Notes 15 : UI Martingales

Math 733 - Fall 2013 Lecturer: Sebastien Roch

References: [Wil91, Chapter 13, 14], [Durl0, Section 5.5, 5.6, 5.7].

1 Uniform Integrability
We give a characterization of L' convergence. First note:
LEM 15.1 LetY € L' Ve > 0, 3K > 0 s.1.

E[|lY];1Y] > K] <e.

Proof: Immediate by (MON) to E[|Y];|Y| < K]. |
What we need is for this condition to hold uniformly over the sequence:

DEF 15.2 (Uniform Integrability) A collectionC of RVs on (2, F,P) is uniformly
integrable (Ul) if: Ve > 0, AK > 400 s.t.

E[|X[; | X| > K] < ¢, VX eC.

THM 15.3 (Necessary and Sufficient Condition for L' Convergence) Let {X,} €
L'and X € L'. Then X,, — X in L' if and only if:

e X, — X inprob
o {X,}isUL
Before giving the proof, we look at a few examples.
EX 15.4 (L'-bddness is not sufficient) Ler C is Ul and X € C. Note that
E|X| <E[[X];[X] > K]+ E[|X]|;|X]| < K] < e+ K < +o0,

so Ul implies L'-bddness. But the opposite is not true by our last example (take
2
n® > K).
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EX 15.5 (L?-bdd RVSs) But LP-bddness works for p > 1. Let C be LP-bdd and
X €C. Then

E[|X|;|X| > K] <E[K'P|X|’;|X| > K[| < K'"PA = 0,
as K — +oc.
EX 15.6 (Dominated RVs) Assume 3Y € L' s.t. |X| <Y VX € C. Then
E[lX[; |X|> K] <E[Y;|X| > K] <E[Y;Y > K],

and apply lemma above.

2 Proof of main theorem

Proof: We start with the if part. Fix ¢ > 0. We want to show that for n large
enough:
E|l X, — X| <e.

It is natural to truncate at K to apply the UI property. Let ¢ () = sgn(x)[|z|AK].
Then,

E’Xn - X‘ E’(bK(Xn) - Xn’ +E‘¢K(X) - X‘ +E|¢K(Xn> - QSK(X)’

<
< E[IXal; [ Xn| > K]+ E[[X]; | X[ > K]+ E|¢px (Xn) — ¢x(X)].

The 1st term < ¢/3 by UI and the 2nd term < ¢/3 by lemma above. Check, by
case analysis, that

9K (x) — o (y)| < |z —yl,

s0 ¢ (X,) = p ¢k (X). By bounded convergence for convergence in probability,
the claim is proved.

LEM 15.7 (Bounded convergence theorem (convergence in probability version))
Let X, < K < 4o Vnand X,, —>p X. Then

E| X, — X| — 0.
Proof:(Sketch) By
PIX| > K +m '] <P[X, — X| >m™ ],
it follows that P[|X| < K] = 1. Fixe > 0

E| X, —X| = E[Xn - X[;[Xn — X[ > /2] + E[|X,, — X[; [ X, — X| < /2]
< 2KP[|X,, — X| >¢/2] +¢/2 <,
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for n large enough. L
Proof of only if part. Suppose X,, — X in L!. We know that L! implies
convergence in probability. So the first claim follows.
For the second claim, if n > N (large enough),

E|X, - X|<e.
We can choose K large enough so that
E[| X5 | Xa| > K] < e,

Vn < N. (Because there is only a finite number.) So only need to worry about
n > N. To use L' convergence, natural to write

E[|Xnl; [Xn| > K] < E[|X, — X[ [Xn| > K]+ E[|X]; [ Xo] > K].

First term < ¢. The issue with the second term is that we cannot apply the lemma
because the event involves X, rather than X. In fact, a stronger version exists:

LEM 15.8 (Absolute continuity) Let X € L' Ve > 0,35 > 0, s.t. P[F] < §
implies
E[|X]; F] < e.
Proof: Argue by contradiction. Suppose there is € and F), s.t. P[F},] < 27" and
E[|X]|; F.] > e.

By BC,
P[H| = P[F,, i.0.] = 0.

By reverse Fatou (applied to | X |1y = limsup | X|1F,),
E[|X|; H] > e,

a contradiction. n
To conclude note that

E|Xo| _ supuoy EIXa| _ supoy BIX| +EIX, - X| _

P|| X K] <
Xl > K] < N - ,

uniformly in n for K large enough. We are done.
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3 UIMGs
THM 15.9 (Convergence of Ul MGs) Let M be Ul MG. Then
M, = My,
a.s. and in L'. Moreover,
M, = E[My | Fn], vn.

Proof: UI implies L'-bddness so we have M,, — M, a.s. By necessary and
sufficient condition, we also have L' convergence.
Now note that for all » > n and F € F,,, we know E[M, | F,,] = M,, or

E[M,; F] = E[My; FJ,
by definition of CE. We can take a limit by L' convergence. More precisely
|E[M,; F] — E[Muo; F]| < E[|M, — M|; F] < E[|M, — Mx]|] — 0,
as 7 — 00. So plugging above
E[Moo; F] = E[My; FJ,

and E[M | F] = M. ]

4 Applications I

THM 15.10 (Levy’s upward thm) Let Z € L' and define M,, = E[Z | F,.]. Then
M is a Ul MG and
M, — My =E[Z | Fx],

a.s. and in L.

Proof: M is a MG by (TOWER). We first show it is UI:

LEM 15.11 Let X € LY(Q, F,P). Then
{E[X |G] : G is a sub-o-field of F},

is UL
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Proof: We use the absolute continuity lemma again. Let Y = E[X | G] € G. Since
{Yl> K} eg,

E[Y;[Y]> K] = E[E[X|F];[Y]|> K]
< E[E[X]|G]; Y] > K]
= E[IX|;|Y]> K].
By Markov and (JENSEN)
ElY E|X
Blv|> K] < S < Pl <5
for K large enough (uniformly in G). And we are done. ]

In particular, we have convergence a.s. and in L' to M, € Fuo.
Let Y = E[Z | Fo] € Foo. By dividing into negative and positive parts, we
assume Z > 0. We want to show, for I' € F,

E[Z; F] = E[Mu; F).

By Uniqueness Lemma, it suffices to prove equality for all F,,. If F' € F,, C Fo,
then by (TOWER)

E[Z; F] = E[Y; F] = E[M,; F] = E[Mu; F].

The first equality is by definition of Y’; the second equality is by definition of M,,;
the third equality is from our main theorem. |

THM 15.12 (Levy’s 0 — 1 law) Let A € F. Then
P[A|F,] — 14.
Proof: Immediate. ]

COR 15.13 (Kolmogorov’s 0 — 1 law) Ler X1, Xo, ... beiid RVs. Recall that the
tail o-field is
T = ﬂn'ﬁ@ = ﬂna(Xn+1, Xn+2, .. )

If A €T thenP[A] € {0,1}.
Proof: Since A € 7T, is independent of F,,,
P[A| Fn] =P[4],

Vn. By Levy’s law,
P[A] =14 € {0,1}.
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S Applications II

THM 15.14 (Levy’s Downward Thm) Let Z € L'(Q, F,P) and {G_,}n>0 a
collection of o-fields s.t.

oo=MG-C--CG,C---CG 1 CF.

Define
M_, = E[Z ‘ g—n]

Then
M_, - M_o =E[Z|G_x]

a.s. and in L.

Proof: We apply the same argument as in the Martingale Convergence Thm. Let
a< peQand

Appg={w : liminf X, <a < f <limsup X_,}.
Note that

A = {w: X, does not converge}
= {w :liminf X_, <limsup X_,}
= Ua<BEQAo¢,B-

Let Un[a, 8] be the number of upcrossings of [a, B] between time —N and —1.
Then by the Upcrossing Lemma applied to the MG M_p, ..., M_;

(8 — )EUN|e, B] < o] + E[M 1| < |o| + E[Z].

By (MON)
UN[O&, B] T Uoo[Oé, 5]7
and
(8 — )EUsx|e, f] < |a] + E|Z| < +o0,
so that
PlUs v, B] = 00] = 0.
Since

Aa,ﬁ - {Uoo[awﬁ] = 00}7

we have P[A,, g] = 0. By countability, P[A] = 0. Therefore we have convergence
a.s.
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By lemma in previous class, M is UI and hence we have L' convergence as
well.
Finally, forall G € G_ C G_,,

E[Z;G] = E[M_,; G].

Take the limit n — +o0 and use L' convergence. |

5.1 Law of large numbers

An application:

THM 15.15 (Strong Law; Martingale Proof) Ler X, X, ... beiid RVs withE[X ] =
pand E|X:| < +oo. Let Sy = ), Xy Then

n 1S, = pu,

a.s. and in L.

Proof: Let
G_n=0(Sn, Sn+1,+2,-..) = 0(Sn, Xn+1, Xnt2,--.),
and note that, for 1 < i < n,
E[X1|G-n] = E[X1|Sn] = E[X; | Sp] = E[n 'S, | Sn] = n~ 'Sy,
by symmetry. By Levy’s Downward Thm
n 'S, — E[X1 |G o),

a.s. and in L'. But the limit must be trivial by Kolmogorov’s 0-1 law and we must
have E[ X |G_oo] = p. ]

5.2 Hewitt-Savage

DEF 15.16 Let X1, Xo,... be iid RVs. Let &, be the o-field generated by events
invariant under permutations of the Xs that leave X1+ 1, Xn42, ... unchanged. The
exchangeable o-field is £ = Ny, Ep,.

THM 15.17 (Hewitt-Savage 0-1 law) Let X1, Xo,... be iid RVs. If A € & then
P[A] € {0,1}.
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Proof: The idea of the proof is to show that A is independent of itself. Indeed, we
then have

0 = P[A] — P[A N A] = P[A] — P[A]P[A] = P[A](1 — P[A]).

Since A € £ and A € F, it suffices to show that £ is independent of F,, for every
n (by the 7-\ theorem).
WTS: for every bounded ¢, B € &,

Elp(X1, ..., Xi); Bl = E[¢(X1, ..., Xp)|E[B] = E[E[p(Xy, ..., Xi)]; B,
or equivalently
V =E[p(X1,...,Xy) [ €] = E[p(X1,..., Xi)].

It suffices to show that Y is independent of F,. Indeed, by the L? characterization
of conditional expectation and independence,

0 =E[($(X1,.... X}) = Y)Y] = E[$(X1,..., Xp)|E[Y] - E[Y?] = —Var[Y],
and Y is constant.

1. Since ¢ is bounded, it is integrable and Levy’s Downward Thm implies

E[$(X1, ..., Xp) | &) = E[$(X1, ..., Xi) | €]

2. We make ¢ “exchangeable” by averaging over all configurations and taking
a limit as n — +o00. Define

An(¢): Z ¢(Xi17"'7Xik)7
1<iy #oip<n
where (n); =n(n —1)---(n — k + 1). Note by symmetry
3. The reason we did this is that now the first £ X's have little influence on this

quantity and therefore the limit is independent of them. However, note that
1 k(n — 1)]{,1 k
— Xipyoo o X5 ) < —————— = — —0
(n)k 1zei¢( 119 ) Zk) — (n)k Sup(b n Sup¢ 9
so that the limit of A,,(¢) is independent of X; and
Elp(X1, ..., Xp) [ €] € o(Xa,..),
and by induction

Y = E[qb(Xl, ce ,Xk) ’5] S O’(Xk+1, .. )
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6 Optional Sampling
6.1 Review: Stopping times
Recall:

DEF 15.18 A random variable T : Q — Z, = {0,1,...,+00} is called a
stopping time if B
{T'=n}eF,, VnelZ;.

EX 15.19 Let { A} be an adapted process and B € B. Then
T =inf{n >0 : A, € B},
is a stopping time.

THM 15.20 Let {M,,} be a MG and T be a stopping time. Then Mr is integrable
and

E[Mr] = E[X)).
if one of the following holds:
1. T is bounded.
2. M is bounded and T is a.s. finite.
3. E[T] < +o0 and M has bounded increments.

4. M is UL (This one is new. The proof follows from the Optional Sampling
Theorem below.)

DEF 15.21 (F7) Let T be a stopping time. Denote by Fr the set of all events F'
such that'n € Z,.

FN{T =n} € F,.
6.2 More on the o-field Fr

The following two lemmas help clarify the definition of F7:

LEM 1522 Fr=F,ifT =n, Fr = Fo if T'= 00 and Fr C F forany T.
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Proof: In the first case, note FN{T = k} isempty if k # nandis F if k = n. Soif
F e Frthen F = Fn{T =n} € F,andif F € F,then F = FN{T =n} € F,,.
Moreover () € F,, so we have proved both inclusions. This works also for n = oo.
For the third claim note

F = Uk€Z+F N {T = n} € Foo-
|

LEM 15.23 If X is adapted and T is a stopping time then X1 € Fr (where we
assume that X o € Foo, €.8., Xoo = liminf X,).

Proof: For B € B

{XreBin{T'=n}={X, e B}nN{T =n} e F,.

]
LEM 15.24 If S, T are stopping times then Fsar C Fr.
Proof: Let F' € Fga7. Note that
FO{T =n} =Up<n[(FN{S AT = k})N{T =n}] € F,.
Indeed, the expression in parenthesis is in Fj, C F,, and {T = n} € F,. [ ]

6.3 Optional Sampling Theorem (OST)

THM 15.25 (Optional Sampling Theorem) If M is a Ul MG and S, T are stop-
ping times with S < T a.s. then E|Mp| < 400 and

E[Mr | Fs] = Ms.

Proof: Since M is UL, 3M,, € L' s.t. M,, — M, a.s. and in £'. We prove a
more general claim:

LEM 15.26
E[Ms | Fr]| = Mry.

Indeed, we then get the theorem by (TOWER) and (JENSEN).
Proof:(Lemma) Wlog we assume My, > 0 so that M,, = E[My |F,] > 0 Vn.
Let F' € Fr. Then (trivially)

E[Muo; F N {T = oo}] = E[Mp; F N {T = oo}]
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so STS
E[Ms; FN{T < 4o00}| = E[Mp; FN{T < +o0}].

In fact, by (MON), STS
E[Maso; F N {T < k}] = E[Mp; FN{T < k} = E[Mgpn F 0 {T < k}],

Vk. To conclude we make two observations:

I |[F{T <k} € Frpy. | Indeed if n < k

FN{T <k}n{T'ANk=n}=Fn{T =n} e Fy,

andifn > k
=0eF,.

2. |E[Muo | Frar] = Mrng- | Since B[Mog | Fi] = My, STS E[My. | Frax] =
M. But note that if G € Fpag

E[My; Gl = > E[My; GN{Trk =1}] =Y E[M; G{TAk = 1}] = E[Mpp; G
1<k I<k

since GN{T ANk =1} € F.

6.4 Example: Biased RW

DEF 15.27 The asymmetric simple RW with parameter 1/2 < p < 1 is the pro-
cess {Sp}n>0 with Sy = 0and S, =), ., Xi where the Xys areiid in {—1,+1}

s.t. P[X1 =1]=p. Letq = 1—p. Let ¢(x) = (q/p)* and Y, (x) =z — (p— q)n.

THM 15.28 Let {S,,} as above. Let a < 0 < b. Define T, = inf{n >0 : S,, =
x}. Then

1. We have
o(b) — ¢(0)
¢(b) — ¢(a)

In particular, P[T, < +o00] = 1/¢(a) and P[T, < oo] = 1.

P[T, < T)] =

2. We have .

BT = 5
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Proof: There are two MGs here:

El¢(Sn) | Fao1] = p(a/p)* ' + a(a/p)* " = ¢(Sn-1),

and

E[n(Sn) | Fa-1] = plSn-1+1=(p—q) (n)]+q[Sn-1—1=(p—q) (n)] = tn-1(Sn-1)-
Let N = T, A Tp. Now note that ¢(Syay,) is a bounded MG and therefore
applying the MG property at time n and taking limits as n — oo (using (DOM))
¢(0) = E[¢(Sn)] = P[Tu < Tp]¢(a) +P[T, > Tp]¢(b),

where we need to prove that N < +oc0 a.s. Indeed, since (b — a) +1-steps always
take us out of (a, b),

PT, > n(b—a)] < (1 —¢"~)",

so that

E[Ty) = P[T, >k <) (b—a)(l-¢ )" < +o0.
k>0 n

In particular 7;, < +o00 a.s. and N < +oo a.s. Rearranging the formula above
gives the first result. (For the second part of the first result, take b — +oco and use
monotonicity.)

For the third one, note that 73 A n is bounded so that

0=E[Styan — (p— q)(Tp An)].
By (MON), E[T}, A n] 1 E[T}). Finally, using
P[—inf S, > —a] = P[T, < +0o0],

and the fact that — inf,, S,, > 0 shows that E[—inf,, S),] < +o00. Hence, we can
use (DOM) with | ST, rn| < max{b, —inf, S, }.
|
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