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Chapter 6: Binary Trees  



Binary Trees 

• A tree in which no node can have more than two 
children 

 

 

 

 

• The depth of an “average” binary tree is considerably smaller than 
N, even though in the worst case, the depth can be as large as N – 1. 

typical 
binary tree 

Worst-case 
binary tree 



Node Struct of Binary Tree 

 Possible operations on the Binary Tree ADT 

 Parent, left_child, right_child, sibling, root, etc 

 

 Implementation 

 Because a binary tree has at most two children, we 
can keep direct pointers to them 

 
class Tree { 

      int key; 

      Tree* left, right; 

} 



Binary Search Trees (BST) 

• A data structure for efficient searching, inser-
tion and deletion (dictionary operations) 

• All operations in worst-case O(log n) time 

• Binary search tree property 

• For every node x: 

• All the keys in its left  
subtree are smaller than  
the key value in x  

• All the keys in its right  
subtree are larger than the  
key value in x 

 



Binary Search Trees 

  

 

 

 

 

 

 

 

A binary search tree 

Not a binary search tree 

Example: 

Tree height = 3 

 

Key requirement of a BST: all the keys in a BST are 
distinct, no duplication 



Binary Search Trees 

 

 

 

 

 

 

 

 

 

• Average height of a binary search tree is O(log N) 

• Maximum height of a binary search tree is O(N) 

                               (N = the number of nodes in the tree) 

 

The same set of keys may have different BSTs 



Searching BST 

Example: Suppose T is the tree being searched: 

• If we are searching for 15, then we are done. 

• If we are searching for a key < 15, then we should 
search in the left subtree. 

• If we are searching for a key > 15, then we should 
search in the right subtree. 





Search (Find) 

• Find X: return a pointer to the node that has key X, or 
NULL if there is no such node 

 
           Tree* find(int x, Tree* t) { 

              if (t == NULL) return NULL; 

              else if (x < t->key) 

                  return find(x, t->left); 

              else if (x == t->key) 

                  return t; 

              else return find(x, t->right); 

           } 

 

 
 
 

• Time complexity: O(height of the tree) = O(log N) on 
average. (i.e., if the tree was built using a random 
sequence of numbers.) 



Inorder Traversal of BST 

• Inorder traversal of BST prints out all the keys in 
sorted order 

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20 



findMin/ findMax 
 Goal: return the node containing the smallest (largest) 

key in the tree 

 Algorithm: Start at the root and go left (right) as long as 
there is a left (right) child. The stopping point is the 
smallest (largest) element 

 

           Tree* findMin(Tree* t) { 
        if (t==NULL) return NULL; 

        while (t->left != NULL) 

            t = t->left; 

        return t; 

       } 

        

 Time complexity = O(height of the tree) 



Insertion 
To insert(X): 

 Proceed down the tree as you would for search. 

 If x is found, do nothing (or update some secondary 
record) 

 Otherwise, insert X at the last spot on the path 
traversed 

 

 

 

 

 

 

 Time complexity = O(height of the tree) 

X = 13 



Another example of insertion 

 

Example: insert(11). Show the path taken and the position 
at which 11 is inserted. 

Note: There is a unique place where a new key can be 
inserted.  



Code for insertion 

 

Insert is a recursive (helper) function that takes a pointer 
to a node and inserts the key in the subtree rooted at that 
node. 

 
          void insert(int x, Tree* & t) { 

            if (t == NULL) 

                t = new Tree(x, NULL, NULL); 

            else if (x < t->key) 

               insert(x, t->left); 

            else if (x > t->key) 

               insert(x, t->right); 

           else ; // duplicate; do nothing 

          } 

 

Time complexity: O(h) as the algorithm just moves once from the root to a leaf. 



Deletion under Different Cases 

 Case 1: the node is a leaf 

 Delete it immediately 

 Case 2: the node has one child 

 Adjust a pointer from the parent to bypass that 
node 



Deletion Case 3 

 Case 3: the node has 2 children 
 Replace the key of that node with the minimum 

element at the right subtree  

 Delete that minimum element  

 Has either no child or only right child because if it 
has a left child, that left child would be smaller 
and would have been chosen. So invoke case 1 or 2. 

 
 

 

 

 

 

 

 Time complexity = O(height of the tree) 



Code for Deletion 
 

First recall the code for findMin. 

 
  Tree* findMin(Tree* t) { 

        if (t==NULL) return NULL; 

        while (t->left != NULL) 

            t = t->left; 

        return t; 

       } 

 

 

 



Code for Deletion 
 
void remove(int x, BinaryTree* & t) { 

   // remove key x from t 

   if (t == NULL) return; // item not found; do nothing 

   if (x < t->key)   

        remove(x, t->left); 

   else if (x > t->key) remove(x, t->right); 

   else if (t->left != NULL && t->right != NULL) { 

               t->key = findMin(t->right)->key; 

               remove(t->key, t->right);  

              } 

   else { 

         Tree* oldNode = t; 

         t = (t->left != NULL) ? t->left: t->right; 

         delete oldNode; 

       } 

}   



Summary of BST 
All the dictionary operations (search, insert and delete) as 
well as deleteMin, deleteMax etc. can be performed in O(h) 
time where h is the height of a binary search tree. 

Good news: 

 h is on average O(log n) (if the keys are inserted in a random order). 

 code for implementing dictionary operations is simple. 

 

Bad news: 

 worst-case is O(n). 

 some natural order of insertions (sorted in ascending or descending 
order) lead to O(n) height.  (check this!) 

 

Solution: 

 enforce some condition on the tree structure that keeps the tree from 
growing unevenly. 

 


