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If the particles have a gravitational interaction, then » = —2, and
1
(T) =~ 5@, n=-2

This relation is useful in calculating, for example, the energetics in planetary
motion.

PROBLEMS

7-1. A disk rolls without slipping across a horizontal plane. The plane of the disk re-
mains vertical, but it is free to rotate about a vertical axis. What generalized coordi-
nates may be used to describe the motion? Write a differential equation describing
the rolling constraint. Is this equation integrable? Justify your answer by a physical
argument. Is the constraint holonomic?

7-2. Work out Example 7.6 showing all the steps, in particular those leading to
Equations 7.36 and 7.41. Explain why the sign of the acceleration a cannot affect
the frequency w. Give an argument why the signs of a? and g? in the solution of w?
in Equation 7.42 are the same.

7-3. A sphere of radius p is constrained to roll without slipping on the lower half of the
inner surface of a hollow cylinder of inside radius R. Determine the Lagrangian
function, the equation of constraint, and Lagrange’s equations of motion. Find the
frequency of small oscillations.

74. A particle moves in a plane under the influence of a force f= —Ar*~! directed to-
ward the origin; A and a (> 0) are constants. Choose appropriate generalized co-
ordinates, and let the potential energy be zero at the origin. Find the Lagrangian
equations of motion. Is the angular momentum about the origin conserved? Is the
total energy conserved?

7-5. Consider a vertical plane in a constant gravitational field. Let the origin of a coor-
dinate system be located at some point in this plane. A particle of mass m moves in
the vertical plane under the influence of gravity and under the influence of an ad-
ditional force f= —Ar®~! directed toward the origin (r is the distance from the
origin; A and « [# 0 or 1] are constants). Choose appropriate generalized coordi-
nates, and find the Lagrangian equations of motion. Is the angular momentum
about the origin conserved? Explain.

7-6. A hoop of mass m and radius R rolls without slipping down an inclined plane of
mass M, which makes an angle « with the horizontal. Find the Lagrange equations
and the integrals of the motion if the plane can slide without friction along a hori-
zontal surface.

7-7. A double pendulum consists of two simple pendula, with one pendulum suspended
from the bob of the other. If the two pendula have equal lengths and have bobs of
equal mass and if both pendula are confined to move in the same plane, find
Lagrange’s equations of motion for the system. Do not assume small angles.
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7-8.

7-9.

7-10.

7-11.

7-12.

7-13.

7-14.

7-15.

7-16.

7-17.

Consider a region of space divided by a plane. The potential energy of a particle in
region 1 is Uj and in region 2 it is Uj. If a particle of mass m and with speed v; in re-
gion 1 passes from region 1 to region 2 such that its path in region 1 makes an
angle 6, with the normal to the plane of separation and an angle 6, with the normal
when in region 2, show that

sin 6, U — Uy\\2
— =1+ —
sin O, T

where T} = %mv% What is the optical analog of this problem?

A disk of mass M and radius R rolls without slipping down a plane inclined from
the horizontal by an angle a. The disk has a short weightless axle of negligible ra-
dius. From this axis is suspended a simple pendulum of length /< Rand whose bob
has a mass m. Consider that the motion of the pendulum takes place in the plane of
the disk, and find Lagrange’s equations for the system.

Two blocks, each of mass M, are connected by an extensionless, uniform string of
length /. One block is placed on a smooth horizontal surface, and the other block
hangs over the side, the string passing over a frictionless pulley. Describe the mo-
tion of the system (a) when the mass of the string is negligible and (b) when the
string has a mass m.

A particle of mass m is constrained to move on a circle of radius R The circle rotates
in space about one point on the circle, which is fixed. The rotation takes place in
the plane of the circle and with constant angular speed . In the absence of a gravi-
tational force, show that the particle’s motion about one end of a diameter passing
through the pivot point and the center of the circle is the same as that of a plane
pendulum in a uniform gravitational field. Explain why this is a reasonable result.

A particle of mass m rests on a smooth plane. The plane is raised to an inclination
angle 6 at a constant rate « (6 = 0 at £ = 0), causing the particle to move down the
plane. Determine the motion of the particle.

A simple pendulum of length 5 and bob with mass m is attached to a massless sup-
port moving horizontally with constant acceleration a. Determine (a) the equations
of motion and (b) the period for small oscillations.

A simple pendulum of length # and bob with mass m is attached to a massless sup-
port moving vertically upward with constant acceleration a. Determine (a) the
equations of motion and (b) the period for small oscillations.

A pendulum consists of a mass m suspended by a massless spring with unextended
length & and spring constant k. Find Lagrange’s equations of motion.

The point of support of a simple pendulum of mass m and length & is driven hori-
zontally by x = a sin wt. Find the pendulum’s equation of motion.

A particle of mass m can slide freely along a wire AB whose perpendicular distance
to the origin Ois A (see Figure 7-A, page 282). The line OC rotates about the origin
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FIGURE 7-A Problem 7-17.

at a constant angular velocity § = w. The position of the particle can be described
in terms of the angle 6 and the distance ¢ to the point C. If the particle is subject to
a gravitational force, and if the initial conditions are

6(0) =0, ¢(0) =0, 40) =0
show that the time dependence of the coordinate gis

g
q(t) = ﬁ (coshwt — cos wi)

Sketch this result. Compute the Hamiltonian for the system, and compare with the
total energy. Is the total energy conserved? :

7-18. A pendulum is constructed by attaching a mass m to an extensionless string of

length L The upper end of the string is connected to the uppermost point on a ver-
tical disk of radius R (R < I/m) as in Figure 7-B. Obtain the pendulum’s equation
of motion, and find the frequency of small oscillations. Find the line about which
the angular motion extends equally in either direction (i.e., 6; = 8,).

FIGURE 7-B Problem 7-18.
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7-19.

7-20.

7-21.

7-22.

7-23.

7-24.

7-25.

7-26.

7-27.

Two masses my and my (m; # my) are connected by a rigid rod of length d and of
negligible mass. An extensionless string of length / is attached to m and con-
nected to a fixed point of support P. Similarly, a string of length &, (4 # &) con-
nects my and P. Obtain the equation describing the motion in the plane of m;, m,,
and P, and find the frequency of small oscillations around the equilibrium position.

A circular hoop is suspended in a horizontal plane by three strings, each of length
[, which are attached symmetrically to the hoop and are connected to fixed points
lying in a plane above the hoop. At equilibrium, each string is vertical. Show that
the frequency of small rotational oscillations about the vertical through the center
of the hoop is the same as that for a simple pendulum of length .

A particle is constrained to move (without friction) on a circular wire rotating with
constant angular speed @ about a vertical diameter. Find the equilibrium position
of the particle, and calculate the frequency of small oscillations around this posi-
tion. Find and interpret physically a critical angular velocity w = w, that divides the
particle’s motion into two distinct types. Construct phase diagrams for the two cases
w<wandw > w,.

A particle of mass m moves in one dimension under the influence of a force

k
= — W
F(x, t) 2 wn
where k and T are positive constants. Compute the Lagrangian and Hamiltonian
functions. Compare the Hamiltonian and the total energy, and discuss the conser-
vation of energy for the system.

Consider a particle of mass m moving freely in a conservative force field whose po-
tential function is U. Find the Hamiltonian function, and show that the canonical
equations of motion reduce to Newton’s equations. (Use rectangular coordinates.)

Consider a simple plane pendulum consisting of a mass m attached to a string of
length [. After the pendulum is set into motion, the length of the string is short-
ened at a constant rate

dl

= —a = constant
dt

The suspension point remains fixed. Compute the Lagrangian and Hamiltonian
functions. Compare the Hamiltonian and the total energy, and discuss the conser-
vation of energy for the system.

A particle of mass m moves under the influence of gravity along the helix z = k6, r=
constant, where k is a constant and zis vertical. Obtain the Hamiltonian equations
of motion.

Determine the Hamiltonian and Hamilton’s equations of motion for (a) a simple
pendulum and (b) a simple Atwood machine (single pulley).

A massless spring of length 4 and spring constant k connects two particles of masses
my and my. The system rests on a smooth table and may oscillate and rotate.
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7-28,

7-29.

7-30.

7-31.

7-32.
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(a) Determine Lagrange’s equations of motion.
(b) What are the generalized momenta associated with any cyclic coordinates?
(c) Determine Hamilton’s equations of motion.

A particle of mass m is attracted to a force center with the force of magnitude k/r2.
Use plane polar coordinates and find Hamilton’s equations of motion.

Consider the pendulum described in Problem 7-15. The pendulum’s point of sup-
port rises vertically with constant acceleration a.

(a) Use the Lagrangian method to find the equations of motion.

(b) Determine the Hamiltonian and Hamilton’s equations of motion.

(c) What is the period of small oscillations?

Consider any two continuous functions of the generalized coordinates and mo-
menta g(q;, p) and k(g ). The Poisson brackets are defined by

0g oh  0g ok
lgh =2 (== — ==
k\Ogi 0py  Opy 0,

Verify the following properties of the Poisson brackets:

dg og . j
(a)E:=[g,H] + o ®) §; = [g;, H], p; = [p), H]

© [p.p] =0,[q.q] =0 ) (g, p1 = 8y

where H is the Hamiltonian. If the Poisson bracket of two quantities vanishes, the
quantities are said to commute. If the Poisson bracket of two quantities equals unity,
the quantities are said to be canonically conjugate. (e) Show that any quantity that
does not depend explicitly on the time and that commutes with the Hamiltonian is
a constant of the motion of the system. Poisson-bracket formalism is of consider-
able importance in quantum mechanics.

A spherical pendulum consists of a bob of mass m attached to a weightless, exten-
sionless rod of length I The end of the rod opposite the bob pivots freely (in all di-
rections) about some fixed point. Set up the Hamiltonian function in spherical co-
ordinates. (If p, = 0, the result is the same as that for the plane pendulum.)
Combine the term that depends on p, with the ordinary potential energy term to
define as ¢ffective potential V(0, p,). Sketch V as a function of 8 for several values of
ps, including p, = 0. Discuss the features of the motion, pointing out the differ-
ences between p, = 0 and p, # 0. Discuss the limiting case of the conical pendu-
lum (6 = constant) with reference to the V-6 diagram.

A particle moves in a spherically symmetric force field with potential energy given
by U(r) = —k/r. Calculate the Hamiltonian function in spherical coordinates, and
obtain the canonical equations of motion. Sketch the path that a representative
point for the system would follow on a surface H = constant in phase space. Begin
by showing that the motion must lie in a plane so that the phase space is four di-
mensional (7, 8, p,, py, but only the first three are nontrivial). Calculate the projec-
tion of the phase path on the r-p, plane, then take into account the variation with 6.
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7-33.

7-34.

7-35.

7-36.

7-37.

7-38.

7-39.

Determine the Hamiltonian and Hamilton’s equations of motion for the double
Atwood machine of Example 7.8.

A particle of mass m slides down a smooth circular wedge of mass M as shown in
Figure 7-C. The wedge rests on a smooth horizontal table. Find (a) the equation of
motion of m and M and (b) the reaction of the wedge on m.

FIGURE 7-C  Problem 7-34.

Four particles are directed upward in a uniform gravitational field with the follow-
ing initial conditions:

1) z(0) = zy £0) = po
(2) 2(0) =z + Az;  p(0) = o
3) z(0) = z; p:(0) = po + Apy

@) 20) =20+ Az p(0) = po + Apy

Show by direct calculation that the representative points corresponding to these
particles always define an area in phase space equal to Az Apy. Sketch the phase
paths, and show for several times ¢> 0 the shape of the region whose area remains
constant.

Discuss the implications of Liouville’s theorem on the focusing of beams of
charged particles by considering the following simple case. An electron beam of
circular cross section (radius R,) is directed along the z-axis. The density of elec-
trons across the beam is constant, but the momentum components transverse to
the beam (p, and p)) are distributed uniformly over a circle of radius p, in momen-
tum space. If some focusing system reduces the beam radius from R, to Ry, find the
resulting distribution of the transverse momentum components, What is the physi-
cal meaning of this result? (Consider the angular divergence of the beam.)

Use the method of Lagrange undetermined multipliers to find the tensions in both
strings of the double Atwood machine of Example 7.8.

The potential for an anharmonic oscillator is U = kx%/2 + bx%/4 where k and & are
constants. Find Hamilton’s equations of motion.

An extremely limber rope of uniform mass density, mass m and total length 5 lies on
a table with a length z hanging over the edge of the table. Only gravity acts on the
rope. Find Lagrange’s equation of motion.
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7-40. A double pendulum is attached to a cart of mass 2m that moves without friction on
a horizontal surface. See Figure 7-D. Each pendulum has length 4 and mass bob m.
Find the equations of motion.

5 S - Uy

FIGURE 7-D Problem 7-40.

741. A pendulum of length # and mass bob m is oscillating at small angles when the
length of the pendulum string is shortened at a velocity of & (db/dt = —a). Find
« Lagrange’s equations of motion.



