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Newton’s work on gravitational and central forces to the attention of the world.
After observing the comet personally in 1682, Halley became interested. Partly
as a result of a bet between Christopher Wren and Robert Hooke, Halley asked
Newton in 1684 what paths the planets must follow if the Sun pulled them with
a force inversely proportional to the square of their distances. To the astonish-
ment of Halley, Newton replied, “Why, in ellipses, of course.” Newton had
worked it out 20 years previously but had not published the result. With
painstaking effort, Halley was able in 1705 to predict the next occurrence of the
comet, now bearing his name, to be in 1758.

8.8 Orbital Dynamics

The use of central-force motion is nowhere more useful, important, and inter-
esting than in space dynamics. Although space dynamics is actually quite com-
plex because of the gravitational attraction of a spacecraft to various bodies and
the orbital motion involved, we examine two rather simple aspects: a proposed
trip to Mars and flybys past comets and planets.

Orbits are changed by single or multiple thrusts of the rocket engines. The
simplest maneuver is a single thrust applied in the orbital plane that does not
change the direction of the angular momentum but does change the eccentric-
ity and energy simultaneously. The most economical method of interplanetary
transfer consists of moving from one circular heliocentric (Sun-oriented mo-
tion) orbit to another in the same plane. Earth and Mars represent such a system
reasonably well, and a Hohmann transfer (Figure 8-10) represents the path of
minimum total energy expenditure.* Two engine burns are required: (1) the
first burn injects the spacecraft from the circular Earth orbit to an elliptical
transfer orbit that intersects Mars’ orbit; (2) the second burn transfers the space-
craft from the elliptical orbit into Mars’ orbit.

We can calculate the velocity changes needed for a Hohmann transfer by
calculating the velocity of a spacecraft moving in the orbit of Earth around the
Sun (7 in Figure 810) and the velocity needed to “kick” it into an elliptical
transfer orbit that can reach Mars’ orbit. We are considering only the gravita-
tional attraction of the Sun and not that of Earth and Mars.

For circles and ellipses we have, from Equation 8.42,
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For a circular path around the Sun, this becomes
k 1 k
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*See Kaplan (Ka76, Chapter 3) for the proof. Walter Hohmann, a German pioneer in space travel
research, proposed in 1925 the most energy-efficient method of transferring between elliptical
(planetary) orbits in the same plane using only two velocity changes.
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FIGURE 8-10 The Hohmann transfer for a round trip between Earth and Mars. It
represents the minimum energy expenditure.

where we have E= T + U. We solve Equation 8.50 for v;:
k
(8.51)

v:
1 mn

We denote the semimajor axis of the transfer ellipse by a,:
20, =1 + n

If we calculate the energy at the perihelion for the transfer ellipse, we have

—k 1 k
E, = =—mu? — — 8.5
t n r 2 4n| n (8.52)

where v, is the perihelion transfer speed. The direction of v, is along v, in
Figure 8-10. Solving Equation 8.52 for v, gives

Vi = + /ﬁ(L) (8.53)
m'rl 'rl + 7'2

The speed transfer Av; needed is just
(8.54)

Avy = vy — v
Similarly, for the transfer from the ellipse to the circular orbit of radius 7%,

we have
Ai& = Vo — Um (8-55)
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The direction of vy, is along v, in Figure 8-10. The total speed increment can be
determined by adding the speed changes, Av = Ay + Au,

The total time required to make the transfer 7, is a half-period of the trans-
fer orbit. From Equation 8.48, we have

where

and

(8.57)
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T, = W\/% ay? (8.58)
EXAMPLE 8.5

Calculate the time needed for a spacecraft to make a Hohmann transfer from
Earth to Mars and the heliocentric transfer speed required assuming both
planets are in coplanar orbits.

Solution. We need to insert the appropriate constants in Equation 8.58.

m_ m _ 1
k GmMs,, GMs,
B 1
" (6.67 x 10711 m3/s? - kg) (1.99 x 10% kg)
= 7.5% % 1072's%/m? (8.59)

Because k/m occurs so often in solar system calculations, we write it as well.
k 20 3 /2
p = 1.33 X 10?° m’/s

a = 5(7Earth—8un + TMars - Sun)
1
= 5(1.50 X 101 m + 2.28 X 10 m)
=1.89 X 10 m
7(7.563 x 10721s?/m?)1/2(1.89 x 10! m)3/2

2.94 X 107s
= 259 days (8.60)

T
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The heliocentric speed needed for the transfer is given in Equation 8.53.

_ [2(1.33 x 102m342) (2.28 x 101'm) |2
YT (150 % 101 m) (3.78 x 10" m)

= 3927 X 10* m/s = 32.7 km/s
We can compare v;; with the orbital speed of Earth (Equation 8.51).
[1.33 X 102 m3/s
v =

2 [1/2
=208k
1.50 X 101 m 29.8 km/s

For transfers to the outer planets, the spacecraft should be launched in the
direction of Earth’s orbit in order to gain Earth’s orbital velocity. To transfer to
the inner planets (e.g., to Venus), the spacecraft should be launched opposite
Earth’s motion. In each case, it is the relative velocity Av, that is important to the
spacecraft (i.e., relative to Earth).

Although the Hohmann transfer path represents the least energy expendi-
ture, it does not represent the shortest time. For a round trip from Earth to
Mars, the spacecraft would have to remain on Mars for 460 days until Earth and
Mars were positioned correctly for the return trip (see Figure 8-11a). The total
trip (259 + 460 + 259 = 978 days = 2.7 yr) would probably be too long. Other
schemes either use more fuel to gain speed (Figure 8-11b) or use the slingshot
effect of flybys. Such a flyby mission past Venus (see Figure 8-11c) could be done
in less than 2 years with only a few weeks near (or on) Mars.

Several spacecraft in recent years have escaped Farth’s gravitational attrac-
tion to explore our solar system. Such interplanetary transfer can be divided
into three segments: (1) the escape from Earth, (2) a heliocentric transfer to the
area of interest, and (3) an encounter with another body—so far, either a planet
or a comet. The spacecraft fuel required for such missions can be enormous, but
a clever trick has been designed to “steal” energy from other solar system bodies.
Because the mass of a spacecraft is so much smaller than the planets (or their
moons), the energy loss of the heavenly body is negligible.

We examine a simple version of this flyby or slingshot effect that utilizes
gravity assist. A spacecraft coming from infinity approaches a body (labeled B),
interacts with B, and recedes. The path is a hyperbola (Figure 8-12). The initial
and final velocities, with respect to B, are denoted by v; and vf’, respectively. The
net effect on the spacecraft is a deflection angle of & with respect to B.

If we examine the system in some inertial frame in which the motion of B oc-
curs, the velocities of the spacecraft can be quite different because of the motion of
B. The initial velocity v; is shown in Figure 8-13a, and both v; and v, are shown in
Figure 8-13b. Notice that the spacecraft has increased its speed as well as
changed its direction. An increase in velocity occurs when the spacecraft passes
behind B’s direction of motion. Similarly, a decrease in velocity occurs when the
spacecraft passes in front of B’s motion.

During the 1970s, scientists at the Jet Propulsion Laboratory of the National
Aeronautics and Space Administration (NASA) realized that the four largest
planets of our solar system would be in a fortuitous position to allow a spacecraft
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FIGURE 8-11 Round trips from Earth to Mars. (a) The minimum energy mission
(Hohmann transfer) requires a long stopover on Mars before returning
to Earth. (b) A shorter mission to Mars requires more fuel and a closer
orbit to the Sun. (c) The fuel required for the shorter mission of (b) can
be further improved if Venus is positioned for a gravity assist during flyby.

to fly past them and many of their 32 known moons in a single, relatively short
“Grand Tour” mission using the gravity-assist method just discussed. This oppor-
tunity of the planets’ alignment would not occur again for 175 years. Because of
budget constraints, there was not time to develop the new technology needed,
and a mission to last only 4 years to visit just Jupiter and Saturn was approved
and planned. No special equipment was put on board the twin Veyager space-
crafts for an encounter with Uranus and Neptune. Voyagers 1 and 2 were
launched in 1977 for visits to Jupiter in 1979 and Saturn in 1980 (Voyager 1) and
1981 (Voyager 2). Because of the success of these visits to Jupiter and Saturn,
funding was later approved to extend Voyager 2’s mission to include Uranus and
Neptune. The Voyagers are now on their way out of our solar system.

The path of Voyager 2is shown in Figure 8-14. The slingshot effect of gravity al-
lowed the path of Veyager 2 to be redirected, for example, toward Uranus as it
passed Saturn by the method shown in Figure 8-12. The gravitational attraction
from Saturn was used to pull the spacecraft off its straight path and redirect it at a
different angle. The effect of the orbital motion of Saturn allows an increase in the
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FIGURE 812 A spacecraft flies by a large body B (like a planet) and gains speed when
it flies behind B’s direction of motion. Similarly, the spacecraft loses
speed when it passes in front of B’s direction of motion. The direction
of the spacecraft also changes.

(b)

FIGURE 813 The vectors v; and vy are the initial and final velocities of the spacecraft
with respect to B. The vectors v; and v, are the velocities in an inertial
frame. (a) v; = vg + vi. (b) v, = vg + v

spacecraft’s speed. It was only by using this gravity-assist technique that the spectac-
ular mission of Voyager 2 was made possible in only a brief 12-year period. Voyager 2
passed Uranus in 1986 and Neptune in 1989 before proceeding into interstellar
space in one of the most successful space missions ever undertaken. Most planetary
missions now take advantage of gravitational assists; for example, the Galileo satel-
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FIGURE 8-14 Voyager 2 was launched in 1977 and passed by Jupiter, Saturn, Uranus,
and Neptune. Gravitational assists were used in the mission.
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FIGURE 815 The NASA spacecraft initially called ISEE-3 was reprogrammed to be the
International Cometary Explorer and was sent on a spectacular three-year
journey utilizing gravity assists on its way by the Comet Giacobini-Zinner.

lite, which photographed the spectacular collisions of the Shoemaker-Levy comet
with Jupiter in 1994 and reached Jupiter in 1995, was launched in 1989 but went by
Earth twice (1990 and 1992) as well as Venus (1990) to gain speed and redirection.

A spectacular display of flybys occurred in the years 1982-1985 by a space-
craft initially called the International Sun-Earth Explorer 3 (ISEE-3). Launched
in 1978, its mission was to monitor the solar wind between the Sun and Earth.
For 4 years, the spacecraft circled in the ecliptical plane about 2 million miles
from Earth. In 1982—because the United States had decided not to participate
in a joint European, Japanese, and Soviet spacecraft investigation of Halley’s
comet in 1986—NASA decided to reprogram the ISEE-3, renamed it the
International Cometary Explorer (ICE), and sent it through the Giacobini-Zinner
comet in September 1985, some 6 months before the flybys of other spacecraft
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with Halley’s comet. The subsequent three-year journey of ICE was spectacular
(Figure 8-15). The path of ICE included two close trips to Earth and five flybys of
the moon along its billion-mile trip to the comet. During one flyby, the satellite
came within 75 miles of the lunar surface. The entire path could be planned
precisely because the force law is very well known. The eventual interaction with
the comet, some 44 million miles from Earth, included a 20-minute trip through
the comet—about 5,000 miles behind the comet’s nucleus.

8.9 Apsidal Angles and Precession (Optional)

If a particle executes bounded, noncircular motion in a centralforce field, then the
radial distance from the force center to the particle must always be in the range
Tmax = T = Ty thatis, r must be bounded by the apsidal distances. Figure 8-6 indi-
cates that only fwo apsidal distances exist for bounded, noncircular motion. But
in executing one complete revolution in 6, the particle may not return to its orig-
inal position (see Figure 8-4). The angular separation between two successive val-
ues of r = 7., depends on the exact nature of the force. The angle between any
two consecutive apsides is called the apsidal angle, and because a closed orbit
must be symmetric about any apsis, it follows that all apsidal angles for such motion
must be equal. The apsidal angle for elliptical motion, for example, is just 7.
If the orbit is not closed, the particle reaches the apsidal distances at different
points in each revolution; the apsidal angle is not then a rational fraction of 2,
as is required for a closed orbit. If the orbit is almost closed, the apsides precess, or
rotate slowly in the plane of the motion. This effect is exactly analogous to the slow
rotation of the elliptical motion of a two-dimensional harmonic oscillator whose
natural frequencies for the xand y motions are almost equal (see Section 3.3).

Because an inverse-square-law force requires that all elliptical orbits be ex-
actly closed, the apsides must stay fixed in space for all time. If the apsides move
with time, however slowly, this indicates that the force law under which the body
moves does not vary exactly as the inverse square of the distance. This important
fact was realized by Newton, who pointed out that any advance or regression of a
planet’s perihelion would require the radial dependence of the force law to be
slightly different from 1/r%. Thus, Newton argued, the observation of the time
dependence of the perihelia of the planets would be a sensitive test of the valid-
ity of the form of the universal gravitation law.

In point of fact, for planetary motion within the solar system, one expects
that, because of the perturbations introduced by the existence of all the other
planets, the force experienced by any planet does not vary exactly as 1/72, if ris
measured from the Sun. This effect is small, however, and only slight variations
of planetary perihelia have been observed. The perihelion of Mercury, for example,
which shows the largest effect, advances only about 574" of arc per century.*
Detailed calculations of the influence of the other planets on the motion of

*This precession is in addition to the general precession of the equinox with respect to the “fixed”
stars, which amounts to 5025.645” = 0.050" per century.



