
CS 315 Data Structures Fall 13

Instructor:

 B. Ravikumar

 Office: 116 I Darwin Hall

Phone: 664 3335

E-mail: cs315spring11@gmail.com

Course Web site:

 http://piazza.com

Textbook:

 Data Structures and Algorithms

in C++ by Drozdek, Cengage

Publishing.

Course Schedule

Lecture:

 M W 8:30 – 9:45, Stevenson 3039

Lab:

 M 5 to 7:50, Darwin 28

Data Structures – central themes

• (more advanced) programming

• larger problems (than what was studied in CS 215)

• advanced features like recursion, classes and library

• new data types (images, audio, video, text)
• algorithm design

• performance issues

• comparison of algorithms

• time, storage requirements

• applications

• image processing

• data/image compression

• web search, parsing

• board games

• graphs and their algorithms

Data Structures – the central issues

How to organize data in memory so that the

we can solve the problem most efficiently?

Hard disk RAM

CPU

Data Structure – the central issues

Topics of concern:

• software design, problem solving and

applications

• reactive programs:

• query response

• trade-offs between operations

• efficiency, simplicity, scalability, …

Course Goals

• Learn to use fundamental data structures:

• arrays, linked lists, stacks and queues

• hash table

• priority queue

• binary search tree

• Improve programming skill

• recursion, classes, algorithm design, implementation

• build projects using different data structures

• Analytical and experimental analysis

• quantitative reasoning about the performance of

algorithms (time, storage, etc.)

• comparing different data structures

Course Goals

• Projects/applications:
• image storage, manipulation

• Image labeling

• compression (text, image, etc.)

• computing with unlimited size integers

• Discrete-event simulation

• Index generation

• Geometric problems

• image rotation, image stitching

• Game tree search

• evaluating arithmetic expression

Data Structures – key to software design

• Data structures play a key role in every type of

software.

•Data structure deals with how to store the

data internally while solving a problem in order

to
•Optimize

• the overall running time of a program

• the response time (for queries)

• the memory requirements

• other resources (e.g. band-width of a network)

• Simplify software design

• make solution extendible, more robust

Abstract vs. concrete data structures

 Abstract data structure (sometimes called ADT ->
Abstract Data Type) is a collection of data with a set of
operations supported to manipulate the structure

 Examples:

• stack, queue insert, delete

• priority queue insert, deleteMin

• Dictionary insert, search, delete

 Concrete data structures are the implementations of
abstract data structures:

• Arrays, linked lists, trees, heaps, hash table

 A recurring theme: Find the best mapping between
abstract and concrete data structures.

Abstract Data Structure (ADT)

container supporting operations

•Dictionary
•search

•insert primary operations

•Delete

•deleteMin

•Range search

•Successor secondary operations

•Merge

•Priority queue
•Insert

•deleteMin

•Merge, split etc. Secondary operations

primary operations

Linear data structures

• key properties of the (1-dim.) array:

• a sequence of items are stored in consecutive

physical memory locations.

• main advantage: array provides a constant time

access to k-th element for any k.

 (access the element by: Element[k].)

• other operations are expensive:

• Search

• Insert

• delete

2-dim. arrays

 Used to store images, tables etc.

 Given row number r, and column number s,

the element in A[r, s] can be accessed in one

clock cycle.

 (usually row major or column major order is

used.)

 Other operations are expensive.

 Sparse array representation

• Used to compress images

• Trade-offs between storage and time

Linked lists

 Linked lists:

• Storing a sequence of items in non-

consecutive locations of the memory.

• Not easy to search for a key (even if

sorted).

• Inserting next to a given item is easy.

• Array vs. linked list:

• Don’t need to know the number of items in

advance. (dynamic memory allocation)

• disadvantages

order is important

stacks and queues

• stacks:

• insert and delete at the same end.

• equivalently, last element inserted will be

the first one to be deleted.

• very useful to solve many problems

•Processing arithmetic expressions

• queues:

• insert at one end, deletion at the other

end.

• equivalently, first element inserted is the first

one to be deleted.

Non-linear data structures

 Various versions of trees

• Binary search trees

• Height-balanced trees etc.

 Lptr key Rptr

15

Main purpose of a binary search tree  support

dictionary operations efficiently

Priority queue

 Max priority key is the one that gets deleted

next.

• Equivalently, support for the following

operations:

• insert

• deleteMin

 Useful in solving many problems

• fast sorting (heap-sorting)

• shortest-path, minimum spanning tree,

scheduling etc.

Hashing

• Supports dictionary operations very efficiently

(most of the time).

• Main advantages:

•Simple to design, implement

• on average very fast

• not good in the worst-case.

Applications

• arithmetic expression evaluation

• data compression (Huffman coding, LZW

algorithm)

• image segmentation, image compression

• backtrack searching

• finding the best path to route in a network

• geometric problems (e.g. rectangle area)

Some projects from past semesters

• Unlimited precision arithmetic:

 Compute values like 1000! =

(concepts : recursion, linked list)

http://images.google.com/imgres?imgurl=http://www.wildnatureimages.com/images%25202/040428-072..jpg&imgrefurl=http://www.wildnatureimages.com/Poker%25202.htm&h=399&w=600&sz=60&tbnid=hEhUI09EUQbPKM:&tbnh=90&tbnw=135&prev=/images%3Fq%3Dpoker%2Bhand%26um%3D1&start=1&ei=1NOeR9XoFpS6gQOlzpCjCw&sig2=fQrrvmU2Y8_FdJOZWQjGgw&sa=X&oi=images&ct=image&cd=1
http://images.google.com/imgres?imgurl=http://www.wildnatureimages.com/images%25202/040428-072..jpg&imgrefurl=http://www.wildnatureimages.com/Poker%25202.htm&h=399&w=600&sz=60&tbnid=hEhUI09EUQbPKM:&tbnh=90&tbnw=135&prev=/images%3Fq%3Dpoker%2Bhand%26um%3D1&start=1&ei=1NOeR9XoFpS6gQOlzpCjCw&sig2=fQrrvmU2Y8_FdJOZWQjGgw&sa=X&oi=images&ct=image&cd=1

Some projects from past semesters

• Image manipulation: (concept: arrays, library,

algorithm analysis)

http://images.google.com/imgres?imgurl=http://www.wildnatureimages.com/images%25202/040428-072..jpg&imgrefurl=http://www.wildnatureimages.com/Poker%25202.htm&h=399&w=600&sz=60&tbnid=hEhUI09EUQbPKM:&tbnh=90&tbnw=135&prev=/images%3Fq%3Dpoker%2Bhand%26um%3D1&start=1&ei=1NOeR9XoFpS6gQOlzpCjCw&sig2=fQrrvmU2Y8_FdJOZWQjGgw&sa=X&oi=images&ct=image&cd=1
http://images.google.com/imgres?imgurl=http://www.wildnatureimages.com/images%25202/040428-072..jpg&imgrefurl=http://www.wildnatureimages.com/Poker%25202.htm&h=399&w=600&sz=60&tbnid=hEhUI09EUQbPKM:&tbnh=90&tbnw=135&prev=/images%3Fq%3Dpoker%2Bhand%26um%3D1&start=1&ei=1NOeR9XoFpS6gQOlzpCjCw&sig2=fQrrvmU2Y8_FdJOZWQjGgw&sa=X&oi=images&ct=image&cd=1

 image manipulation

http://images.google.com/imgres?imgurl=http://www.wildnatureimages.com/images%25202/040428-072..jpg&imgrefurl=http://www.wildnatureimages.com/Poker%25202.htm&h=399&w=600&sz=60&tbnid=hEhUI09EUQbPKM:&tbnh=90&tbnw=135&prev=/images%3Fq%3Dpoker%2Bhand%26um%3D1&start=1&ei=1NOeR9XoFpS6gQOlzpCjCw&sig2=fQrrvmU2Y8_FdJOZWQjGgw&sa=X&oi=images&ct=image&cd=1
http://images.google.com/imgres?imgurl=http://www.wildnatureimages.com/images%25202/040428-072..jpg&imgrefurl=http://www.wildnatureimages.com/Poker%25202.htm&h=399&w=600&sz=60&tbnid=hEhUI09EUQbPKM:&tbnh=90&tbnw=135&prev=/images%3Fq%3Dpoker%2Bhand%26um%3D1&start=1&ei=1NOeR9XoFpS6gQOlzpCjCw&sig2=fQrrvmU2Y8_FdJOZWQjGgw&sa=X&oi=images&ct=image&cd=1

Image rotation

• Bounding box construction: OCR is one of the

early success stories in software applications.

Scan a printed page and recognize the characters in it.

First step: bounding box construction.

Input:

Output: “In 1830 there were but twenty-three

miles of railroad in operation in the United

States, and in that year Kentucky took … “

Final step:

• Spelling checker: Given a text file T, identify all

the misspelled words in T.

Idea: build a hash table H of all the words in a

dictionary, and search for each word of the

text T in the table H. For each misspelled word,

suggest the correct spelling.

(hashing, strings, vectors)

• Peg solitaire (backtracking, recursion, hash

table)

Find a sequence of moves that leaves exactly

one peg on the board. (starting position can be

specified. In some cases, there may be no

solution.)

• Geometric computation problem – given a

set of rectangles, determine the total area

covered by them. Trace the contour, report all

intersections etc.

Data structure: binary search tree.

•Given two photographs of the same scene

taken from two different positions, combine

them into a single image.

Image compression

original

(compressed x10)

(compressed x 50)

(Quadtree data structure)

Index generation for a document

Index contains the list of all the words appearing in a

document, with the line numbers in which they appear.

Typical index for a book looks:

Data structure binary search tree, hash table

Image stitching

Image stitching

solution

