CS 315 Data Structures Fall 13

Instructor:

B. Ravikumar
Office: 116 | Darwin Hall

Phone: 664 3335
E-mail: cs315springl 1@gmail.com

Course Web site:
http://piazza.com

Textbook:

Gos Data Structures and Algorithms
in C++ by Drozdek, Cengage
Publishing.

Course Schedule

Lecture;
M W 8:30 — 92:45, Stevenson 3039

Lab:
M 5 1o /7:50, Darwin 28

Data Structures — central themes

* (more advanced) programming
® |arger problems (than what was studied in CS 215)
e advanced features like recursion, classes and library
* new data types (images, audio, video, text)
e algorithm design

e performance issues

* comparison of algorithms
e fime, storage requirements

e applications

® image processing

e data/image compression

e web search, parsing

e board games

e graphs and their algorithms

Data Structures — the central issues

How to organize data in memory so that the
we can solve the problem most efficientlye

Address Pins
Ll

ddddddddddddddddddddd ts

s 5 g |8 |&
oooooooo
oooooooo
cccccccc
oooooo
ooooo
ccccc

Hard disk RAM

Data Structure — the central issues
Topics of concern:

e software design, problem solving and
applications

reactive programes:
query response

e frade-offs between operations

e efficiency, simplicity, scalabillity, ...

Course Goals

e Learn to use fundamental data structures:
e arrays, linked lists, stacks and queues
 hash table
e priority queue
e binary search free

e Improve programming skill
e recursion, classes, algorithm design, implementation
e build projects using different data structures

e Analyfical and experimental analysis
e gquantitative reasoning about the performance of
algorithms (time, storage, etc.)
e comparing different data structures

Course Goals

e Projects/applications:
e image storage, manipulation
* Image labeling
e compression (text, image, etc.)
e computing with unlimited size integers
e Discrete-event simulatfion
e Index generation
« Geometric problems
* Image rotation, image stitching
« Game tree search
* evaluating arithmetic expression

Data Structures — key to software design

« Data structures play a key role in every type of
software.

e Data structure deals with how to store the
data internally while solving a problem in order

to
e Optimize
e the overall running time of a program
e the response time (for queries)
e the memory requirements
e other resources (e.g. band-width of a network)
e Simplify software design
e make solution extendible, more robust

Abstract vs. concrete data structures

Abstract data structure (sometimes called ADT ->
Abstract Data Type) is a collection of data with a set of
operations supported to manipulate the structure

Examples:

e stack, queue Iinsert, delete

e priority queue insert, deleteMin
e Dictionary

Concrete data structures are the implementations of
abstract data structures:

* Arrays, linked lists, tfrees, heaps, hash table

A recurring theme: Find the best mapping between
abstract and concrete data structures.

Abstract Data Structure (ADT)
container supporting operations

o Dic’rionaQ/
esearch

einsert -

eDelete

edeleteMin

™

eRange search

eSUCCESSOr
* Merge

 Priority queue
} primary operations

e|nsert
edeleteMin

primary operations

>~ :
secondary operations

-

* Merge, split etc. Secondary operations

Linear data structures

« key properties of the (1-dim.) array:

e a0 sequence of items are stored in consecutive
physical memory locations.

e main advantage: array provides a constant time
access to k-th element for any k.
(access the element by: Elementl[k].)

e other operations are expensive:
e Search
* Insert
e delete

2-dim. arrays

Used o store images, tables etc.

Given row number r, and column number s,
the element in Alr, s] can be accessed in one

clock cycle.

(usually row major or column major order is
used.)

Other operations are expensive.

Sparse array representation

Used to compress images
Trade-offs between storage and fime

Linked lists

Liﬂked “STS: ‘/order IS important

» Storing a sequence of items In Non-
consecutive locations of the memory.

* Not easy to search for a key (even if
sorted).

* Inserting next fo a given item is easy.

* Array vs. linked list:

Don’'t need to know the number of items in
advance. (dynamic memory allocation)

disadvantages

stacks and queues

e stacks:
e insert and delete at the same end.
e equivalently, last element inserted will be
the first one to be deleted.
e very useful to solve many problems
e Processing arithmetic expressions

e qUEUES:
e insert at one end, delefion at the other
end.
e equivalently, first element inserted is the first
one to be deleted.

Non-linear data structures

Various versions of trees
Binary search trees
Height-balanced trees etc.

Lotr

key Rptr

/

15

\

/

\

Priority queue

Max priority key is the one that gets deleted
next.

Equivalently, support for the following
operations:

insert
deleteMin
Useful in solving many problems
fast sortfing (heap-sorting)

shortest-path, minimum spanning tree,
scheduling etc.

Hashing

e Supports dictionary operations very efficiently
(most of the time).

e Main advantages:
oSimple to design, iImplement
e ON average very fast
e Not good in the worst-case.

Applications

e arithmetic expression evaluation

e data compression (Huffman coding, LZW
algorithm)

* Image segmentation, image compression
e backtrack searching
e finding the best path to route in a network

e geometric problems (e.g. rectangle areaq)

Some projects from past semesters

 Unlimited precision arithmetic:
Compute values like T000! =

023872600770937735437024339230039857 193748642107 146325~
437999104299 385123986 200205920442 084 869 694 048 004 799 ",
BB6 101971960586316668 729948 085589013238 296 699445909 .
074 245040870737599 188 236277271 887325197 795059500952 .

761208749 754624970436 014182 780946464962 910563 938874 "
3788B64873371191810458 257836478499770124 766 328 898 359 -
557 354325131853239584 630755574091 142624 174743493475,
534286465766 116677973 966688202912073791

(concepts : recursion, linked list)

http://images.google.com/imgres?imgurl=http://www.wildnatureimages.com/images%25202/040428-072..jpg&imgrefurl=http://www.wildnatureimages.com/Poker%25202.htm&h=399&w=600&sz=60&tbnid=hEhUI09EUQbPKM:&tbnh=90&tbnw=135&prev=/images%3Fq%3Dpoker%2Bhand%26um%3D1&start=1&ei=1NOeR9XoFpS6gQOlzpCjCw&sig2=fQrrvmU2Y8_FdJOZWQjGgw&sa=X&oi=images&ct=image&cd=1
http://images.google.com/imgres?imgurl=http://www.wildnatureimages.com/images%25202/040428-072..jpg&imgrefurl=http://www.wildnatureimages.com/Poker%25202.htm&h=399&w=600&sz=60&tbnid=hEhUI09EUQbPKM:&tbnh=90&tbnw=135&prev=/images%3Fq%3Dpoker%2Bhand%26um%3D1&start=1&ei=1NOeR9XoFpS6gQOlzpCjCw&sig2=fQrrvmU2Y8_FdJOZWQjGgw&sa=X&oi=images&ct=image&cd=1

Some projects from past semesters

e Image manipulation: (concept: arrays, library,
algorithm analysis)

http://images.google.com/imgres?imgurl=http://www.wildnatureimages.com/images%25202/040428-072..jpg&imgrefurl=http://www.wildnatureimages.com/Poker%25202.htm&h=399&w=600&sz=60&tbnid=hEhUI09EUQbPKM:&tbnh=90&tbnw=135&prev=/images%3Fq%3Dpoker%2Bhand%26um%3D1&start=1&ei=1NOeR9XoFpS6gQOlzpCjCw&sig2=fQrrvmU2Y8_FdJOZWQjGgw&sa=X&oi=images&ct=image&cd=1
http://images.google.com/imgres?imgurl=http://www.wildnatureimages.com/images%25202/040428-072..jpg&imgrefurl=http://www.wildnatureimages.com/Poker%25202.htm&h=399&w=600&sz=60&tbnid=hEhUI09EUQbPKM:&tbnh=90&tbnw=135&prev=/images%3Fq%3Dpoker%2Bhand%26um%3D1&start=1&ei=1NOeR9XoFpS6gQOlzpCjCw&sig2=fQrrvmU2Y8_FdJOZWQjGgw&sa=X&oi=images&ct=image&cd=1

Image manipulation

http://images.google.com/imgres?imgurl=http://www.wildnatureimages.com/images%25202/040428-072..jpg&imgrefurl=http://www.wildnatureimages.com/Poker%25202.htm&h=399&w=600&sz=60&tbnid=hEhUI09EUQbPKM:&tbnh=90&tbnw=135&prev=/images%3Fq%3Dpoker%2Bhand%26um%3D1&start=1&ei=1NOeR9XoFpS6gQOlzpCjCw&sig2=fQrrvmU2Y8_FdJOZWQjGgw&sa=X&oi=images&ct=image&cd=1
http://images.google.com/imgres?imgurl=http://www.wildnatureimages.com/images%25202/040428-072..jpg&imgrefurl=http://www.wildnatureimages.com/Poker%25202.htm&h=399&w=600&sz=60&tbnid=hEhUI09EUQbPKM:&tbnh=90&tbnw=135&prev=/images%3Fq%3Dpoker%2Bhand%26um%3D1&start=1&ei=1NOeR9XoFpS6gQOlzpCjCw&sig2=fQrrvmU2Y8_FdJOZWQjGgw&sa=X&oi=images&ct=image&cd=1

Image rotation

ABCDEFGHIJKLM

NOPQRSTU MWXY Z

Final step:
INnput:

In 1830 there were but twenty-three
miles of railroad in operation in the
United States, and in that year Ken-
tucky took the initial step in the work
west of the Alleghanies. An Act to

incorporate the Lexington & Ohio
Railway Company was approved by
Gov. Metcalf, January 27, 1830.. It
provided for the construction and re-

Output: “In 1830 there were but twenty-three
miles of railroad in operation in the United
States, and in that year Kenftucky took ... "

e Spelling checker: Given a text file T, identity all
the misspelled words in T.

ldea: build a hash table H of all the words in a
dictionary, and search for each word of the
text T in the table H. For each misspelled word,
suggest the correct spelling.

(hashing, strings, vectors)

e Peg solitaire (backtracking, recursion, hash
table)

Find a sequence of moves that leaves exactly
one peg on the board. (starting position can be
specified. In some cases, there may be no

solution.)

e Given two photographs of the same scene
taken from two different positions, combine
them into a single image.

Image comipression
(Quadtree data structure)

o]le]igle]

n""'k-- —*"f

(compressed x 50)

Index generation for a document

Index contains the list of all the words appearing in @
document, with the line numbers in which they appear.

Typical index for a book looks:

Numerics ARM processor 40
4000 sepes 1Cs 440 Array 501 y
68HCIT 25 Array-style multiplier 375
THX-series [Cs 439 ASCII 10, 67
74F 1Cs 440 ASIC 4_}5, 436
T4HC 1Cs 340 ASIP 452

ASMs 253
A Assembler 470
Assembly code 471
Assembly program 51
Assert 93
assert (in VHDL) 499
assert statement {in SystemC') 501
Assertion 95
Assignment 249
Associative property 55

A2D (anadog o digital) 9
e

Access time (RAR
Actions (ina state) 254
Active low 92

ise controd, 264 4
Adder 259, 365, 377 ASSP 450
Adder tree 236 Asyachronous gucml 17
Addition method 14, 547 Asynchronous mput 145
Address 170, 226 Asynchronous reset 150

: ot 15
\ircrafl lavatory sign example 59 Asynchronous set 150

\lgebra 43 Atmel 25

Data structure binary search tree, hash table

Image stitching

- g
. L]

Fa

solution

