
and g(n) = 0(f(n)). We say "f of n is theta of g of n."

Data Structures and Algorithms in C++, Fourth Edition

Examples of Complexities

* Since we examine algorithms in terms of their time and space
complexity, we can classify them this way, too

e This is illustrated in the next figure

Class Complexity Number of Operations and Execution Time (1 instr/psec)

n 10 10? 10°
constant o(1) 1 1 psec 1 1 psec 1 1 psec
logarithmic O(lg n) 3.32 3 psec 6.64 7 usec 9.97 10 psec
linear O(n) 10 10 usec 102 100 psec 10° 1 msec
Ofnlgn) O(nlgn) 33.2 33 psec 664 664 psec 9970 10 msec
quadratic O(n?) 102 100 psec 104 10 msec 108 1 sec
cubic o(n?) 10% 1 msec 10% 1 sec 10% 16.7 min
exponential O(2") 1024 10 msec 103 3.17 = 10%yrs 103

Fig. 2.4 Classes of algorithms and their execution times on a computer executing 1
million operations per second

(1 sec = 10° psec = 10 msec)

Data Structures and Algorithms in C++, Fourth Edition

Examples of Complexities (continued)

n 10% 0° 10°
constant O(1) | 1 psec 1 1 psec 1 1 psec
logarithmic O(lg n) 13.3 13 psec 16.6 7 usec 19.93 20 psec
linear O(n) 104 10 msec 1@ 0.1 sec 10¢ 1 sec
O(nlg n) O(nlgn) 133+ 10° 133 msec 166+ 10* 1.6 sec 199.3 = 10° 20 sec
quadratic ~ O(n?) 10% 1.7 min 1ot 16.7 min 10t 11.6 days
cubic O(n?) 10" 11.6 days 10" 317 yr 10'® 31,709 yr
exponential O(2") 10310 [] pAooso

Fig. 2.4 (concluded)

Data Structures and Algorithms in C++, Fourth Edition 13

Finding the Complexity

* As we have seen, asymptotic bounds are used to determine
the time and space efficiency of algorithms

* Generally, we are interested in time complexity, which is
based on assighments and comparisons in a program

 WEe’ll focus on assignments for the time being
 Consider a simple loop:

for (1 = sum = 0; 1 < n; 1i++)

sum = sum + af[i]

* Two assignments are executed once (sum = 0 andi =
sum) during initialization

* Intheloop, sum = sum + a[i] is executed n times

Data Structures and Algorithms in C++, Fourth Edition

Finding Asymptotic Complexity
(continued)

* In addition, the i++ in the loop header is executed n times

e Sothere are 2 + 2n assignments in this loop’s execution and it
is O(n)

* Typically, as loops are nested, the complexity grows by a
factor of n, although this isn’t always the case

* Consider
1 < n; 1++) |
1, sum = af[0]; j <= 1; J++)
sum += alj]l;
cout << ”“sum for subarray 0 through “ << 1
<<” 1s “<<sum<<endl;

for (1 = 0;
for (j =

Data Structures and Algorithms in C++, Fourth Edition

Finding Asymptotic Complexity
(continued)

* The outer loop initializes i, then executes n times

* During each pass through the loop, the variable i is updated,
and the inner loop and cout statement are executed

* Theinner loop initializes j and sum each time, so the number
of assignments so faris 1 + 3n

* Theinner loop executes i times, where i ranges from 1 ton —
1, based on the outer loop (when i is O, it doesn’t run)

* Each time the inner loop executes, it increments 7, and
assigns a value to sum

e Sotheinnerloop executes Y 2i =2(1+2+..+n—1) =
2n(n — 1) assignments

Data Structures and Algorithms in C++, Fourth Edition

Finding Asymptotic Complexity
(continued)

* The total number of assignmentsis then 1+ 3n+ 2n(n- 1),
which is O(1) + O(n) + O(n?) = O(n?)

* As mentioned earlier, not all loops increase complexity, so
care has to be taken to analyze the processing that takes place

* However, additional complexity can be involved if the number
of iterations changes during execution

* This can be the case in some of the more powerful searching
and sorting algorithms

Data Structures and Algorithms in C++, Fourth Edition

Best, Average, and Worst Cases

* |If we want to truly get a handle on the complexity of more
complicated algorithms, we need to distinguish three cases:
— Worst case — the algorithm takes the maximum number of steps
— Best case — the algorithm takes the fewest number of steps
— Average case — performance falls between the extremes

* For simple situations we can determine the average case by
adding together the number of steps required for each input
and dividing by the number of inputs

* However, this is based on each input occurring with equal
probability, which isn’t always likely

Data Structures and Algorithms in C++, Fourth Edition

Best, Average, and Worst Cases
(continued)

 To be more precise, we need to weight the number of steps
that occur for a given input by the probability of that input
occurring, and sum this over the number of inputs:

> p(input;) steps (input;)
* In probability theory, this defines the expected value, which

assumes the probabilities can be determined and their
distribution known

* Because p is a probability distribution, it satisfies two
constraints:
— The function p can never be negative
— The sum of all the probabilities is equal to 1

Data Structures and Algorithms in C++, Fourth Edition

Best, Average, and Worst Cases
(continued)

Consider the example of sequentially searching an unordered
array to find a target value

The best and worst cases are straightforward:
— Best case occurs when we find the target in the first cell
— Worst case occurs when we find the target in the last cell, or not at all
(but end up searching the entire array)
For the average case, we first have to consider the probability
of finding the target

If we assume a uniform distribution of n values, then the

probability of finding the target in any one location is *

n

Data Structures and Algorithms in C++, Fourth Edition

Best, Average, and Worst Cases
(continued)

* So we would find the target in the first location with p = 1/n,
in the second location with p = 1/n, etc.

* Since the number of steps required to get to each location is
the same as the location itself, our sum becomes:

I/n*(1+2+..+n)=(n+1)/2

e Again, this is based on an equally likely chance of finding the
target in any cell

* |f the probabilities differ, then the computation becomes
more involved

Data Structures and Algorithms in C++, Fourth Edition

Selection Sort
Selection Sorting Algorithm:

e During the j-thpass (j=0, 1, ..., n=2), we will
examine the elements of the array a[j] , a[j+1]. ..., a[n-
1] and determine the index min of the smallest key.

e Swap a[min] and alj].

selection sort(int array a) {
if (a.size() == 1) return;
n = a.size();
for (int Jj = 0; J < n - 1; ++3j) {
min = j;
for (int k= j+1; k<=n-1; ++k)
if (a[k] < a[min]) min = k;
swap a[min] and a[j]:
}
}

http://math.hws.edu/TMCM/java/xSortLab/

http://math.hws.edu/TMCM/java/xSortLab/
http://math.hws.edu/TMCM/java/xSortLab/

Analysis of selection sorting

Consider the program to find the min number in
an array:

min = 0;
for (j=1;]<n; +4j)
if (A[j] > min) min =;

The number of comparisons performedisn - 1.

loop starts with | = 1 and ends with j = n so the
number of iterations =n — 1.

In each iteration, one comparison is performed.

Selection sorting — analysis
The inner loop:

n— 1 comparisons during the first iteration of the inner
loop

n — 2 comparisons during the 2nd iteration of the inner
loop

1 comparison during the last iteration of the inner loop

Total number of comparisons=1+2+ ...+ (n-1) =

n(n—-1)/ 2 (best as well as the worst-case)

