
Java Basics

 First Java Program

 Comments

 Class Name / Source Code Filename

 main Method Heading

 Braces

 System.out.println

 Compilation and Execution

 Program Template

 Identifiers

 Variables

 Assignment Statements

 Initialization Statements

1

Chapter 3 - Java Basics

 Numeric Data Types – int, long

 Numeric Data Types – float, double

 Constants

 Arithmetic Operators

 Expression Evaluation

 Increment and Decrement Operators

 Compound Assignment Operators

 Type Casting

 Character Type - char

 Escape Sequences

 Primitive Variables vs. Reference Variables

 String Basics

 String Methods:

 equals, equalsIgnoreCase, length, charAt

 Input - the Scanner Class

2

First Java Program

/***************************************

* Hello.java

* John Dean

*

* This program prints a hello message.

***************************************/

public class Hello

{

 public static void main(String[] args)

 {

 System.out.println("Hello, world!");

 }

} // end class Hello

3

Comments

 Include comments in your programs in order to make them more
readable/understandable.

 Block comment syntax:
/* ... */ (Note: The /* and */ can optionally span multiple lines)

 One line comment syntax:
// …

 Commented text is ignored by the compiler.

 Style requirement: Include a prologue section at the top of every

program. The prologue section consists of:
 line of *'s
 filename
 programmer's name
 blank line
 program description
 line of *'s
 blank line

4

Class Name / Source Code Filename

 All Java programs must be enclosed in a class. Think
of a class as the name of the program.

 The name of the Java program's file must match the
name of the Java program's class (except that the
filename has a .java extension added to it).

 Proper style dictates that class names start with an
uppercase first letter.

 Since Java is case-sensitive, that means the filename
should also start with an uppercase first letter.

 Case-sensitive means that the Java compiler does
distinguish between lowercase and uppercase letters.

5

main Method Heading

 Memorize (and always use) public class prior to your class

name. For example:

public class Hello

 Inside your class, you must include one or more methods.

 A method is a group of instructions that solves one task. Later
on, we'll have larger programs and they'll require multiple
methods because they'll solve multiple tasks. But for now, we'll
work with small programs that need only one method - the main

method.

 Memorize (and always use) this main method heading:

public static void main(String[] args)

 When a program starts, the computer looks for the main

method and begins execution with the first statement after the
main method heading.

6

Braces

 Use braces, { }, to group things together.

 For example, in the Hello World program, the top and
bottom braces group the contents of the entire class,
and the interior braces group the contents of the
main method.

 Proper style dictates:

 Place an opening brace on a line by itself in the same column
as the first character of the previous line.

 Place a closing brace on a line by itself in the same column
as the opening brace.

7

System.out.println

 To generate output, use System.out.println().

 For example, to print the hello message, we did this:
System.out.println("Hello, world!");

 Note:

 Put the printed item inside the parentheses.

 Surround strings with quotes.

 Put a semicolon at the end of a System.out.println statement.

 What's the significance of the ln in println?

8

Compilation and Execution

 To create a Java program that can be run on a
computer, submit your Java source code to a
compiler. We say that the compiler compiles the
source code. In compiling the source code, the
compiler generates a bytecode program that can be
run by the computer's JVM (Java Virtual Machine).

 Java source code filename = <class-name> + .java

 Java bytecode filename = <class-name> + .class

9

Identifiers

 Identifier = the technical term for a name in a
programming language

 Identifier examples –
 class name identifier: Hello

 method name identifier: main

 variable name identifier: height

 Identifier naming rules:

 Must consist entirely of letters, digits, dollar signs ($), and/or
underscore (_) characters.

 The first character must not be a digit.

 If these rules are broken, your program won't compile.

10

Identifiers

 Identifier naming conventions (style rules):

 If these rules are broken, it won't affect your program's
ability to compile, but your program will be harder to
understand and you'll lose style points on your homework.

 Use letters and digits only, not $'s or _'s.

 All letters must be lowercase except the first letter in the
second, third, etc. words. For example:

 firstName, x, daysInMonth

 Addendum to the above rule – for class names, the first
letter in every word (even the first word) must be uppercase.
For example:
StudentRecord, WorkShiftSchedule

 Names must be descriptive.

11

Variables

 A variable can hold only one type of data. For example,
an integer variable can hold only integers, a string
variable can hold only strings, etc.

 How does the computer know which type of data a
particular variable can hold?

 Before a variable is used, its type must be declared in a
declaration statement.

 Declaration statement syntax:
<type> <list of variables separated by commas>;

 Example declarations:
String firstName; // student's first name

String lastName; // student's last name

int studentId;

int row, col; Style: comments must be aligned.

12

Assignment Statements

 Java uses the single equal sign (=) for assignment statements.

 In the below code fragment, the first assignment statement
assigns the value 50000 into the variable salary.

int salary;

String bonusMessage;

salary = 50000;

bonusMessage = "Bonus = $" + (.02 * salary);

 Note the + operator in the second assignment statement. If a +
operator appears between a string and something else (e.g., a
number or another string), then the + operator performs string
concatenation. That means that the JVM appends the item at
the right of the + to the item at the left of the +, forming a new
string.

Commas are not allowed in numbers.

string concatenation

13

Tracing

 Trace this code fragment:
int salary;

String bonusMessage;

salary = 50000;

bonusMessage = "Bonus = $" + (.02 * salary);

System.out.println(bonusMessage);

salary bonusMessage output

 When you trace a declaration statement, write a ? in
the declared variable's column, indicating that the
variable exists, but it doesn't have a value yet.

14

Program Template

 In this chapter's slides, all of the code fragment
examples can be converted to complete programs by
plugging them into the <method-body> in this program
template:
/**

* Test.java

* <author>

*

* <description>

***/

public class Test

{

 public static void main(String[] args)

 {

 <method-body>

 }

} // end class Test

16

Initialization Statements

 Initialization statement:

 When you assign a value to a variable as part of the variable's
declaration.

 Initialization statement syntax:
<type> <variable> = <value>;

 Example initializations:
int totalScore = 0; // sum of all bowling scores

int maxScore = 300; // default maximum bowling score

17

Initialization Statements

 Example initializations (repeated from previous slide):
int totalScore = 0; // sum of all bowling scores

int maxScore = 300; // default maximum bowling score

 Here's an alternative way to do the same thing using
declaration and assignment statements (instead of
using initialization statements):
int totalScore; // sum of all bowling scores

int maxScore; // default maximum bowling score

totalScore = 0;

maxScore = 300;

 It's OK to use either technique and you'll see it done
both ways in the real world.

18

Numeric Data Types – int, long

 Variables that hold whole numbers (e.g., 1000, -22)
should normally be declared with one of these integer
data types – int, long.

 Range of values that can be stored in an int variable:

  -2 billion to +2 billion

 Range of values that can be stored in a long variable:

  -9x1018 to +9x1018

 Example integer variable declarations:
int studentId;

long satelliteDistanceTraveled;

 Recommendation: Use smaller types for variables that
will never need to hold large values.

19

 Variables that hold decimal numbers (e.g., -1234.5,
3.1452) should be declared with one of these floating-
point data types – float, double.

 Example code:
float gpa;

double bankAccountBalance;

 The double type stores numbers using 64 bits
whereas the float type stores numbers using only 32

bits. That means that double variables are better than
float variables in terms of being able to store bigger
numbers and numbers with more significant digits.

Numeric Data Types – float, double

20

 Recommendation:

 You should normally declare your floating point variables with the
double type rather than the float type.

 In particular, don't use float variables when there are calculations

involving money or scientific measurements. Those types of calculations

require considerable accuracy and float variables are not very accurate.

 Range of values that can be stored in a float variable:

  -3.4*1038 to +3.4*1038

 Range of values that can be stored in a double variable:

  -3.4*10308 to +3.4*10308

 You can rely on 15 significant digits for a double variable, but
only 6 significant digits for a float variable.

Numeric Data Types – float, double

21

 Assigning an integer value into a floating-point
variable works just fine. Note this example:
double bankAccountBalance = 1000;

 On the other hand, assigning a floating-point value
into an integer variable is like putting a large object
into a small box. By default, that's illegal. For
example, this generates a compilation error:
int temperature = 26.7;

 This statement also generates a compilation error:
int count = 0.0;

Assignments Between Different Types

22

 A constant is a fixed value. Examples:

 8, -45, 2000000 : integer constants

 -34.6, .009, 8. : floating point constants

 "black bear", "hi" : string constants

 The default type for an integer constant is int (not
long).

 The default type for a floating point constant is
double (not float).

Constants
23

Constants

 This example code generates compilation errors.
Where and why?
float gpa = 2.30;

float mpg;

mpg = 50.5;

 Possible Solutions:
 Always use double variables instead of float variables.

or

 To explicitly force a floating point constant to be float, use
an f or F suffix. For example:

float gpa = 2.30f;

float mpg;

mpg = 50.5F;

24

Constants

 Constants can be split into two categories: hard-
coded constants and named constants.

 The constants we've covered so far can be referred to
as hard-coded constants. A hard-coded constant is an
explicitly specified value. For example, in this
assignment statement, 299792458.0 is a hard-coded
constant:
propagationDelay = cableLength / 299792458.0;

 A named constant is a constant that has a name
associated with it. For example, in this code fragment,
SPEED_OF_LIGHT is a named constant:

final double SPEED_OF_LIGHT = 299792458.0; // in m/s

...

propagationDelay = cableLength / SPEED_OF_LIGHT;

division operator

25

Named Constants

 The reserved word final is a modifier – it modifies

SPEED_OF_LIGHT so that its value is fixed or "final."

 All named constants use the final modifier.

 The final modifier tells the compiler to generate an
error if your program ever tries to change the final

variable's value at a later time.

 Standard coding conventions suggest that you
capitalize all characters in a named constant and use
an underscore to separate the words in a multiple-
word named constant.

26

Named Constants

 There are two main benefits of using named
constants:

1. Using named constants leads to code that is more
understandable.

2. If a programmer ever needs to change a named constant's
value, the change is easy – find the named constant
initialization at the top of the method and change the
initialization value. That implements the change
automatically everywhere within the method.

27

Arithmetic Operators

 Java's +, -, and * arithmetic operators perform
addition, subtraction, and multiplication in the normal
fashion.

 Java performs division differently depending on
whether the numbers/operands being divided are
integers or floating-point numbers.

 When the Java Virtual Machine (JVM) performs
division on floating-point numbers, it performs
"calculator division." We call it "calculator division"
because Java's floating-point division works the same
as division performed by a standard calculator. For
example, if you divide 7.0 by 2.0 on your calculator,
you get 3.5. Likewise, this code fragment prints 3.5:
System.out.println(7.0 / 2.0);

28

Floating-Point Division

 This next line says that 7.0 / 2.0 "evaluates to" 3.5:
7.0 / 2.0  3.5

 This next line asks you to determine what 5 / 4. evaluates to:
5 / 4.  ?

 5 is an int and 4. is a double. This is an example of a mixed
expression. A mixed expression is an expression that contains
operands with different data types.

 double values are considered to be more complex than int
values because double values contain a fractional component.

 Whenever there's a mixed expression, the JVM temporarily
promotes the less-complex operand's type so that it matches the
more-complex operand's type, and then the JVM applies the
operator.

 In the 5 / 4. expression, the 5 gets promoted to a double and
then floating-point division is performed. The expression
evaluates to 1.25.

29

Integer Division

 There are two ways to perform division on integers:

 The / operator performs "grade school" division and
generates the quotient. For example:

7 / 2  ?

 The % operator (called the modulus operator) also performs
"grade school" division and generates the remainder. For
example:

7 % 2  ?

8 % 12  ?

30

Expression Evaluation Practice

 Given these initializations:
int a = 5, b = 2;

double c = 3.0;

 Use Chapter 3's operator precedence table to
evaluate the following expressions:
(c + a / b) / 10 * 5

(0 % a) + c + (0 / a)

31

Increment and Decrement Operators

 Use the increment operator (++) operator to increment
a variable by 1. Use the decrement operator (--) to
decrement a variable by 1.

 Here's how they work:

x++;  x = x + 1;

x--;  x = x - 1;

 Proper style dictates that the increment and decrement
operators should be used instead of statements like this.

32

Compound Assignment Operators

 The compound assignment operators are:

 +=, -=, *=, /=, %=

 The variable is assigned an updated version of the
variable's original value.

 Here's how they work:

x += 3;  x = x + 3;

x -= 4;  x = x - 4;

 Proper style dictates that compound assignment
operators should be used instead of statements like this

Repeat the variable on both
sides of the "="

33

Tracing Practice

 Trace this code fragment:
int a = 4, b = 6;

double c = 2.0;

a -= b;

b--;

c++;

c *= b;

System.out.println("a + b + c = " + (a + b + c));

34

Type Casting

 In writing a program, you'll sometimes need to
convert a value to a different data type. The cast
operator performs such conversions. Here's the
syntax:

(<type>) expression

 Suppose you've got a variable named interest that
stores a bank account's interest as a double. You'd

like to extract the dollars portion of the interest and
store it in an int variable named
interestInDollars. To do that, use the int cast

operator like this:
interestInDollars = (int) interest;

cast operator

35

Type Casting

 If you ever need to cast more than just a single value
or variable (i.e., you need to cast an expression),
then make sure to put parentheses around the entire
thing that you want casted. Note this example:
double interestRate;

double balance;

int interestInDollars;

...

interestInDollars = (int) (balance * interestRate);

Parentheses are necessary here.

36

 A char variable holds a single character.

 A char constant is surrounded by single quotes.

 Example char constants:

 'B', '1', ':'

 Example code fragment:
char first, middle, last;

first = 'J';

middle = 'S';

last = 'D';

System.out.println("Hello, " + first + middle +

 last + '!');

 What does this code fragment print?

Character Type - char
37

Escape Sequences

 Escape sequences are char constants for hard-to-print characters such
as the enter character and the tab character.

 An escape sequence is comprised of a backslash (\) and another
character.

 Common escape sequences:
 \n newline – go to first column in next line

 \t move the cursor to the next tab stop

 \\ print a backslash

 \" print a double quote

 \' print a single quote

 Provide a one-line print statement that prints these tabbed column
headings followed by two blank lines:
 ID NAME

 Note that you can embed escape sequences inside strings the same way
that you would embed any characters inside a string. For example,
provide an improved one-line print statement for the above heading.

 Why is it called an "escape" sequence?

38

Primitive Variables vs. Reference Variables

 There are two basic categories of variables in Java –
primitive variables and reference variables.

 Primitive variables hold only one piece of data.
Primitive variables are declared with a primitive type
and those types include:
 int, long (integer types)

 float, double (floating point types)

 char (character type)

 Reference variables are more complex - they can hold
a group of related data. Reference variables are
declared with a reference type and here are some
example reference types:
 String, Calendar, programmer-defined classes

Reference types start with an uppercase first letter.

39

String Basics

 Example code for basic string manipulations:

String s1;

String s2 = "and I say hello";

s1 = "goodbye";

s1 = "You say " + s1;

s1 += ", " + s2 + '.';

System.out.println(s1);

 Trace the above code.

declaration

initialization

assignment

concatenation, then assignment

concatenation, then compound assignment

40

String Methods

 String's charAt method:

 Returns the character in the given string at the specified
position.

 The positions of the characters within a string are numbered
starting with position zero.

 What's the output from this example code?
String animal = "cow";

System.out.println("Last character: " + animal.charAt(2));

To use a method, include the reference
variable, dot, method name, parentheses, and
argument(s).

41

String Methods

 String's length method:

 Returns the number of characters in the string.

 What's the output from this code fragment?
String s = "hi";

System.out.println(s.length());

42

String Methods

 To compare strings for equality, use the equals method. Use
equalsIgnoreCase for case-insensitive equality.

 Trace this program:
public class Test

{

 public static void main(String[] args)

 {

 String animal1 = "Horse";

 String animal2 = "Fly";

 String newCreature;

 newCreature = animal1 + animal2;

 System.out.println(newCreature.equals("HorseFly"));

 System.out.println(newCreature.equals("horsefly"));

 System.out.println(newCreature.equalsIgnoreCase("horsefly"));

 } // end main

} // end class Test

43

Input – the Scanner Class

 Sun provides a pre-written class named Scanner, which allows

you to get input from a user.

 To tell the compiler you want to use the Scanner class, insert
the following import statement at the very beginning of your
program (right after your prologue section and above the main

method):

import java.util.Scanner;

 At the beginning of your main method, insert this initialization

statement:

Scanner stdIn = new Scanner(System.in);

 After declaring stdIn as shown above, you can read and store a
line of input by calling the nextLine method like this:

<variable> = stdIn.nextLine();

44

Input – the Scanner Class

/***

* FriendlyHello.java

* Dean & Dean

*

* This program displays a personalized Hello greeting.

***/

import java.util.Scanner;

public class FriendlyHello

{

 public static void main(String[] args)

 {

 Scanner stdIn = new Scanner(System.in);

 String name;

 System.out.print("Enter your name: ");

 name = stdIn.nextLine();

 System.out.println("Hello " + name + "!");

 } // end main

} // end class FriendlyHello

These two statements
create a keyboard-input
connection.

Use the print

method (no “ln”)
for most prompts.

This
gets a
line of
input.

45

Input – the Scanner Class

 In addition to the nextLine method, the Scanner

class contains quite a few other methods that get
different forms of input. Here are some of those
methods:
nextInt()

Skip leading whitespace until an int value is found. Return the int value.

nextLong()
Skip leading whitespace until a long value is found. Return the long value.

nextFloat()
Skip leading whitespace until a float value is found. Return the float value.

nextDouble()
Skip leading whitespace until a double value is found. Return the double value.

next()
Skip leading whitespace until a token is found. Return the token as a String value.

46

Input – the Scanner Class

 What is whitespace?
 Whitespace refers to all characters that appear as blanks on

a display screen or printer. This includes the space character,
the tab character, and the newline character.

 The newline character is generated with the enter key.

 Leading whitespace refers to whitespace characters that are
at the left side of the input.

 What is a token?
 A token is a sequence of non-whitespace characters.

 What happens if the user provides invalid input for
one of Scanner’s method calls?
 The JVM prints an error message and stops the program.

 For example, 45g and 45.0 are invalid inputs if nextInt()
is called.

47

Input – the Scanner Class

 Here's a program that uses Scanner’s nextDouble
and nextInt methods:
import java.util.Scanner;

public class PrintPO

{

 public static void main(String[] args)

 {

 Scanner stdIn = new Scanner(System.in);

 double price; // price of purchase item

 int qty; // number of items purchased

 System.out.print("Price of purchase item: ");

 price = stdIn.nextDouble();

 System.out.print("Quantity: ");

 qty = stdIn.nextInt();

 System.out.println("Total purchase order = $" + price * qty);

 } // end main

} // end class PrintPO

48

Input – the Scanner Class

 Here's a program that uses Scanner’s next method:
import java.util.Scanner;

public class PrintInitials

{

 public static void main(String[] args)

 {

 Scanner stdIn = new Scanner(System.in);

 String first; // first name

 String last; // last name

 System.out.print(

 "Enter first and last name separated by a space: ");

 first = stdIn.next();

 last = stdIn.next();

 System.out.println("Your initials are " +

 first.charAt(0) + last.charAt(0) + ".");

 } // end main

} // end class PrintInitials

49

