
Chapter 2: Complexity Analysis

Objectives

Looking ahead – in this chapter, we’ll consider:

• Computational and Asymptotic Complexity

• Big-O Notation

• Properties of the Big-O Notation

• Ω and Θ Notations

• Possible Problems with the Notation

2 Edited from: Data Structures and Algorithms in C++, Fourth Edition

Objectives (continued)

• Examples of Complexities

• Finding Asymptotic Complexity

• Best, Average, and Worst Cases

• Amortized Complexity

• NP-Completeness

3 Data Structures and Algorithms in C++, Fourth Edition

Computational and Asymptotic Complexity

• Algorithms are an essential aspect of data structures

• Data structures are implemented using algorithms

• Some algorithms are more efficient than others

• Efficiency is preferred; we need metrics to compare them

• An algorithm’s complexity is a function describing the
efficiency of the algorithm in terms of the amount of data the
algorithm must process

• There are two main complexity measures of efficiency

4 Data Structures and Algorithms in C++, Fourth Edition

Computational and Asymptotic Complexity

• Time complexity describes the amount of time an algorithm
takes in terms of the amount of input

• Space complexity describes the amount of memory (space) an
algorithm takes in terms of the amount of input

• For both measures, we are interested in the algorithm’s
asymptotic complexity

• This asks: when n (number of input items) goes to infinity,
what happens to the algorithm’s performance?

5 Data Structures and Algorithms in C++, Fourth Edition

Computational and Asymptotic Complexity

• To illustrate this, consider f(n) = n2 + 100n + log10n + 1000

• As the value of n increases, the importance of each term
shifts until for large n, only the n2 term is significant

Fig. 2-1 The growth rate of all terms of function f (n) = n2 + 100n + log10 n + 1,000.

6 Data Structures and Algorithms in C++, Fourth Edition

Big-O Notation

• The most commonly used notation for asymptotic complexity
used is "big-O" notation

• In the previous example we would say n2 + 100n + log10n + 1000
= O(n2) (read "big-oh of n squared")

Definition: Let f(n) and g(n) be functions, where n ε Z is a positive
integer. We write f(n) = O(g(n)) if and only if there exists a real
number c and positive integer N satisfying 0 < f(n) < cg(n) for
all n > N. (And we say, "f of n is big-oh of g of n.“)

• This means that functions like n2 + n, 4n2 - n log n + 12, n2/5 -

100n, n log n, and so forth are all O(n2)

7 Data Structures and Algorithms in C++, Fourth Edition

Properties of Big-O Notation

• The following is a list of useful facts you can
use to simplify big-O calculations

– Big-O is transitive: if f(n) = O(g(n)) and g(n)
is O(h(n)), then f(n) = O(h(n))

– If f(n) = O(h(n)) and g(n) is O(h(n)), then f(n) + g(n)
= O(h(n))

– A function ank = O(nk) for any a > 0

– Any kth degree polynomial is O(nk+j) for any j > 0

8 Data Structures and Algorithms in C++, Fourth Edition

Properties of Big-O Notation (continued)

• f(n) = O(g(n)) is true if limn->∞ f(n)/g(n) is a constant. Put
another way, if f(n) = cg(n), then f(n) = O(g(n))

• logan = O(logb n) for any a, b > 1. This means, except for a few
cases, we don’t care what base our logarithms are

• Given the preceding, we can use just one base and rewrite the
relationship as logan = O(lg n) for positive a ≠ 1 and lg n = log2n

9 Data Structures and Algorithms in C++, Fourth Edition

Ω and Θ Notations

• Big-O only gives us the upper bound of a function

• So if we ignore constant factors and let n get big enough, some
function will never be bigger than some other function

• This can give us too much freedom

• Consider that selection sort is O(n3), since n2 is O(n3) - but O(n2)
is a more meaningful upper bound

• We need a lower bound, a function that always grows more
slowly than f(n), and a tight bound, a function that grows at
about the same rate as f(n)

• Section 2.4 gives a good introduction to these concepts; let’s
look at a different way to approach this

10 Data Structures and Algorithms in C++, Fourth Edition

Ω and Θ Notations (continued)

• Big-Ω is for lower bounds what big-O is for upper bounds

Definition: Let f(n) and g(n) be functions, where n is a positive
integer. We write f(n) = Ω(g(n)) if and only if g(n) = O(f(n)). We
say "f of n is omega of g of n.“

• So g is a lower bound for f ; after a certain n, and without
regard to multiplicative constants, f will never go below g

• Finally, theta notation combines upper bounds with lower
bounds to get tight bound

Definition: Let f(n) and g(n) be functions, where n is a positive
integer. We write f(n) = Θ(g(n)) if and only if g(n) = O(f(n))
and g(n) = 0(f(n)). We say "f of n is theta of g of n."

11 Data Structures and Algorithms in C++, Fourth Edition

Examples of Complexities

• Since we examine algorithms in terms of their time and space
complexity, we can classify them this way, too

• This is illustrated in the next figure

Fig. 2.4 Classes of algorithms and their execution times on a computer executing 1
million operations per second

(1 sec = 106 μsec = 103 msec)

Data Structures and Algorithms in C++, Fourth Edition 12

Examples of Complexities (continued)

Fig. 2.4 (concluded)

Data Structures and Algorithms in C++, Fourth Edition 13

Finding the Complexity

• As we have seen, asymptotic bounds are used to determine
the time and space efficiency of algorithms

• Generally, we are interested in time complexity, which is
based on assignments and comparisons in a program

• We’ll focus on assignments for the time being

• Consider a simple loop:

 for (i = sum = 0; i < n; i++)

 sum = sum + a[i]

• Two assignments are executed once (sum = 0 and i =
sum) during initialization

• In the loop, sum = sum + a[i] is executed n times

Data Structures and Algorithms in C++, Fourth Edition 14

Finding Asymptotic Complexity
(continued)

• In addition, the i++ in the loop header is executed n times

• So there are 2 + 2n assignments in this loop’s execution and it
is O(n)

• Typically, as loops are nested, the complexity grows by a
factor of n, although this isn’t always the case

• Consider

 for (i = 0; i < n; i++) {

 for (j = 1, sum = a[0]; j <= i; j++)

 sum += a[j];

 cout << ”sum for subarray 0 through “ << i

 <<” is “<<sum<<end1;

 }

Data Structures and Algorithms in C++, Fourth Edition 15

Finding Asymptotic Complexity
(continued)

• The outer loop initializes i, then executes n times

• During each pass through the loop, the variable i is updated,
and the inner loop and cout statement are executed

• The inner loop initializes j and sum each time, so the number
of assignments so far is 1 + 3n

• The inner loop executes i times, where i ranges from 1 to n –
1, based on the outer loop (when i is 0, it doesn’t run)

• Each time the inner loop executes, it increments j, and
assigns a value to sum

• So the inner loop executes 2𝑖𝑛−1
𝑖=1 = 2(1 + 2 + … + n – 1) =

2n(n – 1) assignments

Data Structures and Algorithms in C++, Fourth Edition 16

Finding Asymptotic Complexity
(continued)

• The total number of assignments is then 1 + 3n + 2n(n - 1),
which is O(1) + O(n) + O(n2) = O(n2)

• As mentioned earlier, not all loops increase complexity, so
care has to be taken to analyze the processing that takes place

• However, additional complexity can be involved if the number
of iterations changes during execution

• This can be the case in some of the more powerful searching
and sorting algorithms

Data Structures and Algorithms in C++, Fourth Edition 17

Best, Average, and Worst Cases

• If we want to truly get a handle on the complexity of more
complicated algorithms, we need to distinguish three cases:
– Worst case – the algorithm takes the maximum number of steps

– Best case – the algorithm takes the fewest number of steps

– Average case – performance falls between the extremes

• For simple situations we can determine the average case by
adding together the number of steps required for each input
and dividing by the number of inputs

• However, this is based on each input occurring with equal
probability, which isn’t always likely

Data Structures and Algorithms in C++, Fourth Edition 18

Best, Average, and Worst Cases
(continued)

• To be more precise, we need to weight the number of steps
that occur for a given input by the probability of that input
occurring, and sum this over the number of inputs:

• In probability theory, this defines the expected value, which
assumes the probabilities can be determined and their
distribution known

• Because p is a probability distribution, it satisfies two
constraints:
– The function p can never be negative

– The sum of all the probabilities is equal to 1

Data Structures and Algorithms in C++, Fourth Edition 19

 i ii
p input steps input

Best, Average, and Worst Cases
(continued)

• Consider the example of sequentially searching an unordered
array to find a target value

• The best and worst cases are straightforward:
– Best case occurs when we find the target in the first cell

– Worst case occurs when we find the target in the last cell, or not at all
(but end up searching the entire array)

• For the average case, we first have to consider the probability
of finding the target

• If we assume a uniform distribution of n values, then the
probability of finding the target in any one location is

Data Structures and Algorithms in C++, Fourth Edition 20

1

n

Best, Average, and Worst Cases
(continued)

• So we would find the target in the first location with p = 1/n,
in the second location with p = 1/n, etc.

• Since the number of steps required to get to each location is
the same as the location itself, our sum becomes:

1/n * (1 + 2 + … + n) = (n + 1) / 2

• Again, this is based on an equally likely chance of finding the
target in any cell

• If the probabilities differ, then the computation becomes
more involved

Data Structures and Algorithms in C++, Fourth Edition 21

 Selection Sort
Selection Sorting Algorithm:

• During the j-th pass (j = 0, 1, …, n – 2), we will

examine the elements of the array a[j] , a[j+1], …, a[n-

1] and determine the index min of the smallest key.

• Swap a[min] and a[j].

selection_sort(int_array a) {

 if (a.size() == 1) return;

 n = a.size();

 for (int j = 0; j < n – 1; ++j) {

 min = j;

 for (int k= j+1; k<=n-1; ++k)

 if (a[k] < a[min]) min = k;

 swap a[min] and a[j];

 }

 }

http://math.hws.edu/TMCM/java/xSortLab/

http://math.hws.edu/TMCM/java/xSortLab/
http://math.hws.edu/TMCM/java/xSortLab/

Analysis of selection sorting

Consider the program to find the min number in

an array:

 min = 0;

 for (j = 1; j < n; ++j)

 if (A[j] > min) min = j;

The number of comparisons performed is n – 1.

loop starts with j = 1 and ends with j = n so the

number of iterations = n – 1.

In each iteration, one comparison is performed.

Selection sorting – analysis

The inner loop:

n – 1 comparisons during the first iteration of the inner

loop

n – 2 comparisons during the 2nd iteration of the inner

loop

1 comparison during the last iteration of the inner loop

Total number of comparisons = 1 + 2 + … + (n – 1) =

 n(n – 1)/ 2 (best as well as the worst-case)

