
Binary Search Trees / Slide 1 

Chapter 6: Binary Trees  



Binary Trees 

• A tree in which no node can have more than two 
children 

 

 

 

 

• The depth of an “average” binary tree is considerably smaller than 
N, even though in the worst case, the depth can be as large as N – 1. 

typical 
binary tree 

Worst-case 
binary tree 



Node Struct of Binary Tree 

 Possible operations on the Binary Tree ADT 

 Parent, left_child, right_child, sibling, root, etc 

 

 Implementation 

 Because a binary tree has at most two children, we 
can keep direct pointers to them 

 
class Tree { 

      int key; 

      Tree* left, right; 

} 



Binary Search Trees (BST) 

• A data structure for efficient searching, inser-
tion and deletion (dictionary operations) 

• All operations in worst-case O(log n) time 

• Binary search tree property 

• For every node x: 

• All the keys in its left  
subtree are smaller than  
the key value in x  

• All the keys in its right  
subtree are larger than the  
key value in x 

 



Binary Search Trees 

  

 

 

 

 

 

 

 

A binary search tree 

Not a binary search tree 

Example: 

Tree height = 3 

 

Key requirement of a BST: all the keys in a BST are 
distinct, no duplication 



Binary Search Trees 

 

 

 

 

 

 

 

 

 

• Average height of a binary search tree is O(log N) 

• Maximum height of a binary search tree is O(N) 

                               (N = the number of nodes in the tree) 

 

The same set of keys may have different BSTs 



Searching BST 

Example: Suppose T is the tree being searched: 

• If we are searching for 15, then we are done. 

• If we are searching for a key < 15, then we should 
search in the left subtree. 

• If we are searching for a key > 15, then we should 
search in the right subtree. 





Search (Find) 

• Find X: return a pointer to the node that has key X, or 
NULL if there is no such node 

 
           Tree* find(int x, Tree* t) { 

              if (t == NULL) return NULL; 

              else if (x < t->key) 

                  return find(x, t->left); 

              else if (x == t->key) 

                  return t; 

              else return find(x, t->right); 

           } 

 

 
 
 

• Time complexity: O(height of the tree) = O(log N) on 
average. (i.e., if the tree was built using a random 
sequence of numbers.) 



Inorder Traversal of BST 

• Inorder traversal of BST prints out all the keys in 
sorted order 

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20 



findMin/ findMax 
 Goal: return the node containing the smallest (largest) 

key in the tree 

 Algorithm: Start at the root and go left (right) as long as 
there is a left (right) child. The stopping point is the 
smallest (largest) element 

 

           Tree* findMin(Tree* t) { 
        if (t==NULL) return NULL; 

        while (t->left != NULL) 

            t = t->left; 

        return t; 

       } 

        

 Time complexity = O(height of the tree) 



Insertion 
To insert(X): 

 Proceed down the tree as you would for search. 

 If x is found, do nothing (or update some secondary 
record) 

 Otherwise, insert X at the last spot on the path 
traversed 

 

 

 

 

 

 

 Time complexity = O(height of the tree) 

X = 13 



Another example of insertion 

 

Example: insert(11). Show the path taken and the position 
at which 11 is inserted. 

Note: There is a unique place where a new key can be 
inserted.  



Code for insertion 

 

Insert is a recursive (helper) function that takes a pointer 
to a node and inserts the key in the subtree rooted at that 
node. 

 
          void insert(int x, Tree* & t) { 

            if (t == NULL) 

                t = new Tree(x, NULL, NULL); 

            else if (x < t->key) 

               insert(x, t->left); 

            else if (x > t->key) 

               insert(x, t->right); 

           else ; // duplicate; do nothing 

          } 

 

Time complexity: O(h) as the algorithm just moves once from the root to a leaf. 



Deletion under Different Cases 

 Case 1: the node is a leaf 

 Delete it immediately 

 Case 2: the node has one child 

 Adjust a pointer from the parent to bypass that 
node 



Deletion Case 3 

 Case 3: the node has 2 children 
 Replace the key of that node with the minimum 

element at the right subtree  

 Delete that minimum element  

 Has either no child or only right child because if it 
has a left child, that left child would be smaller 
and would have been chosen. So invoke case 1 or 2. 

 
 

 

 

 

 

 

 Time complexity = O(height of the tree) 



Code for Deletion 
 

First recall the code for findMin. 

 
  Tree* findMin(Tree* t) { 

        if (t==NULL) return NULL; 

        while (t->left != NULL) 

            t = t->left; 

        return t; 

       } 

 

 

 



Code for Deletion 
 
void remove(int x, BinaryTree* & t) { 

   // remove key x from t 

   if (t == NULL) return; // item not found; do nothing 

   if (x < t->key)   

        remove(x, t->left); 

   else if (x > t->key) remove(x, t->right); 

   else if (t->left != NULL && t->right != NULL) { 

               t->key = findMin(t->right)->key; 

               remove(t->key, t->right);  

              } 

   else { 

         Tree* oldNode = t; 

         t = (t->left != NULL) ? t->left: t->right; 

         delete oldNode; 

       } 

}   



Summary of BST 
All the dictionary operations (search, insert and delete) as 
well as deleteMin, deleteMax etc. can be performed in O(h) 
time where h is the height of a binary search tree. 

Good news: 

 h is on average O(log n) (if the keys are inserted in a random order). 

 code for implementing dictionary operations is simple. 

 

Bad news: 

 worst-case is O(n). 

 some natural order of insertions (sorted in ascending or descending 
order) lead to O(n) height.  (check this!) 

 

Solution: 

 enforce some condition on the tree structure that keeps the tree from 
growing unevenly. 

 


