
Notes 15 : UI Martingales

Math 733 - Fall 2013 Lecturer: Sebastien Roch

References: [Wil91, Chapter 13, 14], [Dur10, Section 5.5, 5.6, 5.7].

1 Uniform Integrability

We give a characterization of L1 convergence. First note:

LEM 15.1 Let Y ∈ L1. ∀ε > 0, ∃K > 0 s.t.

E[|Y |; |Y | > K] < ε.

Proof: Immediate by (MON) to E[|Y |; |Y | ≤ K].
What we need is for this condition to hold uniformly over the sequence:

DEF 15.2 (Uniform Integrability) A collection C of RVs on (Ω,F ,P) is uniformly
integrable (UI) if: ∀ε > 0, ∃K > +∞ s.t.

E[|X|; |X| > K] < ε, ∀X ∈ C.

THM 15.3 (Necessary and Sufficient Condition for L1 Convergence) Let {Xn} ∈
L1 and X ∈ L1. Then Xn → X in L1 if and only if:

• Xn → X in prob

• {Xn} is UI.

Before giving the proof, we look at a few examples.

EX 15.4 (L1-bddness is not sufficient) Let C is UI and X ∈ C. Note that

E|X| ≤ E[|X|; |X| ≥ K] + E[|X|; |X| < K] ≤ ε+K < +∞,

so UI implies L1-bddness. But the opposite is not true by our last example (take
n2 > K).
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EX 15.5 (Lp-bdd RVs) But Lp-bddness works for p > 1. Let C be Lp-bdd and
X ∈ C. Then

E[|X|; |X| > K] ≤ E[K1−p|X|p; |X| > K|] ≤ K1−pA→ 0,

as K → +∞.

EX 15.6 (Dominated RVs) Assume ∃Y ∈ L1 s.t. |X| ≤ Y ∀X ∈ C. Then

E[|X|; |X| > K] ≤ E[Y ; |X| > K] ≤ E[Y ;Y > K],

and apply lemma above.

2 Proof of main theorem

Proof: We start with the if part. Fix ε > 0. We want to show that for n large
enough:

E|Xn −X| ≤ ε.

It is natural to truncate atK to apply the UI property. Let φK(x) = sgn(x)[|x|∧K].
Then,

E|Xn −X| ≤ E|φK(Xn)−Xn|+ E|φK(X)−X|+ E|φK(Xn)− φK(X)|
≤ E[|Xn|; |Xn| > K] + E[|X|; |X| > K] + E|φK(Xn)− φK(X)|.

The 1st term ≤ ε/3 by UI and the 2nd term ≤ ε/3 by lemma above. Check, by
case analysis, that

|φK(x)− φK(y)| ≤ |x− y|,

so φK(Xn)→P φK(X). By bounded convergence for convergence in probability,
the claim is proved.

LEM 15.7 (Bounded convergence theorem (convergence in probability version))
Let Xn ≤ K < +∞ ∀n and Xn →P X . Then

E|Xn −X| → 0.

Proof:(Sketch) By

P[|X| ≥ K +m−1] ≤ P[|Xn −X| ≥ m−1],

it follows that P[|X| ≤ K] = 1. Fix ε > 0

E|Xn −X| = E[|Xn −X|; |Xn −X| > ε/2] + E[|Xn −X|; |Xn −X| ≤ ε/2]

≤ 2KP[|Xn −X| > ε/2] + ε/2 < ε,
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for n large enough.
Proof of only if part. Suppose Xn → X in L1. We know that L1 implies

convergence in probability. So the first claim follows.
For the second claim, if n ≥ N (large enough),

E|Xn −X| ≤ ε.

We can choose K large enough so that

E[|Xn|; |Xn| > K] < ε,

∀n ≤ N . (Because there is only a finite number.) So only need to worry about
n > N . To use L1 convergence, natural to write

E[|Xn|; |Xn| > K] ≤ E[|Xn −X|; |Xn| > K] + E[|X|; |Xn| > K].

First term ≤ ε. The issue with the second term is that we cannot apply the lemma
because the event involves Xn rather than X . In fact, a stronger version exists:

LEM 15.8 (Absolute continuity) Let X ∈ L1. ∀ε > 0, ∃δ > 0, s.t. P[F ] < δ
implies

E[|X|;F ] < ε.

Proof: Argue by contradiction. Suppose there is ε and Fn s.t. P[Fn] ≤ 2−n and

E[|X|;Fn] ≥ ε.

By BC,
P[H] ≡ P[Fn i.o.] = 0.

By reverse Fatou (applied to |X|1H = lim sup |X|1Fn),

E[|X|;H] ≥ ε,

a contradiction.
To conclude note that

P[|Xn| > K] ≤ E|Xn|
K

≤
supn≥N E|Xn|

K
≤

supn≥N E|X|+ E|Xn −X|
K

< δ,

uniformly in n for K large enough. We are done.
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3 UI MGs

THM 15.9 (Convergence of UI MGs) Let M be UI MG. Then

Mn →M∞,

a.s. and in L1. Moreover,

Mn = E[M∞ | Fn], ∀n.

Proof: UI implies L1-bddness so we have Mn → M∞ a.s. By necessary and
sufficient condition, we also have L1 convergence.

Now note that for all r ≥ n and F ∈ Fn, we know E[Mr | Fn] = Mn or

E[Mr;F ] = E[Mn;F ],

by definition of CE. We can take a limit by L1 convergence. More precisely

|E[Mr;F ]− E[M∞;F ]| ≤ E[|Mr −M∞|;F ] ≤ E[|Mr −M∞|]→ 0,

as r →∞. So plugging above

E[M∞;F ] = E[Mn;F ],

and E[M∞ | Fn] = Mn.

4 Applications I

THM 15.10 (Levy’s upward thm) LetZ ∈ L1 and defineMn = E[Z | Fn]. Then
M is a UI MG and

Mn →M∞ = E[Z | F∞],

a.s. and in L1.

Proof: M is a MG by (TOWER). We first show it is UI:

LEM 15.11 Let X ∈ L1(Ω,F ,P). Then

{E[X | G] : G is a sub-σ-field of F},

is UI.
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Proof: We use the absolute continuity lemma again. Let Y = E[X | G] ∈ G. Since
{|Y | > K} ∈ G,

E[|Y |; |Y | > K] = E[|E[X | G]|; |Y | > K]

≤ E[E[|X| | G]; |Y | > K]

= E[|X|; |Y | > K].

By Markov and (JENSEN)

P[|Y | > K] ≤ E|Y |
K
≤ E|X|

K
≤ δ,

for K large enough (uniformly in G). And we are done.
In particular, we have convergence a.s. and in L1 to M∞ ∈ F∞.
Let Y = E[Z | F∞] ∈ F∞. By dividing into negative and positive parts, we

assume Z ≥ 0. We want to show, for F ∈ F∞,

E[Z;F ] = E[M∞;F ].

By Uniqueness Lemma, it suffices to prove equality for all Fn. If F ∈ Fn ⊆ F∞,
then by (TOWER)

E[Z;F ] = E[Y ;F ] = E[Mn;F ] = E[M∞;F ].

The first equality is by definition of Y ; the second equality is by definition of Mn;
the third equality is from our main theorem.

THM 15.12 (Levy’s 0− 1 law) Let A ∈ F∞. Then

P[A | Fn]→ 1A.

Proof: Immediate.

COR 15.13 (Kolmogorov’s 0− 1 law) LetX1, X2, . . . be iid RVs. Recall that the
tail σ-field is

T = ∩nTn = ∩nσ(Xn+1, Xn+2, . . .).

If A ∈ T then P[A] ∈ {0, 1}.

Proof: Since A ∈ Tn is independent of Fn,

P[A | Fn] = P[A],

∀n. By Levy’s law,
P[A] = 1A ∈ {0, 1}.
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5 Applications II

THM 15.14 (Levy’s Downward Thm) Let Z ∈ L1(Ω,F ,P) and {G−n}n≥0 a
collection of σ-fields s.t.

G−∞ = ∩kG−k ⊆ · · · ⊆ G−n ⊆ · · · ⊆ G−1 ⊆ F .

Define
M−n = E[Z | G−n].

Then
M−n →M−∞ = E[Z | G−∞]

a.s. and in L1.

Proof: We apply the same argument as in the Martingale Convergence Thm. Let
α < β ∈ Q and

Λα,β = {ω : lim inf X−n < α < β < lim supX−n}.

Note that

Λ ≡ {ω : Xn does not converge}
= {ω : lim inf X−n < lim supX−n}
= ∪α<β∈QΛα,β.

Let UN [α, β] be the number of upcrossings of [α, β] between time −N and −1.
Then by the Upcrossing Lemma applied to the MG M−N , . . . ,M−1

(β − α)EUN [α, β] ≤ |α|+ E|M−1| ≤ |α|+ E|Z|.

By (MON)
UN [α, β] ↑ U∞[α, β],

and
(β − α)EU∞[α, β] ≤ |α|+ E|Z| < +∞,

so that
P[U∞[α, β] =∞] = 0.

Since
Λα,β ⊆ {U∞[α, β] =∞},

we have P[Λα,β] = 0. By countability, P[Λ] = 0. Therefore we have convergence
a.s.
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By lemma in previous class, M is UI and hence we have L1 convergence as
well.

Finally, for all G ∈ G−∞ ⊆ G−n,

E[Z;G] = E[M−n;G].

Take the limit n→ +∞ and use L1 convergence.

5.1 Law of large numbers

An application:

THM 15.15 (Strong Law; Martingale Proof) LetX1, X2, . . . be iid RVs with E[X1] =
µ and E|X1| < +∞. Let Sn =

∑
i≤nXn. Then

n−1Sn → µ,

a.s. and in L1.

Proof: Let

G−n = σ(Sn, Sn+1, Sn+2, . . .) = σ(Sn, Xn+1, Xn+2, . . .),

and note that, for 1 ≤ i ≤ n,

E[X1 | G−n] = E[X1 |Sn] = E[Xi |Sn] = E[n−1Sn |Sn] = n−1Sn,

by symmetry. By Levy’s Downward Thm

n−1Sn → E[X1 | G−∞],

a.s. and in L1. But the limit must be trivial by Kolmogorov’s 0-1 law and we must
have E[X1 | G−∞] = µ.

5.2 Hewitt-Savage

DEF 15.16 Let X1, X2, . . . be iid RVs. Let En be the σ-field generated by events
invariant under permutations of the Xs that leaveXn+1, Xn+2, . . . unchanged. The
exchangeable σ-field is E = ∩mEm.

THM 15.17 (Hewitt-Savage 0-1 law) Let X1, X2, . . . be iid RVs. If A ∈ E then
P[A] ∈ {0, 1}.
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Proof: The idea of the proof is to show that A is independent of itself. Indeed, we
then have

0 = P[A]− P[A ∩A] = P[A]− P[A]P[A] = P[A](1− P[A]).

SinceA ∈ E andA ∈ F∞, it suffices to show that E is independent of Fn for every
n (by the π-λ theorem).

WTS: for every bounded φ, B ∈ E ,

E[φ(X1, . . . , Xk);B] = E[φ(X1, . . . , Xk)]E[B] = E[E[φ(X1, . . . , Xk)];B],

or equivalently

Y = E[φ(X1, . . . , Xk) | E ] = E[φ(X1, . . . , Xk)].

It suffices to show that Y is independent of Fk. Indeed, by the L2 characterization
of conditional expectation and independence,

0 = E[(φ(X1, . . . , Xk)− Y )Y ] = E[φ(X1, . . . , Xk)]E[Y ]− E[Y 2] = −Var[Y ],

and Y is constant.

1. Since φ is bounded, it is integrable and Levy’s Downward Thm implies

E[φ(X1, . . . , Xk) | En]→ E[φ(X1, . . . , Xk) | E ].

2. We make φ “exchangeable” by averaging over all configurations and taking
a limit as n→ +∞. Define

An(φ) =
1

(n)k

∑
1≤i1 6=···6=ik≤n

φ(Xi1 , . . . , Xik),

where (n)k = n(n− 1) · · · (n− k + 1). Note by symmetry

An(φ) = E[An(φ) | En] = E[φ(X1, . . . , Xk) | En]→ E[φ(X1, . . . , Xk) | E ].

3. The reason we did this is that now the first k Xs have little influence on this
quantity and therefore the limit is independent of them. However, note that

1

(n)k

∑
1∈i

φ(Xi1 , . . . , Xik) ≤ k(n− 1)k−1
(n)k

supφ =
k

n
supφ→ 0,

so that the limit of An(φ) is independent of X1 and

E[φ(X1, . . . , Xk) | E ] ∈ σ(X2, . . .),

and by induction

Y = E[φ(X1, . . . , Xk) | E ] ∈ σ(Xk+1, . . .).
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6 Optional Sampling

6.1 Review: Stopping times

Recall:

DEF 15.18 A random variable T : Ω → Z+ ≡ {0, 1, . . . ,+∞} is called a
stopping time if

{T = n} ∈ Fn, ∀n ∈ Z+.

EX 15.19 Let {An} be an adapted process and B ∈ B. Then

T = inf{n ≥ 0 : An ∈ B},

is a stopping time.

THM 15.20 Let {Mn} be a MG and T be a stopping time. Then MT is integrable
and

E[MT ] = E[X0].

if one of the following holds:

1. T is bounded.

2. M is bounded and T is a.s. finite.

3. E[T ] < +∞ and M has bounded increments.

4. M is UI. (This one is new. The proof follows from the Optional Sampling
Theorem below.)

DEF 15.21 (FT ) Let T be a stopping time. Denote by FT the set of all events F
such that ∀n ∈ Z+

F ∩ {T = n} ∈ Fn.

6.2 More on the σ-field FT
The following two lemmas help clarify the definition of FT :

LEM 15.22 FT = Fn if T ≡ n, FT = F∞ if T ≡ ∞ and FT ⊆ F∞ for any T .
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Proof: In the first case, note F∩{T = k} is empty if k 6= n and is F if k = n. So if
F ∈ FT thenF = F∩{T = n} ∈ Fn and ifF ∈ Fn thenF = F∩{T = n} ∈ Fn.
Moreover ∅ ∈ Fn so we have proved both inclusions. This works also for n =∞.
For the third claim note

F = ∪k∈Z+
F ∩ {T = n} ∈ F∞.

LEM 15.23 If X is adapted and T is a stopping time then XT ∈ FT (where we
assume that X∞ ∈ F∞, e.g., X∞ = lim inf Xn).

Proof: For B ∈ B

{XT ∈ B} ∩ {T = n} = {Xn ∈ B} ∩ {T = n} ∈ Fn.

LEM 15.24 If S, T are stopping times then FS∧T ⊆ FT .

Proof: Let F ∈ FS∧T . Note that

F ∩ {T = n} = ∪k≤n[(F ∩ {S ∧ T = k}) ∩ {T = n}] ∈ Fn.

Indeed, the expression in parenthesis is in Fk ⊆ Fn and {T = n} ∈ Fn.

6.3 Optional Sampling Theorem (OST)

THM 15.25 (Optional Sampling Theorem) If M is a UI MG and S, T are stop-
ping times with S ≤ T a.s. then E|MT | < +∞ and

E[MT | FS ] = MS .

Proof: Since M is UI, ∃M∞ ∈ L1 s.t. Mn → M∞ a.s. and in L1. We prove a
more general claim:

LEM 15.26
E[M∞ | FT ] = MT .

Indeed, we then get the theorem by (TOWER) and (JENSEN).
Proof:(Lemma) Wlog we assume M∞ ≥ 0 so that Mn = E[M∞ | Fn] ≥ 0 ∀n.
Let F ∈ FT . Then (trivially)

E[M∞;F ∩ {T =∞}] = E[MT ;F ∩ {T =∞}]
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so STS
E[M∞;F ∩ {T < +∞}] = E[MT ;F ∩ {T < +∞}].

In fact, by (MON), STS

E[M∞;F ∩ {T ≤ k}] = E[MT ;F ∩ {T ≤ k}] = E[MT∧k;F ∩ {T ≤ k}],

∀k. To conclude we make two observations:

1. F ∩ {T ≤ k} ∈ FT∧k. Indeed if n ≤ k

F ∩ {T ≤ k} ∩ {T ∧ k = n} = F ∩ {T = n} ∈ Fn,

and if n > k
= ∅ ∈ Fn.

2. E[M∞ | FT∧k] = MT∧k. Since E[M∞ | Fk] = Mk, STS E[Mk | FT∧k] =

MT∧k. But note that if G ∈ FT∧k

E[Mk;G] =
∑
l≤k

E[Mk;G∩{T∧k = l}] =
∑
l≤k

E[Ml;G∩{T∧k = l}] = E[MT∧k;G]

since G ∩ {T ∧ k = l} ∈ Fl.

6.4 Example: Biased RW

DEF 15.27 The asymmetric simple RW with parameter 1/2 < p < 1 is the pro-
cess {Sn}n≥0 with S0 = 0 and Sn =

∑
k≤nXk where theXks are iid in {−1,+1}

s.t. P[X1 = 1] = p. Let q = 1− p. Let φ(x) = (q/p)x and ψn(x) = x− (p− q)n.

THM 15.28 Let {Sn} as above. Let a < 0 < b. Define Tx = inf{n ≥ 0 : Sn =
x}. Then

1. We have

P[Ta < Tb] =
φ(b)− φ(0)

φ(b)− φ(a)
.

In particular, P[Ta < +∞] = 1/φ(a) and P[Tb <∞] = 1.

2. We have
E[Tb] =

b

2p− 1
.
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Proof: There are two MGs here:

E[φ(Sn) | Fn−1] = p(q/p)Sn−1+1 + q(q/p)Sn−1−1 = φ(Sn−1),

and

E[ψn(Sn) | Fn−1] = p[Sn−1+1−(p−q)(n)]+q[Sn−1−1−(p−q)(n)] = ψn−1(Sn−1).

Let N = Ta ∧ Tb. Now note that φ(SN∧n) is a bounded MG and therefore
applying the MG property at time n and taking limits as n→∞ (using (DOM))

φ(0) = E[φ(SN )] = P[Ta < Tb]φ(a) + P[Ta > Tb]φ(b),

where we need to prove that N < +∞ a.s. Indeed, since (b− a) +1-steps always
take us out of (a, b),

P[Tb > n(b− a)] ≤ (1− qb−a)n,

so that
E[Tb] =

∑
k≥0

P[Tb > k] ≤
∑
n

(b− a)(1− qb−a)n < +∞.

In particular Tb < +∞ a.s. and N < +∞ a.s. Rearranging the formula above
gives the first result. (For the second part of the first result, take b→ +∞ and use
monotonicity.)

For the third one, note that Tb ∧ n is bounded so that

0 = E[STb∧n − (p− q)(Tb ∧ n)].

By (MON), E[Tb ∧ n] ↑ E[Tb]. Finally, using

P[− inf
n
Sn ≥ −a] = P[Ta < +∞],

and the fact that − infn Sn ≥ 0 shows that E[− infn Sn] < +∞. Hence, we can
use (DOM) with |STb∧n| ≤ max{b,− infn Sn}.
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