# and ALGORITHMS in C++

FOURTH EDITION

#### **Chapter 5: Recursion**

## **Objectives**

Looking ahead – in this chapter, we'll consider

- Recursive Definitions
- Function Calls and Recursive Implementation
- Anatomy of a Recursive Call
- Tail Recursion
- Nontail Recursion
- Indirect Recursion
- Nested Recursion
- Excessive Recursion
- Backtracking

## **Recursive Definitions**

- It is a basic rule in defining new ideas that they not be defined circularly
- However, it turns out that many programming constructs are defined in terms of themselves
- Fortunately, the formal basis for these definitions is such that no violations of the rules occurs
- These definitions are called *recursive definitions* and are often used to define infinite sets
- This is because an exhaustive enumeration of such a set is impossible, so some others means to define it is needed

- There are two parts to a recursive definition
  - The *anchor* or *ground case* (also sometimes called the *base case*) which establishes the basis for all the other elements of the set
  - The *inductive clause* which establishes rules for the creation of new elements in the set
- Using this, we can define the set of natural numbers as follows:
  - 1. 0ε**N** (anchor)
  - 2. if  $n \in \mathbb{N}$ , then  $(n + 1) \in \mathbb{N}$  (inductive clause)
  - 3. there are no other objects in the set **N**
- There may be other definitions; an alternative to the previous definition is shown on page 170

- We can use recursive definitions in two ways:
  - To define new elements in the set in question
  - To demonstrate that a particular item belongs in a set
- Generally, the second use is demonstrated by repeated application of the inductive clause until the problem is reduced to the base case
- This is often the case when we want to define functions and sequences of numbers
- However this can have undesirable consequences
- For example, to determine 3! (3 factorial) using a recursive definition, we have to work back to 0!

This results from the recursive definition of the factorial function:

 $n! = \begin{cases} 1 & \text{if } n = 0\\ n \cdot (n-1)! & \text{if } n > 0 \end{cases}$ 

- So  $3! = 3 \cdot 2! = 3 \cdot 2 \cdot 1! = 3 \cdot 2 \cdot 1 \cdot 0! = 3 \cdot 2 \cdot 1 \cdot 1 = 6$
- This is cumbersome and computationally inefficient
- It would be helpful to find a formula that is equivalent to the recursive one without referring to previous values
- For factorials, we can use  $n! = \prod_{i=1}^{n} i$
- In general, however, this is frequently non-trivial and often quite difficult to achieve

- These discussions and examples have been on a theoretical basis
- From the standpoint of computer science, recursion occurs frequently in language definitions as well as programming
- Fortunately, the translation from specification to code is fairly straightforward; consider a factorial function in C++:

```
unsigned int factorial (unsigned int n){
    if (n == 0)
        return 1;
    else return n * factorial (n - 1);
```

- Although the code is simple, the underlying ideas supporting its operation are quite involved
- Fortunately, most modern programming languages incorporate mechanisms to support the use of recursion, making it transparent to the user
- Typically, recursion is supported through use of the runtime stack
- So to get a clearer understanding of recursion, we will look at how function calls are processed

## **Anatomy of a Recursive Call**

- To gain further insight into the behavior of recursion, let's dissect a recursive function and analyze its behavior
- The function we will look at is defined in the text, and can be used to raise a number x to a non-negative integer power n:

$$x^{n} = \begin{cases} 1 & \text{if } n = 0 \\ x \cdot x^{n-1} & \text{if } n > 0 \end{cases}$$

 We can also represent this function using C++ code, shown on the next slide

#### Anatomy of a Recursive Call (continued)

- Using the definition, the calculation of  $x^4$  would be calculated as follows:  $x^4 = x \cdot x^3 = x \cdot (x \cdot x^2) = x \cdot (x \cdot (x \cdot x^1)) = x \cdot (x \cdot (x \cdot (x \cdot x^0))) = x \cdot (x \cdot (x \cdot (x \cdot 1))) = x \cdot (x \cdot (x \cdot (x))) = x \cdot (x \cdot (x \cdot x)) = x \cdot (x \cdot (x \cdot x)) = x \cdot (x \cdot x \cdot x) = x \cdot x \cdot x \cdot x$
- Notice how repeated application of the inductive step leads to the anchor

## Anatomy of a Recursive Call (continued)

- This produces the result of x<sup>0</sup>, which is 1, and returns this value to the previous call
- That call, which had been suspended, then resumes to calculate  $x \cdot 1$ , producing x
- Each succeeding return then takes the previous result and uses it in turn to produce the final result
- The sequence of recursive calls and returns looks like:

call 1  $x^4 = x \cdot x^3 = x \cdot x \cdot x \cdot x$ call 2  $x^3 = x \cdot x^2 = x \cdot x \cdot x$ call 3  $x^2 = x \cdot x^1 = x \cdot x$ call 4  $x^1 = x \cdot x^0 = x \cdot 1$ call 5  $x^0 = 1$ 

Data Structures and Algorithms in C++, Fourth Edition

## **Anatomy of a Recursive Call (continued)**

- Now, the sequence of calls is kept track of on the runtime stack, which stores the return address of the function call
- This is used to remember where to resume execution after the function has completed
- The function power () in the earlier slide is called by the following statement:

/\* 136 \*/ y = power(5.6,2);

 The sequence of calls and returns generated by this call, along with the address of the calling statement, the return address, and the arguments, are shown in Figure 5.2

#### Recursion - rules

Rule 1: Provide exit from recursion. (focus on base cases – some times, more than one base case is needed.)

Rule 2: Make sure that the successive recursive calls progress towards the base case.

Rule 3: Assume that recursive calls work.

Rule 4: Compound interest rule: Avoid redundant calls.

Recursion – simple examples

3) Compute the n-th Fibonacci number f(n) = f(n - 1) + f(n - 2)

#### A faster way to compute x<sup>n</sup>

Given x and n, we want to compute x<sup>n</sup>.

Obvious iterative solution:

```
int exp_it(int x, int n) {
    int temp = x;
    for (int j= 1; j < n; ++j)
        temp*= x;
        return temp;
    }</pre>
```

The number of multiplications performed is n - 1.

We will see that a recursive algorithm provides a much faster solution.

Faster algorithm is crucial for RSA encryption algorithm.

Idea behind the algorithm Rule of exponents:

$$x^{n} = (x^{2})^{n/2} \text{ if n is even}$$

$$x^{*} (x^{2})^{(n-1)/2} \text{ if n is odd}$$

- base case  $n = 1 \rightarrow return x$
- even  $n \rightarrow call exp(x^*x, n/2)$  and return the result.
- odd n → call exp(x\*x, (n 1)/2) and multiply the result of call by x and return the product.

In this example, recursion makes algorithm faster

#### Remove negative items from the list

Example: List: -3, 4, 5, -2, 11 becomes 4, 5, 11

We will write this one recursively.

#### Remove negative items from the list

```
Example:
List: -3, 4, 5, -2, 11 becomes 4, 5, 11
```

We will write this one recursively.

```
void remove negative() {
// removes all the negative items from a list
// Example input: -4 5 6 -2 8; output: 5 6 8
  if (head == NULL) return;
  else if (head->key >= 0) {
       List nList = List(head->next);
       nList.remove negative();
        head->next = nList.head;
     }
  else {
        List nList = List(head->next);
        nList.remove negative();
        head = nList.head;
     }
```

#### **Excessive Recursion**

- Recursive algorithms tend to exhibit simplicity in their implementation and are typically easy to read and follow
- However, this straightforwardness does have some drawbacks
- Generally, as the number of function calls increases, a program suffers from some performance decrease
- Also, the amount of stack space required increases dramatically with the amount of recursion that occurs
- This can lead to program crashes if the stack runs out of memory
- More frequently, though, is the increased execution time leading to poor program performance

- As an example of this, consider the Fibonacci numbers
- They are first mentioned in connection with Sanskrit poetry as far back as 200 BCE
- Leonardo Pisano Bigollo (also known as Fibonacci), introduced them to the western world in his book *Liber Abaci* in 1202 CE
- The first few terms of the sequence are 0, 1, 1, 2, 3, 5, 8, ... and can be generated using the function:

$$Fib(n) = \begin{cases} n & \text{if } n < 2\\ Fib(n-2) + Fib(n-1) & \text{otherwise} \end{cases}$$

- This tells us that that any Fibonacci number after the first two (0 and 1) is defined as the sum of the two previous numbers
- However, as we move further on in the sequence, the amount of calculation necessary to generate successive terms becomes excessive
- This is because every calculation ultimately has to rely on the base case for computing the values, since no intermediate values are remembered
- The following algorithm implements this definition; again, notice the simplicity of the code that belies the underlying inefficiency

```
unsigned long Fib(unsigned long n) {
    if (n < 2)
        return n;
// else
        return Fib(n-2) + Fib(n-1);
}</pre>
```

- If we use this to compute Fib(6) (which is 8), the algorithm starts by calculating Fib(4) + Fib(5)
- The algorithm then needs to calculate Fib(4) = Fib(2) + Fib(3), and finally the first term of that is Fib(2) = Fib(0) + Fib(1) = 0 + 1 = 1

• The entire process can be represented using a tree to show the calculations:



Fig. 5.8 The tree of calls for Fib(6).

 Counting the branches, it takes 25 calls to Fib() to calculate Fib(6)

- The total number of additions required to calculate the n<sup>th</sup> number can be shown to be Fib(n + 1) 1
- With two calls per addition, and the first call taken into account, the total number of calls is 2 · Fib(n + 1) 1
- Values of this are shown in the following table:

| n  | Fib(n+1)  | Number of Additions | Number of Calls |
|----|-----------|---------------------|-----------------|
| 6  | 13        | 12                  | 25              |
| 10 | 89        | 88                  | 177             |
| 15 | 987       | 986                 | 1,973           |
| 20 | 10,946    | 10,945              | 21,891          |
| 25 | 121,393   | 121,392             | 242,785         |
| 30 | 1,346,269 | 1,346,268           | 2,692,537       |

Fig. 5.9 Number of addition operations and number of recursive calls to calculate Fibonacci numbers.

## Backtracking

- **Backtracking** is an approach to problem solving that uses a systematic search among possible pathways to a solution
- As each path is examined, if it is determined the pathway isn't viable, it is discarded and the algorithm returns to the prior branch so that a different path can be explored
- Thus, the algorithm must be able to return to the previous position, and ensure that all pathways are examined
- Backtracking is used in a number of applications, including artificial intelligence, compiling, and optimization problems
- One classic application of this technique is known as *The Eight Queens Problem*

## **Backtracking (continued)**

 In this problem, we try to place eight queens on a chessboard in such a way that no two queens attack each other

M

M

m

M

(b)



Fig. 5.11 The eight queens problem

# **Backtracking (continued)**

- The approach to solving this is to place one queen at a time, trying to make sure that the queens do not check each other
- If at any point a queen cannot be successfully placed, the algorithm backtracks to the placement of the previous queen
- This is then moved and the next queen is tried again
- If no successful arrangement is found, the algorithm backtracks further, adjusting the previous queen's predecessor, etc.
- A pseudocode representation of the backtracking algorithm is shown in the next slide; the process is described in detail on pages 192 – 197, along with a C++ implementation

## **Backtracking (continued)**

putQueen(row)

for every position col on the same row
if position col is available
 place the next queen in position col;
 if (row < 8)
 putQueen(row+1);
 else success;
 remove the queen from position col;</pre>

This algorithm will find all solutions, although some are symmetrical

## **Concluding Remarks**

- The foregoing discussion has provided us with some insight into the use of recursion as a programming tool
- While there are no specific rules that require we use or avoid recursion in any particular situation, we can develop some general guidelines
- For example, recursion is generally less efficient than the iterative equivalent
- However, if the difference in execution times is fairly small, other factors such as clarity, simplicity, and readability may be taken into account
- Recursion often is more faithful to the algorithm's logic

## **Concluding Remarks (continued)**

- The task of converting recursive algorithms into their iterative equivalents can often be difficult to perform
- As we saw with nontail recursion, we frequently have to explicitly implement stack handling to handle the runtime stack processing incorporated into the recursive form
- Again, this may require analysis and judgment by the programmer to determine the best course of action
- The text suggests a couple of situations where iterative versions are preferable to recursive ones
- First, real-time systems, with their stringent time requirements, benefit by the faster response of iterative code

## **Concluding Remarks (continued)**

- Another situation occurs in programs that are repeatedly executed, such as compilers
- However, even these cases may be changed if the hardware or operating environment of the algorithm supports processing that speeds the recursive algorithm (consider a hardware supported stack)
- Sometimes the best way to decide which version to use relies simply on coding both forms and testing them
- This is especially true in cases involving tail recursion, where the recursive version may be faster, and with nontail recursion where use a stack cannot be eliminated

## **Concluding Remarks (continued)**

- One place where recursion must be examined carefully is when excessive, repeated calculations occur to obtain results
- The discussion of the Fibonacci sequence illustrated this concern
- Often, drawing a call tree such as figure 5.8 can be helpful
- Trees with a large number of levels can threaten stack overflow problems
- On the other hand, shallow, "bushy" trees may indicate a suitable recursive candidate, provided the number of repetitions is reasonable