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and

¢ 2xdx
E = —TmpGz L (2’.2 + x?)S/?

= 27rmpG[——z— 1} (5.47)
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which is identical to Equation 5.45. Notice that the value of F, is negative, indi-
cating that the force is downward in Figure 5-9 and attractive.

5.5 Ocean Tides

The ocean tides have long been of interest to humans. Galileo tried unsuccess-
fully to explain ocean tides but could not account for the timing of the approxi-
mately two high tides each day. Newton finally gave an adequate explanation.
The tides are caused by the gravitational attraction of the ocean to both the
Moon and the Sun, but there are several complicating factors.

The calculation is complicated by the fact that the surface of Earth is not an
inertial system. Earth and Moon rotate about their center of mass (and move
about the Sun), so we may regard the water nearest the Moon as being pulled
away from Earth, and Earth as being pulled away from the water farthest from
the Moon. However, Earth rotates while the Moon rotates about Earth. Let’s first
consider only the effect of the Moon, adding the effect of the Sun later. We will
assume a simple model whereby Earth’s surface is completely covered with
water, and we shall add the effect of Earth’s rotation at an appropriate time. We
set up an inertial frame of reference x'y’z’ as shown in Figure 5.10a. We let M,,
be the mass of the Moon, r the radius of a circular Earth, and D the distance
from the center of the Moon to the center of Earth. We consider the effect of
both the Moon’s and Earth’s gravitational attraction on a small mass m placed on
the surface of Earth. As displayed in Figure 5-10a, the position vector of the mass
m from the Moon is R, from the center of Earth is r, and from our inertial system
r,. The position vector from the inertial system to the center of Earth is rz. As
measured from the inertial system, the force on m, due to the earth and the
Moon, is

GmM, GmM,,

my, = 2 e, — R ex (5.48)

Similarly, the force on the center of mass of Earth caused by the Moon is

GM M,
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FIGURE 5-10 (a) Geometry to find ocean tides on Earth due to the Moon.
(b) Polar view with the polar axis along the z-axis.

We want to find the acceleration ¥ as measured in the noninertial system
placed at the center of Earth. Therefore, we want

mi, Mg¥g

m Mg
_ GMy GM,, GM,,
=Tz e, — I eg + D2 €p
GMg e €
= - 2 e, — GMm (ﬁ - E (5.50)

The first part is due to Earth, and the second part is the acceleration from the
tidal force, which is responsible for producing the ocean tides. It is due to the
difference between the Moon’s gravitational pull at the center of Earth and on
Earth’s surface.
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We next find the effect of the tidal force at various points on Earth as
noted in Figure 5-10b. We show a polar view of Earth with the polar axis along
the z-axis. The tidal force F,.on the mass m on Earth’s surface is

€r €p
F,=—-GmM, ;{E - B; (5.51)

where we have used only the second part of Equation 5.50. We look first at point
a, the farthest point on Earth from the Moon. Both unit vectors e, and e, are
pointing in the same direction away from the Moon along the x-axis. Because R
> D, the second term in Equation 5.51 predominates, and the tidal force is
along the +x-axis as shown in Figure 5-10b. For point b, R < D and the tidal
force has approximately the same magnitude as at point a because /D << 1, but
is along the —x-axis. The magnitude of the tidal force along the x-axis, F,, is
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We expand the first term in brackets using the (1 + x) 2 expansion in Equation
D.9.

F.. = GmM"‘l_21+312_..._1—+M 5.52
Tx — D2 D D Dg (')

where we have kept only the largest nonzero term in the expansion, because /D =
0.02.

For point ¢, the unit vector ey (Figure 5-10b) is not quite exactly along ep,
but the x-axis components approximately cancel, because R = D and the x-com-
ponents of e and e are similar. There will be a small component of e along
the y-axis. We approximate the y-component of e by (r/D)j, and the tidal force
at point ¢, call it Fy,, is along the y-axis and has the magnitude

1 r\ _ GmM,r
Fp=—-GmM,, 0°n) = T D8 (5.53)

Note that this force is along the —y-axis toward the center of Earth at point ¢. We
find similarly at point D the same magnitude, but the component of e will be
along the —y-axis, so the force itself, with the sign of Equation 5.53, will be along
the +y-axis toward the center of Earth. We indicate the tidal forces at points a, 5,
¢, and d on Figure 5-11a.
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FIGURE 5-11 (a) The tidal forces are shown at various places on Earth’s surface
including the points g, b, ¢, and d of Figure 5-10. (b) An exaggerated
view of Earth’s ocean tides.

We determine the force at an arbitrary point e by noting that the x- and y-
components of the tidal force can be found by substituting x and y for r in Fr,
and Fr,, respectively, in Equations 5.52 and 5.53.

_ 2GmM,,x
Tx — D3
GmM,,y
Fn= = ps
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Then at an arbitrary point such as ¢, we let x = rcos § and y = r sin 6§, so we have

2GmM,,r cos 6

Te = -—‘D—S‘—‘ (5.54a)
GmM,,r sin 0

= _——DS_—_ (5.54b)

Equations 5.54a and b give the tidal force around Earth for all angles 6. Note
that they give the correct result at points a, b, ¢, and d.

Figure 5-11a gives a representation of the tidal forces. For our simple model,
these forces lead to the water along the y-axis being more shallow than along
the x-axis. We show an exaggerated result in Figure 5-11b. As Earth makes a rev-
olution about its own axis every 24 hours, we will observe two high tides a day.

A quick calculation shows that the Sun’s gravitational attraction is about 175
times stronger than the Moon’s on Earth’s surface, so we would expect tidal
forces from the Sun as well. The tidal force calculation is similar to the one we
have just performed for the Moon. The result (Problem 5-18) is that the tidal
force due to the Sun is 0.46 that of the Moon, a sizable effect. Despite the
stronger attraction due to the Sun, the gravitational force gradient over the sur-
face of Earth is much smaller, because of the much larger distance to the Sun.

EXAMPLE 5.5
Calculate the maximum height change in the ocean tides caused by the Moon.

Solution. We continue to use our simple model of the ocean surrounding
Earth. Newton proposed a solution to this calculation by imagining that two
wells be dug, one along the direction of high tide (our x-axis) and one along
the direction of low tide (our y-axis). If the tidal height change we want to de-
termine is 4, then the difference in potential energy of mass m due to the
height difference is mgh. Let’s calculate the difference in work if we move the
mass m from point ¢ in Figure 5-12 to the center of Earth and then to point a.
This work W done by gravity must equal the potential energy change mgh. The
work Wis

r+8,

0
W= J' FTydy+ J' FTxd.X'

r+8,; 0

where we use the tidal forces Fr, and Fr, of Equations 5.54. The small distances
0, and 8, are to account for the small variations from a spherical Earth, but
these values are so small they can be henceforth neglected. The value for W

becomes
_ GmM,, 0 4
W= D ) (—ydy + 02xdx

_ GmM,, (r? r2) _ 3GmM,,1*?

pd \2 D3
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FIGURE 5-12 Example 5.5. We calculate the work done to move a point mass m from
point ¢ to the center of Earth and then to point a.

Because this work is equal to mgh, we have
3GmM 1>
"= oy
_ 3GM,,*

= —TEDT (5.55)

Note that the mass m cancels, and the value of % does not depend on m. Nor
does it depend on the substance, so to the extent Earth is plastic, similar tidal
effects should be (and are) observed for the surface land. If we insert the
known values of the constants into Equation 5.55, we find

, _ 3(667 X107 m¥/kg -5 (7.350 X 10?kg) (6.37 X 10°m)*
a 2(9.80 m/s?) (3.84 X 108m)3

=054 m

The highest tides (called spring tides) occur when Earth, the Moon, and the
Sun are lined up (new moon and full moon), and the smallest tides (called neap
tides) occur for the first and third quarters of the Moon when the Sun and
Moon are at right angles to each other, partially cancelling their effects. The
maximum tide, which occurs every 2 weeks, should be 1.464 = 0.83 m for the
spring tides.

An observer who has spent much time near the ocean has noticed that typi-
cal oceanshore tides are greater than those calculated in Example 5.5. Several
other effects come into play. Earth is not covered completely with water, and the
continents play a significant role, especially the shelfs and narrow estuaries.
Local effects can be dramatic, leading to tidal changes of several meters. The
tides in midocean, however, are similar to what we have calculated. Resonances
can affect the natural oscillation of the bodies of water and cause tidal changes.
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FIGURE 5-13 Some effects cause the high tides to not be exactly along
the Earth-Moon axis.

Tidal friction between water and Earth leads to a significant amount of energy
loss on Earth. Earth is not rigid, and it is also distorted by tidal forces.

In addition to the effects just discussed, remember that as Earth rotates, the
Moon is also orbiting Earth. This leads to the result that there are not quite ex-
actly two high tides per day, because they occur once every 12 h and 26 min
(Problem 5-19). The plane of the moon’s orbit about Earth is also not perpendi-
cular to Earth’s rotation axis. This causes one high tide each day to be slightly
higher than the other. The tidal friction between water and land mentioned pre-
viously also results in Earth “dragging” the ocean with it as Earth rotates. This
causes the high tides to be not quite along the Earth-Moon axis, but rather sev-
eral degrees apart as shown in Figure 5-13.

PROBLEMS

5-1. Sketch the equipotential surfaces and the lines of force for two point masses sepa-
rated by a certain distance. Next, consider one of the masses to have a fictitious
negative mass —M. Sketch the equipotential surfaces and lines of force for this
case. To what kind of physical situation does this set of equipotentials and field
lines apply? (Note that the lines of force have direction; indicate this with appropri-
ate arrows.)

5-2. If the field vector is independent of the radial distance within a sphere, find the
function describing the density p = p(#) of the sphere.



