
Chapter 5: Recursion 



Objectives 

Looking ahead – in this chapter, we’ll consider 

• Recursive Definitions 

• Function Calls and Recursive Implementation 

• Anatomy of a Recursive Call 

• Tail Recursion 

• Nontail Recursion 

• Indirect Recursion 

• Nested Recursion 

• Excessive Recursion 

• Backtracking 
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Recursive Definitions 

• It is a basic rule in defining new ideas that they not be defined 
circularly 

• However, it turns out that many programming constructs are 
defined in terms of themselves 

• Fortunately, the formal basis for these definitions is such that 
no violations of the rules occurs 

• These definitions are called recursive definitions and are 
often used to define infinite sets 

• This is because an exhaustive enumeration of such a set is 
impossible, so some others means to define it is needed 
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Recursive Definitions (continued) 

• There are two parts to a recursive definition 
– The anchor or ground case (also sometimes called the base case) 

which establishes the basis for all the other elements of the set 

– The inductive clause which establishes rules for the creation of new 
elements in the set 

• Using this, we can define the set of natural numbers as 
follows: 

1. 0 ε N   (anchor) 

2. if n ε N, then (n + 1) ε N (inductive clause) 

3. there are no other objects in the set N 

• There may be other definitions; an alternative to the previous 
definition is shown on page 170 
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Recursive Definitions (continued) 

• We can use recursive definitions in two ways: 
– To define new elements in the set in question 

– To demonstrate that a particular item belongs in a set 

• Generally, the second use is demonstrated by repeated 
application of the inductive clause until the problem is 
reduced to the base case 

• This is often the case when we want to define functions and 
sequences of numbers 

• However this can have undesirable consequences 

• For example, to determine 3! (3 factorial) using a recursive 
definition, we have to work back to 0! 
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Recursive Definitions (continued) 

• This results from the recursive definition of the factorial 
function: 

 

 

• So 3! = 3 ∙ 2! = 3 ∙ 2 ∙ 1! = 3 ∙ 2 ∙ 1 ∙ 0! = 3 ∙ 2 ∙ 1 ∙ 1 = 6 

• This is cumbersome and computationally inefficient 

• It would be helpful to find a formula that is equivalent to the 
recursive one without referring to previous values 

• For factorials, we can use  

• In general, however, this is frequently non-trivial and often 
quite difficult to achieve 
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Recursive Definitions (continued) 

• These discussions and examples have been on a theoretical 
basis 

• From the standpoint of computer science, recursion occurs 
frequently in language definitions as well as programming 

• Fortunately, the translation from specification to code is fairly 
straightforward; consider a factorial function in C++: 

 

 unsigned int factorial (unsigned int n){ 

    if (n == 0) 

       return 1; 

    else return n * factorial (n – 1); 

 } 
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Recursive Definitions (continued) 

• Although the code is simple, the underlying ideas supporting 
its operation are quite involved 

• Fortunately, most modern programming languages 
incorporate mechanisms to support the use of recursion, 
making it transparent to the user 

• Typically, recursion is supported through use of the runtime 
stack 

• So to get a clearer understanding of recursion, we will look at 
how function calls are processed 
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Anatomy of a Recursive Call 

• To gain further insight into the behavior of recursion, let’s 
dissect a recursive function and analyze its behavior 

• The function we will look at is defined in the text, and can be 
used to raise a number x to a non-negative integer power n: 

 

 

 

• We can also represent this function using C++ code, shown on 
the next slide 
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Anatomy of a Recursive Call (continued) 

/* 102 */  double power (double x, unsigned int n) { 

/* 103 */ if (n == 0) 

/* 104 */    return 1.0; 

  else 

/* 105 */    return x * power(x,n-1); 

      } 

• Using the definition, the calculation of x4 would be calculated 
as follows: x4 = x ∙ x3 = x ∙ (x ∙ x2) = x ∙ (x ∙ (x ∙ x1))  = x ∙ (x ∙ (x ∙ (x 
∙ x0))) = x ∙ (x ∙ (x ∙ (x ∙ 1))) = x ∙ (x ∙ (x ∙ (x))) = x ∙ (x ∙ (x ∙ x)) = x ∙ 
(x ∙ x ∙ x) = x ∙ x ∙ x ∙ x 

• Notice how repeated application of the inductive step leads to 
the anchor 
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Anatomy of a Recursive Call (continued) 

• This produces the result of x0, which is 1, and returns this 
value to the previous call 

• That call, which had been suspended, then resumes to 
calculate x ∙ 1, producing x 

• Each succeeding return then takes the previous result and 
uses it in turn to produce the final result 

• The sequence of recursive calls and returns looks like: 
  call 1 x4 = x ∙ x3     = x ∙ x ∙ x ∙ x 

  call 2 x3 = x ∙ x2     = x ∙ x ∙ x 
  call 3 x2 = x ∙ x1     = x ∙ x 
  call 4 x1 = x ∙ x0     = x ∙ 1 

  call 5 x0 = 1 

Data Structures and Algorithms in C++, Fourth Edition 11 



Anatomy of a Recursive Call (continued) 

• Now, the sequence of calls is kept track of on the runtime 
stack, which stores the return address of the function call 

• This is used to remember where to resume execution after 
the function has completed 

• The function power()in the earlier slide is called by the 
following statement: 

/* 136 */ y = power(5.6,2); 

• The sequence of calls and returns generated by this call, along 
with the address of the calling statement, the return address, 
and the arguments, are shown in Figure 5.2 
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Recursion - rules 

 
Rule 1: Provide exit from recursion. (focus on 

base cases – some times, more than one base 

case is needed.) 

 

Rule 2: Make sure that the successive recursive 

calls progress towards the base case. 

 

Rule 3: Assume that recursive calls work.  

 

Rule 4: Compound interest rule: Avoid redundant 

calls. 



Recursion – simple examples 

 

1) Compute n! 

          n! = 1 x 2 … x n = (n – 1)! x n 

 

2) Compute 1 + 2 + … + n 

          f(n) = n + f(n – 1) 

 

3) Compute the n-th Fibonacci number 

         f(n) = f(n – 1) + f(n – 2) 



A faster way to compute xn 

 
Given x and n, we want to compute xn. 

 

Obvious iterative solution: 

   int exp_it(int x, int n) { 
     int temp = x; 

     for (int j= 1; j < n; ++j) 

      temp*= x; 

     return temp; 

   } 

 

The number of multiplications performed is n – 1.  

 

We will see that a recursive algorithm provides a much 

faster solution. 

 

Faster algorithm is crucial for RSA encryption algorithm. 



Idea behind the algorithm 
Rule of exponents: 

 

    xn =    (x2)n/2  if n is even 

  

               x * (x2)(n-1)/2  if n is odd 

 
 base case n = 1     return x 

 
  even n  call exp(x*x , n/2) and return the result. 

 
  odd n   call exp(x*x, (n – 1)/2) and multiply the 

result of call by x and return the product. 

 

In this example, recursion makes algorithm faster 

 

 



Remove negative items from the list 

 
Example: 

   List:    -3, 4, 5, -2, 11   becomes   4, 5, 11 

 

We will write this one recursively. 



Remove negative items from the list 

 
Example: 

   List:    -3, 4, 5, -2, 11   becomes   4, 5, 11 

 

We will write this one recursively. 

 
void remove_negative() { 

// removes all the negative items from a list 

// Example input: -4 5 6 -2 8; output: 5 6 8 

  if (head == NULL) return; 

  else if (head->key >= 0) { 

 List nList = List(head->next); 

 nList.remove_negative(); 

        head->next = nList.head; 

     } 

  else { 

  List nList = List(head->next); 

        nList.remove_negative(); 

        head = nList.head; 

     } 

  } 

 



Excessive Recursion 

• Recursive algorithms tend to exhibit simplicity in their 
implementation and are typically easy to read and follow 

• However, this straightforwardness does have some drawbacks 

• Generally, as the number of function calls increases, a 
program suffers from some performance decrease 

• Also, the amount of stack space required increases 
dramatically with the amount of recursion that occurs 

• This can lead to program crashes if the stack runs out of 
memory 

• More frequently, though, is the increased execution time 
leading to poor program performance 
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Excessive Recursion (continued) 

• As an example of this, consider the Fibonacci numbers 

• They are first mentioned in connection with Sanskrit poetry as 
far back as 200 BCE 

• Leonardo Pisano Bigollo (also known as Fibonacci), introduced 
them to the western world in his book Liber Abaci in 1202 CE 

• The first few terms of the sequence are 0, 1, 1, 2, 3, 5, 8, … 
and can be generated using the function: 
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Excessive Recursion (continued) 

• This tells us that that any Fibonacci number after the first two 
(0 and 1) is defined as the sum of the two previous numbers 

• However, as we move further on in the sequence, the amount 
of calculation necessary to generate successive terms 
becomes excessive 

• This is because every calculation ultimately has to rely on the 
base case for computing the values, since no intermediate 
values are remembered 

• The following algorithm implements this definition; again, 
notice the simplicity of the code that belies the underlying 
inefficiency 
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Excessive Recursion (continued) 

 unsigned long Fib(unsigned long n) { 

    if (n < 2) 

  return n; 

 // else 

  return Fib(n-2) + Fib(n-1); 

 } 

• If we use this to compute Fib(6)(which is 8), the algorithm 
starts by calculating Fib(4) + Fib(5) 

• The algorithm then needs to calculate Fib(4) = Fib(2) + 
Fib(3), and finally the first term of that is Fib(2) = 
Fib(0) + Fib(1)= 0 + 1 = 1 
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Excessive Recursion (continued) 

• The entire process can be represented using a tree to show 
the calculations: 

 

 

 

 

 

 
Fig. 5.8 The tree of calls for Fib(6). 

• Counting the branches, it takes 25 calls to Fib() to calculate 
Fib(6) 
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Excessive Recursion (continued) 

• The total number of additions required to calculate the nth 
number can be shown to be Fib(n + 1) – 1  

• With two calls per addition, and the first call taken into 
account, the total number of calls is 2 ∙ Fib(n + 1) – 1 

• Values of this are shown in the following table: 

 

 

 

 

 
Fig. 5.9 Number of addition operations and number of recursive calls to calculate Fibonacci numbers. 
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Backtracking 

• Backtracking is an approach to problem solving that uses a 
systematic search among possible pathways to a solution 

• As each path is examined, if it is determined the pathway isn’t 
viable, it is discarded and the algorithm returns to the prior 
branch so that a different path can be explored 

• Thus, the algorithm must be able to return to the previous 
position, and ensure that all pathways are examined 

• Backtracking is used in a number of applications, including 
artificial intelligence, compiling, and optimization problems 

• One classic application of this technique is known as The Eight 
Queens Problem 
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Backtracking (continued) 

• In this problem, we try to place eight queens on a chessboard 
in such a way that no two queens attack each other 

 

 

 

 

 

 

 
Fig. 5.11 The eight queens problem 
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Backtracking (continued) 

• The approach to solving this is to place one queen at a time, 
trying to make sure that the queens do not check each other 

• If at any point a queen cannot be successfully placed, the 
algorithm backtracks to the placement of the previous queen 

• This is then moved and the next queen is tried again 

• If no successful arrangement is found, the algorithm 
backtracks further, adjusting the previous queen’s 
predecessor, etc. 

• A pseudocode representation of the backtracking algorithm is 
shown in the next slide; the process is described in detail on 
pages 192 – 197, along with a C++ implementation 
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Backtracking (continued) 

putQueen(row) 

   for every position col on the same row 

 if position col is available 

    place the next queen in position col; 

    if (row < 8) 

  putQueen(row+1); 

    else success; 

    remove the queen from position col; 

• This algorithm will find all solutions, although some are 
symmetrical 
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Concluding Remarks 

• The foregoing discussion has provided us with some insight 
into the use of recursion as a programming tool 

• While there are no specific rules that require we use or avoid 
recursion in any particular situation, we can develop some 
general guidelines 

• For example, recursion is generally less efficient than the 
iterative equivalent 

• However, if the difference in execution times is fairly small, 
other factors such as clarity, simplicity, and readability may be 
taken into account 

• Recursion often is more faithful to the algorithm’s logic 
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Concluding Remarks (continued) 

• The task of converting recursive algorithms into their iterative 
equivalents can often be difficult to perform 

• As we saw with nontail recursion, we frequently have to 
explicitly implement stack handling to handle the runtime 
stack processing incorporated into the recursive form 

• Again, this may require analysis and judgment by the 
programmer to determine the best course of action 

• The text suggests a couple of situations where iterative 
versions are preferable to recursive ones 

• First, real-time systems, with their stringent time 
requirements, benefit by the faster response of iterative code 
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Concluding Remarks (continued) 

• Another situation occurs in programs that are repeatedly 
executed, such as compilers 

• However, even these cases may be changed if the hardware or 
operating environment of the algorithm supports processing 
that speeds the recursive algorithm (consider a hardware 
supported stack) 

• Sometimes the best way to decide which version to use relies 
simply on coding both forms and testing them 

• This is especially true in cases involving tail recursion, where 
the recursive version may be faster, and with nontail recursion 
where use a stack cannot be eliminated 
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Concluding Remarks (continued) 

• One place where recursion must be examined carefully is 
when excessive, repeated calculations occur to obtain results 

• The discussion of the Fibonacci sequence illustrated this 
concern 

• Often, drawing a call tree such as figure 5.8 can be helpful 

• Trees with a large number of levels can threaten stack 
overflow problems 

• On the other hand, shallow, “bushy” trees may indicate a 
suitable recursive candidate, provided the number of 
repetitions is reasonable 
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