
Binary Search Trees / Slide 1

Chapter 6: Binary Trees

Binary Trees

• A tree in which no node can have more than two
children

• The depth of an “average” binary tree is considerably smaller than
N, even though in the worst case, the depth can be as large as N – 1.

typical
binary tree

Worst-case
binary tree

Node Struct of Binary Tree

 Possible operations on the Binary Tree ADT

 Parent, left_child, right_child, sibling, root, etc

 Implementation

 Because a binary tree has at most two children, we
can keep direct pointers to them

class Tree {

 int key;

 Tree* left, right;

}

Binary Search Trees (BST)

• A data structure for efficient searching, inser-
tion and deletion (dictionary operations)

• All operations in worst-case O(log n) time

• Binary search tree property

• For every node x:

• All the keys in its left
subtree are smaller than
the key value in x

• All the keys in its right
subtree are larger than the
key value in x

Binary Search Trees

A binary search tree

Not a binary search tree

Example:

Tree height = 3

Key requirement of a BST: all the keys in a BST are
distinct, no duplication

Binary Search Trees

• Average height of a binary search tree is O(log N)

• Maximum height of a binary search tree is O(N)

 (N = the number of nodes in the tree)

The same set of keys may have different BSTs

Searching BST

Example: Suppose T is the tree being searched:

• If we are searching for 15, then we are done.

• If we are searching for a key < 15, then we should
search in the left subtree.

• If we are searching for a key > 15, then we should
search in the right subtree.

Search (Find)

• Find X: return a pointer to the node that has key X, or
NULL if there is no such node

 Tree* find(int x, Tree* t) {

 if (t == NULL) return NULL;

 else if (x < t->key)

 return find(x, t->left);

 else if (x == t->key)

 return t;

 else return find(x, t->right);

 }

• Time complexity: O(height of the tree) = O(log N) on
average. (i.e., if the tree was built using a random
sequence of numbers.)

Inorder Traversal of BST

• Inorder traversal of BST prints out all the keys in
sorted order

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

findMin/ findMax
 Goal: return the node containing the smallest (largest)

key in the tree

 Algorithm: Start at the root and go left (right) as long as
there is a left (right) child. The stopping point is the
smallest (largest) element

 Tree* findMin(Tree* t) {
 if (t==NULL) return NULL;

 while (t->left != NULL)

 t = t->left;

 return t;

 }

 Time complexity = O(height of the tree)

Insertion
To insert(X):

 Proceed down the tree as you would for search.

 If x is found, do nothing (or update some secondary
record)

 Otherwise, insert X at the last spot on the path
traversed

 Time complexity = O(height of the tree)

X = 13

Another example of insertion

Example: insert(11). Show the path taken and the position
at which 11 is inserted.

Note: There is a unique place where a new key can be
inserted.

Code for insertion

Insert is a recursive (helper) function that takes a pointer
to a node and inserts the key in the subtree rooted at that
node.

 void insert(int x, Tree* & t) {

 if (t == NULL)

 t = new Tree(x, NULL, NULL);

 else if (x < t->key)

 insert(x, t->left);

 else if (x > t->key)

 insert(x, t->right);

 else ; // duplicate; do nothing

 }

Time complexity: O(h) as the algorithm just moves once from the root to a leaf.

Deletion under Different Cases

 Case 1: the node is a leaf

 Delete it immediately

 Case 2: the node has one child

 Adjust a pointer from the parent to bypass that
node

Deletion Case 3

 Case 3: the node has 2 children
 Replace the key of that node with the minimum

element at the right subtree

 Delete that minimum element

 Has either no child or only right child because if it
has a left child, that left child would be smaller
and would have been chosen. So invoke case 1 or 2.

 Time complexity = O(height of the tree)

Code for Deletion

First recall the code for findMin.

 Tree* findMin(Tree* t) {

 if (t==NULL) return NULL;

 while (t->left != NULL)

 t = t->left;

 return t;

 }

Code for Deletion

void remove(int x, BinaryTree* & t) {

 // remove key x from t

 if (t == NULL) return; // item not found; do nothing

 if (x < t->key)

 remove(x, t->left);

 else if (x > t->key) remove(x, t->right);

 else if (t->left != NULL && t->right != NULL) {

 t->key = findMin(t->right)->key;

 remove(t->key, t->right);

 }

 else {

 Tree* oldNode = t;

 t = (t->left != NULL) ? t->left: t->right;

 delete oldNode;

 }

}

Summary of BST
All the dictionary operations (search, insert and delete) as
well as deleteMin, deleteMax etc. can be performed in O(h)
time where h is the height of a binary search tree.

Good news:

 h is on average O(log n) (if the keys are inserted in a random order).

 code for implementing dictionary operations is simple.

Bad news:

 worst-case is O(n).

 some natural order of insertions (sorted in ascending or descending
order) lead to O(n) height. (check this!)

Solution:

 enforce some condition on the tree structure that keeps the tree from
growing unevenly.

