
Chapter 5: Recursion

Objectives

Looking ahead – in this chapter, we’ll consider

• Recursive Definitions

• Function Calls and Recursive Implementation

• Anatomy of a Recursive Call

• Tail Recursion

• Nontail Recursion

• Indirect Recursion

• Nested Recursion

• Excessive Recursion

• Backtracking

2 Data Structures and Algorithms in C++, Fourth Edition

Recursive Definitions

• It is a basic rule in defining new ideas that they not be defined
circularly

• However, it turns out that many programming constructs are
defined in terms of themselves

• Fortunately, the formal basis for these definitions is such that
no violations of the rules occurs

• These definitions are called recursive definitions and are
often used to define infinite sets

• This is because an exhaustive enumeration of such a set is
impossible, so some others means to define it is needed

Data Structures and Algorithms in C++, Fourth Edition 3

Recursive Definitions (continued)

• There are two parts to a recursive definition
– The anchor or ground case (also sometimes called the base case)

which establishes the basis for all the other elements of the set

– The inductive clause which establishes rules for the creation of new
elements in the set

• Using this, we can define the set of natural numbers as
follows:

1. 0 ε N (anchor)

2. if n ε N, then (n + 1) ε N (inductive clause)

3. there are no other objects in the set N

• There may be other definitions; an alternative to the previous
definition is shown on page 170

Data Structures and Algorithms in C++, Fourth Edition 4

Recursive Definitions (continued)

• We can use recursive definitions in two ways:
– To define new elements in the set in question

– To demonstrate that a particular item belongs in a set

• Generally, the second use is demonstrated by repeated
application of the inductive clause until the problem is
reduced to the base case

• This is often the case when we want to define functions and
sequences of numbers

• However this can have undesirable consequences

• For example, to determine 3! (3 factorial) using a recursive
definition, we have to work back to 0!

Data Structures and Algorithms in C++, Fourth Edition 5

Recursive Definitions (continued)

• This results from the recursive definition of the factorial
function:

• So 3! = 3 ∙ 2! = 3 ∙ 2 ∙ 1! = 3 ∙ 2 ∙ 1 ∙ 0! = 3 ∙ 2 ∙ 1 ∙ 1 = 6

• This is cumbersome and computationally inefficient

• It would be helpful to find a formula that is equivalent to the
recursive one without referring to previous values

• For factorials, we can use

• In general, however, this is frequently non-trivial and often
quite difficult to achieve

Data Structures and Algorithms in C++, Fourth Edition 6

1 if 0
!

1 ! if 0

n
n

n n n

1
!

n

i
n i

Recursive Definitions (continued)

• These discussions and examples have been on a theoretical
basis

• From the standpoint of computer science, recursion occurs
frequently in language definitions as well as programming

• Fortunately, the translation from specification to code is fairly
straightforward; consider a factorial function in C++:

 unsigned int factorial (unsigned int n){

 if (n == 0)

 return 1;

 else return n * factorial (n – 1);

 }

Data Structures and Algorithms in C++, Fourth Edition 7

Recursive Definitions (continued)

• Although the code is simple, the underlying ideas supporting
its operation are quite involved

• Fortunately, most modern programming languages
incorporate mechanisms to support the use of recursion,
making it transparent to the user

• Typically, recursion is supported through use of the runtime
stack

• So to get a clearer understanding of recursion, we will look at
how function calls are processed

Data Structures and Algorithms in C++, Fourth Edition 8

Anatomy of a Recursive Call

• To gain further insight into the behavior of recursion, let’s
dissect a recursive function and analyze its behavior

• The function we will look at is defined in the text, and can be
used to raise a number x to a non-negative integer power n:

• We can also represent this function using C++ code, shown on
the next slide

Data Structures and Algorithms in C++, Fourth Edition 9

1

1 if 0

if 0

n

n

n
x

x x n

Anatomy of a Recursive Call (continued)

/* 102 */ double power (double x, unsigned int n) {

/* 103 */ if (n == 0)

/* 104 */ return 1.0;

 else

/* 105 */ return x * power(x,n-1);

 }

• Using the definition, the calculation of x4 would be calculated
as follows: x4 = x ∙ x3 = x ∙ (x ∙ x2) = x ∙ (x ∙ (x ∙ x1)) = x ∙ (x ∙ (x ∙ (x
∙ x0))) = x ∙ (x ∙ (x ∙ (x ∙ 1))) = x ∙ (x ∙ (x ∙ (x))) = x ∙ (x ∙ (x ∙ x)) = x ∙
(x ∙ x ∙ x) = x ∙ x ∙ x ∙ x

• Notice how repeated application of the inductive step leads to
the anchor

Data Structures and Algorithms in C++, Fourth Edition 10

Anatomy of a Recursive Call (continued)

• This produces the result of x0, which is 1, and returns this
value to the previous call

• That call, which had been suspended, then resumes to
calculate x ∙ 1, producing x

• Each succeeding return then takes the previous result and
uses it in turn to produce the final result

• The sequence of recursive calls and returns looks like:
 call 1 x4 = x ∙ x3 = x ∙ x ∙ x ∙ x

 call 2 x3 = x ∙ x2 = x ∙ x ∙ x
 call 3 x2 = x ∙ x1 = x ∙ x
 call 4 x1 = x ∙ x0 = x ∙ 1

 call 5 x0 = 1

Data Structures and Algorithms in C++, Fourth Edition 11

Anatomy of a Recursive Call (continued)

• Now, the sequence of calls is kept track of on the runtime
stack, which stores the return address of the function call

• This is used to remember where to resume execution after
the function has completed

• The function power()in the earlier slide is called by the
following statement:

/* 136 */ y = power(5.6,2);

• The sequence of calls and returns generated by this call, along
with the address of the calling statement, the return address,
and the arguments, are shown in Figure 5.2

Data Structures and Algorithms in C++, Fourth Edition 12

Recursion - rules

Rule 1: Provide exit from recursion. (focus on

base cases – some times, more than one base

case is needed.)

Rule 2: Make sure that the successive recursive

calls progress towards the base case.

Rule 3: Assume that recursive calls work.

Rule 4: Compound interest rule: Avoid redundant

calls.

Recursion – simple examples

1) Compute n!

 n! = 1 x 2 … x n = (n – 1)! x n

2) Compute 1 + 2 + … + n

 f(n) = n + f(n – 1)

3) Compute the n-th Fibonacci number

 f(n) = f(n – 1) + f(n – 2)

A faster way to compute xn

Given x and n, we want to compute xn.

Obvious iterative solution:

 int exp_it(int x, int n) {
 int temp = x;

 for (int j= 1; j < n; ++j)

 temp*= x;

 return temp;

 }

The number of multiplications performed is n – 1.

We will see that a recursive algorithm provides a much

faster solution.

Faster algorithm is crucial for RSA encryption algorithm.

Idea behind the algorithm
Rule of exponents:

 xn = (x2)n/2 if n is even

 x * (x2)(n-1)/2 if n is odd

 base case n = 1 return x

 even n call exp(x*x , n/2) and return the result.

 odd n call exp(x*x, (n – 1)/2) and multiply the

result of call by x and return the product.

In this example, recursion makes algorithm faster

Remove negative items from the list

Example:

 List: -3, 4, 5, -2, 11 becomes 4, 5, 11

We will write this one recursively.

Remove negative items from the list

Example:

 List: -3, 4, 5, -2, 11 becomes 4, 5, 11

We will write this one recursively.

void remove_negative() {

// removes all the negative items from a list

// Example input: -4 5 6 -2 8; output: 5 6 8

 if (head == NULL) return;

 else if (head->key >= 0) {

 List nList = List(head->next);

 nList.remove_negative();

 head->next = nList.head;

 }

 else {

 List nList = List(head->next);

 nList.remove_negative();

 head = nList.head;

 }

 }

Excessive Recursion

• Recursive algorithms tend to exhibit simplicity in their
implementation and are typically easy to read and follow

• However, this straightforwardness does have some drawbacks

• Generally, as the number of function calls increases, a
program suffers from some performance decrease

• Also, the amount of stack space required increases
dramatically with the amount of recursion that occurs

• This can lead to program crashes if the stack runs out of
memory

• More frequently, though, is the increased execution time
leading to poor program performance

Data Structures and Algorithms in C++, Fourth Edition 19

Excessive Recursion (continued)

• As an example of this, consider the Fibonacci numbers

• They are first mentioned in connection with Sanskrit poetry as
far back as 200 BCE

• Leonardo Pisano Bigollo (also known as Fibonacci), introduced
them to the western world in his book Liber Abaci in 1202 CE

• The first few terms of the sequence are 0, 1, 1, 2, 3, 5, 8, …
and can be generated using the function:

Data Structures and Algorithms in C++, Fourth Edition 20

if 2
()

2 1 otherwise

n n
Fib n

Fib n Fib n

Excessive Recursion (continued)

• This tells us that that any Fibonacci number after the first two
(0 and 1) is defined as the sum of the two previous numbers

• However, as we move further on in the sequence, the amount
of calculation necessary to generate successive terms
becomes excessive

• This is because every calculation ultimately has to rely on the
base case for computing the values, since no intermediate
values are remembered

• The following algorithm implements this definition; again,
notice the simplicity of the code that belies the underlying
inefficiency

Data Structures and Algorithms in C++, Fourth Edition 21

Excessive Recursion (continued)

 unsigned long Fib(unsigned long n) {

 if (n < 2)

 return n;

 // else

 return Fib(n-2) + Fib(n-1);

 }

• If we use this to compute Fib(6)(which is 8), the algorithm
starts by calculating Fib(4) + Fib(5)

• The algorithm then needs to calculate Fib(4) = Fib(2) +
Fib(3), and finally the first term of that is Fib(2) =
Fib(0) + Fib(1)= 0 + 1 = 1

Data Structures and Algorithms in C++, Fourth Edition 22

Excessive Recursion (continued)

• The entire process can be represented using a tree to show
the calculations:

Fig. 5.8 The tree of calls for Fib(6).

• Counting the branches, it takes 25 calls to Fib() to calculate
Fib(6)

Data Structures and Algorithms in C++, Fourth Edition 23

Excessive Recursion (continued)

• The total number of additions required to calculate the nth
number can be shown to be Fib(n + 1) – 1

• With two calls per addition, and the first call taken into
account, the total number of calls is 2 ∙ Fib(n + 1) – 1

• Values of this are shown in the following table:

Fig. 5.9 Number of addition operations and number of recursive calls to calculate Fibonacci numbers.

Data Structures and Algorithms in C++, Fourth Edition 24

Backtracking

• Backtracking is an approach to problem solving that uses a
systematic search among possible pathways to a solution

• As each path is examined, if it is determined the pathway isn’t
viable, it is discarded and the algorithm returns to the prior
branch so that a different path can be explored

• Thus, the algorithm must be able to return to the previous
position, and ensure that all pathways are examined

• Backtracking is used in a number of applications, including
artificial intelligence, compiling, and optimization problems

• One classic application of this technique is known as The Eight
Queens Problem

Data Structures and Algorithms in C++, Fourth Edition 25

Backtracking (continued)

• In this problem, we try to place eight queens on a chessboard
in such a way that no two queens attack each other

Fig. 5.11 The eight queens problem

Data Structures and Algorithms in C++, Fourth Edition 26

Backtracking (continued)

• The approach to solving this is to place one queen at a time,
trying to make sure that the queens do not check each other

• If at any point a queen cannot be successfully placed, the
algorithm backtracks to the placement of the previous queen

• This is then moved and the next queen is tried again

• If no successful arrangement is found, the algorithm
backtracks further, adjusting the previous queen’s
predecessor, etc.

• A pseudocode representation of the backtracking algorithm is
shown in the next slide; the process is described in detail on
pages 192 – 197, along with a C++ implementation

Data Structures and Algorithms in C++, Fourth Edition 27

Backtracking (continued)

putQueen(row)

 for every position col on the same row

 if position col is available

 place the next queen in position col;

 if (row < 8)

 putQueen(row+1);

 else success;

 remove the queen from position col;

• This algorithm will find all solutions, although some are
symmetrical

Data Structures and Algorithms in C++, Fourth Edition 28

Concluding Remarks

• The foregoing discussion has provided us with some insight
into the use of recursion as a programming tool

• While there are no specific rules that require we use or avoid
recursion in any particular situation, we can develop some
general guidelines

• For example, recursion is generally less efficient than the
iterative equivalent

• However, if the difference in execution times is fairly small,
other factors such as clarity, simplicity, and readability may be
taken into account

• Recursion often is more faithful to the algorithm’s logic

Data Structures and Algorithms in C++, Fourth Edition 29

Concluding Remarks (continued)

• The task of converting recursive algorithms into their iterative
equivalents can often be difficult to perform

• As we saw with nontail recursion, we frequently have to
explicitly implement stack handling to handle the runtime
stack processing incorporated into the recursive form

• Again, this may require analysis and judgment by the
programmer to determine the best course of action

• The text suggests a couple of situations where iterative
versions are preferable to recursive ones

• First, real-time systems, with their stringent time
requirements, benefit by the faster response of iterative code

Data Structures and Algorithms in C++, Fourth Edition 30

Concluding Remarks (continued)

• Another situation occurs in programs that are repeatedly
executed, such as compilers

• However, even these cases may be changed if the hardware or
operating environment of the algorithm supports processing
that speeds the recursive algorithm (consider a hardware
supported stack)

• Sometimes the best way to decide which version to use relies
simply on coding both forms and testing them

• This is especially true in cases involving tail recursion, where
the recursive version may be faster, and with nontail recursion
where use a stack cannot be eliminated

Data Structures and Algorithms in C++, Fourth Edition 31

Concluding Remarks (continued)

• One place where recursion must be examined carefully is
when excessive, repeated calculations occur to obtain results

• The discussion of the Fibonacci sequence illustrated this
concern

• Often, drawing a call tree such as figure 5.8 can be helpful

• Trees with a large number of levels can threaten stack
overflow problems

• On the other hand, shallow, “bushy” trees may indicate a
suitable recursive candidate, provided the number of
repetitions is reasonable

Data Structures and Algorithms in C++, Fourth Edition 32

