
Chapter 2: Complexity Analysis 



Objectives 

Looking ahead – in this chapter, we’ll consider: 

• Computational and Asymptotic Complexity 

• Big-O Notation 

• Properties of the Big-O Notation 

• Ω and Θ Notations 

• Possible Problems with the Notation 
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Objectives (continued) 

• Examples of Complexities 

• Finding Asymptotic Complexity 

• Best, Average, and Worst Cases 

• Amortized Complexity 

• NP-Completeness 
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Computational and Asymptotic Complexity 

• Algorithms are an essential aspect of data structures 

• Data structures are implemented using algorithms 

• Some algorithms are more efficient than others 

• Efficiency is preferred; we need metrics to compare them 

• An algorithm’s complexity is a function describing the 
efficiency of the algorithm in terms of the amount of data the 
algorithm must process 

• There are two main complexity measures of efficiency 

 

 

4 Data Structures and Algorithms in C++, Fourth Edition 



Computational and Asymptotic Complexity 

• Time complexity describes the amount of time an algorithm 
takes in terms of the amount of input 

• Space complexity describes the amount of memory (space) an 
algorithm takes in terms of the amount of input 

• For both measures, we are interested in the algorithm’s 
asymptotic complexity 

• This asks: when n (number of input items) goes to infinity, 
what happens to the algorithm’s performance? 
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Computational and Asymptotic Complexity 

• To illustrate this, consider f(n) = n2 + 100n + log10n + 1000 

• As the value of n increases, the importance of each term 
shifts until for large n, only the n2 term is significant 

 

 

 

 

 

 
 

 

 

 

 

Fig. 2-1 The growth rate of all terms of function f (n) = n2 + 100n + log10 n + 1,000. 
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Big-O Notation 

• The most commonly used notation for asymptotic complexity 
used is "big-O" notation 

• In the previous example we would say n2 + 100n + log10n + 1000 
= O(n2) (read "big-oh of n squared") 

 
Definition: Let f(n) and g(n) be functions, where n ε Z is a positive 
integer. We write f(n) = O(g(n)) if and only if there exists a real 
number c and positive integer N satisfying 0 < f(n) < cg(n) for 
all n > N. (And we say, "f of n is big-oh of g of n.“) 

 
• This means that functions like n2 + n, 4n2 - n log n + 12, n2/5 - 

100n, n log n, and so forth are all O(n2) 
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Properties of Big-O Notation 

• The following is a list of useful facts you can 
use to simplify big-O calculations 

– Big-O is transitive: if f(n) = O(g(n)) and g(n) 
is O(h(n)), then f(n) = O(h(n)) 

– If f(n) = O(h(n)) and g(n) is O(h(n)), then f(n) + g(n) 
= O(h(n)) 

– A function ank = O(nk) for any a > 0 

– Any kth degree polynomial is O(nk+j) for any j > 0 
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Properties of Big-O Notation (continued) 

• f(n) = O(g(n)) is true if limn->∞ f(n)/g(n) is a constant. Put 
another way, if f(n) = cg(n), then f(n) = O(g(n)) 

• logan = O(logb n) for any a, b > 1. This means, except for a few 
cases, we don’t care what base our logarithms are 

• Given the preceding, we can use just one base and rewrite the 
relationship as logan = O(lg n) for positive a ≠ 1 and lg n = log2n 
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Ω and Θ Notations 

• Big-O only gives us the upper bound of a function 

• So if we ignore constant factors and let n get big enough, some 
function will never be bigger than some other function 

• This can give us too much freedom 

• Consider that selection sort is O(n3), since n2 is O(n3) -  but O(n2) 
is a more meaningful upper bound 

• We need a lower bound, a function that always grows more 
slowly than f(n), and a tight bound, a function that grows at 
about the same rate as f(n) 

• Section 2.4 gives a good introduction to these concepts; let’s 
look at a different way to approach this 
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Ω and Θ Notations (continued) 

• Big-Ω is for lower bounds what big-O is for upper bounds 

Definition: Let f(n) and g(n) be functions, where n is a positive 
integer. We write f(n) = Ω(g(n)) if and only if g(n) = O(f(n)). We 
say "f of n is omega of g of n.“ 

• So g is a lower bound for f ; after a certain n, and without 
regard to multiplicative constants, f will never go below g 

• Finally, theta notation combines upper bounds with lower 
bounds to get tight bound 

Definition: Let f(n) and g(n) be functions, where n is a positive 
integer. We write f(n) = Θ(g(n)) if and only if g(n) = O(f(n)) 
and g(n) = 0(f(n)). We say "f of n is theta of g of n." 
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Examples of Complexities 

• Since we examine algorithms in terms of their time and space 
complexity, we can classify them this way, too 

• This is illustrated in the next figure 

 

 

 

 

 

 
 

 

 

Fig. 2.4 Classes of algorithms and their execution times on a computer executing 1 
million operations per second  

(1 sec = 106 μsec = 103 msec) 
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Examples of Complexities (continued) 

 

 

 

 

 
 

 

 

 

 

Fig. 2.4 (concluded) 
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Finding the Complexity 

• As we have seen, asymptotic bounds are used to determine 
the time and space efficiency of algorithms 

• Generally, we are interested in time complexity, which is 
based on assignments and comparisons in a program 

• We’ll focus on assignments for the time being 

• Consider a simple loop: 

  for (i = sum = 0; i < n; i++) 

   sum = sum + a[i] 

• Two assignments are executed once (sum = 0 and i = 
sum) during initialization 

• In the loop,  sum = sum + a[i] is executed n times 
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Finding Asymptotic Complexity 
(continued) 

• In addition, the i++ in the loop header is executed n times 

• So there are 2 + 2n assignments in this loop’s execution and it 
is O(n) 

• Typically, as loops are nested, the complexity grows by a 
factor of n, although this isn’t always the case 

• Consider 

 for (i = 0; i < n; i++) { 

    for (j = 1, sum = a[0]; j <= i; j++) 

       sum += a[j]; 

    cout << ”sum for subarray 0 through “ << i 

              <<” is “<<sum<<end1; 

 } 
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Finding Asymptotic Complexity 
(continued) 

• The outer loop initializes i, then executes n times 

• During each pass through the loop, the variable i is updated, 
and the inner loop and cout statement are executed 

• The inner loop initializes j and sum each time, so the number 
of assignments so far is 1 + 3n 

• The inner loop executes i times, where i ranges from 1 to n – 
1, based on the outer loop (when i is 0, it doesn’t run) 

• Each time the inner loop executes, it increments j, and 
assigns a value to sum 

• So the inner loop executes  2𝑖𝑛−1
𝑖=1  = 2(1 + 2 + … + n – 1) = 

2n(n – 1) assignments 
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Finding Asymptotic Complexity 
(continued) 

• The total number of assignments is then 1 + 3n + 2n(n - 1), 
which is O(1) + O(n) + O(n2) = O(n2) 

• As mentioned earlier, not all loops increase complexity, so 
care has to be taken to analyze the processing that takes place 

• However, additional complexity can be involved if the number 
of iterations changes during execution 

• This can be the case in some of the more powerful searching 
and sorting algorithms 
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Best, Average, and Worst Cases 

• If we want to truly get a handle on the complexity of more 
complicated algorithms, we need to distinguish three cases: 
– Worst case – the algorithm takes the maximum number of steps 

– Best case – the algorithm takes the fewest number of steps 

– Average case – performance falls between the extremes 

• For simple situations we can determine the average case by 
adding together the number of steps required for each input 
and dividing by the number of inputs 

• However, this is based on each input occurring with equal 
probability, which isn’t always likely 
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Best, Average, and Worst Cases 
(continued) 

• To be more precise, we need to weight the number of steps 
that occur for a given input by the probability of that input 
occurring, and sum this over the number of inputs: 

 

• In probability theory, this defines the expected value, which 
assumes the probabilities can be determined and their 
distribution known 

• Because p is a probability distribution, it satisfies two 
constraints: 
– The function p can never be negative 

– The sum of all the probabilities is equal to 1 
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Best, Average, and Worst Cases 
(continued) 

• Consider the example of sequentially searching an unordered 
array to find a target value 

• The best and worst cases are straightforward:  
– Best case occurs when we find the target in the first cell 

– Worst case occurs when we find the target in the last cell, or not at all 
(but end up searching the entire array) 

• For the average case, we first have to consider the probability 
of finding the target 

• If we assume a uniform distribution of n values, then the 
probability of finding the target in any one location is  
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Best, Average, and Worst Cases 
(continued) 

• So we would find the target in the first location with p = 1/n, 
in the second location with p = 1/n, etc. 

• Since the number of steps required to get to each location is 
the same as the location itself, our sum becomes: 

1/n * (1 + 2 + … + n) = (n + 1) / 2 

• Again, this is based on an equally likely chance of finding the 
target in any cell 

• If the probabilities differ, then the computation becomes 
more involved 
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  Selection Sort 
Selection Sorting Algorithm: 

 

• During the j-th pass (j = 0, 1, …, n – 2), we will 

examine the elements of the array a[j] , a[j+1], …, a[n-

1] and determine the index min of the smallest key.  

• Swap a[min] and a[j]. 

 
selection_sort(int_array a) { 

     if (a.size() == 1) return; 

     n = a.size();  

     for (int j = 0; j < n – 1; ++j) { 

       min = j; 

      for (int k= j+1; k<=n-1; ++k) 

        if (a[k] < a[min]) min = k; 

      swap a[min] and a[j]; 

   } 

  } 

 

http://math.hws.edu/TMCM/java/xSortLab/ 
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Analysis of selection sorting 
 

Consider the program to find the min number in 

an array: 

 

     min = 0; 

      for (j = 1; j < n; ++j) 

        if (A[j] > min) min = j; 

    

The number of comparisons performed is n – 1.  

 

loop starts with j = 1 and ends with j = n so the 

number of iterations = n – 1.  

 

In each iteration, one comparison is performed.  

 



Selection sorting – analysis 

 
The inner loop:   

 

n – 1 comparisons during the first iteration of the inner 

loop 

 

n – 2 comparisons during the 2nd iteration of the inner 

loop 

          .  .  .  .   

 

1 comparison during the last iteration of the inner loop 

 

Total number of comparisons = 1 + 2 + … + (n – 1) = 

 

      n(n – 1)/ 2  (best as well as the worst-case) 

 


