PH 205: Mathematical methods of physics

Problem Set 9

1. The most general linear second order differential operator \mathcal{L} in two variables x and y has the form of

$$\mathcal{L} = a \frac{\partial^2}{\partial x^2} + 2b \frac{\partial^2}{\partial x \partial y} + c \frac{\partial^2}{\partial y^2} + d \frac{\partial}{\partial x} + e \frac{\partial}{\partial y} + f,$$

where a, b, c, d, e and f are real numbers.

(a) Show that \mathcal{L} can be written in the form

$$\mathcal{L} = \alpha \left(\frac{\partial}{\partial \xi} - \mu \right)^2 + \beta \left(\frac{\partial}{\partial \rho} - \nu \right)^2 + \gamma,$$

where $\alpha, \beta, \gamma, \mu$ and ν are real numbers that depend on a, b, c, d, e and f and ξ and ρ are variables that are linearly dependent on x and y.

- (b) Argue that the classification of the equation as hyperbolic, parabolic or elliptic depends only on the coefficients a, b and c and not d, e and f.
- 2. The Helmholtz equation for a function ϕ is the homogeneous partial differential equation

$$\nabla^2 \phi + m^2 \phi = 0,$$

where m is a real number. Consider the Helmholtz equation inside a cube of side a centred at the origin. The boundary conditions are that $\phi = 0$ on every face of the cube.

- (a) What is $\phi(x, y, z)$ at every point inside the cube for different values of m?
- (b) Is the above solution unique for a given m?
- (c) What is the solution for m = 0? Is it unique?
- 3. Consider a quantum mechanical particle of mass μ in a spherical box of radius a, i.e. the potential is zero inside the box and infinite outside.
 - (a) Write the Schrödinger equation for this problem in spherical polar coordinates. Separate the equation out into radial and angular parts.
 - (b) The solution of the angular part will give you the spherical harmonics $Y_{lm}(\theta, \phi)$ as expected for any problem with a spherically symmetric potential. Further the energy eigenvalues will be independent of m. Show that the a general wavefunction corresponding to an energy eigenvalue E and with quantum numbers l and m has the form

$$\psi(r,\theta,\phi) = R_l(\sqrt{2mE}r/\hbar)Y_{lm}(\theta,\phi)$$

where R_l is the solution to the radial equation and depends on the eigenvalue l.

- (c) Show using an appropriate substitution that the radial equation can be transformed into the Bessel equation and hence $R_l(\sqrt{E}r)$ can be written in terms of a Bessel function.
- (d) It can be argued that the ground state of the particle has l = 0. Calculate the ground state energy and wavefunction.
- 4. The equation of motion of a one dimensional forced damped harmonic oscillator is

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F(t),$$

where the symbols have their usual meanings. Assume that the initial conditions are x(t=0)=0 and x'(t=0)=0. The solution to this equation is of the form

$$x(t) = \int_{-\infty}^{\infty} G(t, t') F(t') dt',$$

where G(t, t') is the Green's function.

- (a) Calculate G(t, t') in two ways: 1) obtaining the solution for t < t' and t > t' and matching them appropriately at t = t' and 2) using Fourier transforms. Do you get the same result both ways?
- (b) Calculate x(t) for the cases: 1) $F(t) = F_0 \delta(t)$, 2) $F(t) = F_0 \cos \Omega t$ and 3) $F(t) = F_0 e^{-t/\tau}$.
- 5. For the diffusion equation and the free particle Schrödinger equation both in one dimension, show explicitly that the solution at at a point x and time t can be obtained as an integral over an initial value of the function involving the Green's function.