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Abstract. We consider a large class of non-cooperative games that in-
cludes most known variations of congestion games. We show that if we
divide the utility in such a generalized congestion game according to the
[weighted] Shapley values of the agents using each resource, then every
such game has an exact [weighted] potential function. This is by apply-
ing a classic result by Hart and Mas-Colell [3] on exact and weighted
potential functions of cooperative games with transferable utility. We
then show how recent results on the existence of potential functions in
various classes of non-cooperative games follow as a special case from
this observation.

1 Introduction

Congestion games are a common and useful representation of non-cooperative
games. Many variations and extensions of congestion games have been proposed,
so as to encompass a large variety of settings, interactions and applications.
Variations differ in how the total generated utility (or cost) on each resource is
affected by the identity and actions of players, as well as how it is being divided
among them.

While it is well known that “standard” congestion games have a potential
function and thus guarantee convergence of best-response strategies to a Nash
equilibrium, this is not true for most extensions that have been suggested for
congestion games. For example, congestion games where players are weighted
may not even have a pure Nash equilibrium.

We describe Generalized Congestion Games (GCG), where the total utility
function of each resource is unrestricted, and may be divided arbitrarily. Through
a simple observation that builds on a result by Hart and Mas-Colell [3], we show
that every GCG has an exact potential function, provided that the total utility of
each resource is being divided according to the Shapley values of users (i.e. each
player’s expected marginal contribution in a random order). Similarly, if utility
is divided according to some weighted Shapley value, then the game admits a
weighted potential function (w.r.t. the same weights).

Some recent results in the literature about the existence of potential functions
in congestion games (namely, [5, 6]) follow as special cases from this observation.
Moreover, we show that these results can be strengthened in some cases.



2 Background and Preliminaries

2.1 Cooperative games

A transferable utility (TU) cooperative game is a pair (N, v), where N is a finite
set of agents, and v : 2N → R+ is a value function (also called the characteristic
function).

Given a TU game (N, v), a preimputation x is a division of v(N) between
the members of N . An efficient point solution concept is a mapping from every
TU game (N, v) to a preimputation ψ(N, v) = (ψ1, . . . , ψn).

Unanimity games For every ∅ 6= T ⊆ N , the (TU) unanimity game uT is defined
as uT (S) = 1 if S ⊇ T and 0 otherwise. Every TU game (N, v) has a unique
decomposition as v =

∑
∅6=T⊆N αTuT .

The Shapley value The Shapley value φ(N, v) is an efficient point solution con-
cept defined as the average marginal contribution of agent i when agents are
ordered randomly [11]. Formally,

φi(N, v) =
1

n!

∑
π∈Sym(n)

(
v(Si(π) ∪ {i})− v(Si(π))

)
.

The Shapley value of i in the unanimity game uT is 1/|T | if i ∈ T and 0 otherwise.
Since the Shapley value is additive, it holds that

φi(N, v) =
∑
∅6=T⊆N

αTφ
i(uT ) =

∑
T⊆N :i∈T

αT
|T |

, (1)

where each αT is the coefficient of uT in the unique decomposition of (N, v).

Weighted Shapley values Given weights w = (w1, . . . , wn), the weighted Shapley
value [4] of i in the unanimity game (N, uT ) is φiw(N, uT ) = wi∑

j∈T wj
for i ∈ T

and 0 for i /∈ T . As with the standard Shapley values, it is extended to general
games as follows:

φiw(N, v) =
∑
T⊆N

αTφ
i
w(uT ) =

∑
T⊆N,i∈T

αT
wi∑
j∈T wj

,

where v =
∑
T αTuT is the decomposition of (N, v).

The HMC potential of TU games Hart and Mas-Colell [3] define the potential
of every TU game P (N, v), and its differentials: DiP (N, v) = P (N, v)− P (N \
{i}, v). They require that for any game (N, v),∑

i∈N
DiP (N, v) = v(N). (2)



They prove that such a potential function exists and its differentials are equal
to the Shapley value, i.e. DiP (N, v) = φi(N, v).

Hart and Mas-Collel then prove a more general result. For every vector of
weights w, they say that Pw(N, v) is a weighted potential function if it holds
that

∑
i∈N wiD

iPw(N, v) = v(N). They show that for any w, such functions
exist, where DiPw(N, v) = φiw(N, v).

We refer to the functions P and Pw as the HMC potential and the weighted
HMC potential, respectively.

2.2 Congestion Games and Potential Games

Potential functions A non-cooperative game G with n agents has strategy sets
(Ai)i∈N , and n utility functions ui : A → R, where A = ×i∈NAi. A potential
function of G is a function Φ : A→ R, s.t. for every a ∈ A, agent j, and a′j ∈ Aj ,

Φ(a)− Φ(a−j , a
′
j) = uj(a)− uj(a−j , a′j).

Given a weight vector w = (w1, . . . , wn), we say that Φ is a w-weighted
potential function of G if for every a ∈ A, agent j, and a′j ∈ Aj ,

Φ(a)− Φ(a−j , a
′
j) = wj(uj(a)− uj(a−j , a′j)).

Generalized Congestion games A Generalized Congestion Game (GCG), G =
(N,F, (Ai)i∈N , (Ux)x∈F , (u

i
x)i∈Nx∈F ), has a set of agents N , and a set of resources

F . Every agent is restricted to select from some Ai ⊆ 2F . That is, a strategy
of i is a set of resources ai ∈ Ai. for example, F can be edges in a graph, and
Ai are all paths from the home of agent i (some vertex si) to target vertex t.
In a particular profile a = (a1, . . . , an) ∈ A, we denote by Nx(a) (or just Nx
when the profile is clear from the context) the set of agents using resource x. For
every x ∈ F there is a utility function Ux : 2N → R, and a method to divide the
utility among the agents of Nx to (uix(Nx))i∈Nx , s.t.

∑
i∈Nx

uix(Nx) = Ux(Nx).

The total utility of player i under profile a is ui(a) =
∑
x∈ai u

i
x(Nx(a)). Thus a

GCG is a non-cooperative game.

While we are not aware of a previous definition of GCG, several special
cases have been studied in the literature. If Ux only depends on |Nx|, and
uix(|Nx|) = 1

|Nx|Ux(|Nx|) for all x and i, then F is called a congestion game [9].

A cost sharing game is a congestion game where a fixed cost is equally divided
among players using a resource. That is, Ux(Nx) = −γx is a negative constant.
Rosenthal [9] showed that congestion games always possess an exact potential
function. Later, Monderer and Shapley proved that the converse is also true.
That is, G is (isomorphic to) a congestion game if and only if G has a potential
function [8]. They also include the following sentence (our emphasis):

“Hart and Mas-Colell (1989) have applied potential theory to cooperative
games. Except for the fact that we are all using potential theory our works are
not connected.”



However, this connection turned out to be quite strong. A preliminary con-
nection was shown already in the paper of Monderer and Shapley (see Lemma 1).
Later, Ui [13] proposed an alternative characterization for (non-weighted) poten-
tial games, by showing that a game admits a potential if and only if the payoff
functions coincide with the Shapley value of a particular class of cooperative
games. In what follows, we show how this interesting connection can be further
exploited to reveal potentials in various games.

Other special cases of GCG in the literature Two generalizations of congestion
games were presented by Milchtaich [7], both of which are special cases of GCG.
The first is Player specific congestion game, where each Ux depends only on |Nx|,
but can be divided arbitrarily among players. The second is weighted congestion
games, where each player has an intrinsic weight βi ∈ R+, and every Ux :
R+ → R is a function β(Nx) =

∑
i∈Nx

βi. Traditionally utility is distributed

proportionally to the weight, i.e. where uix(Nx) = βi

β(Nx)
Ux(Nx). He also assumes

that uix is monotonically non-increasing.

Milchtaich showed that games in neither class possess a potential function,
although player specific games do have a pure Nash equilibrium. Also, in some
special cases an exact potential function still exits.

Kollias and Roughgarden [5] highlight two particular cases where a variant
of weighted congestion games has an exact or weighted potential. The first result
states that if we take monotone weighted congestion games and divide the total
cost (negative utility) Ux(Nx) according to the Shapley values of players in Nx
(rather than proportionally to their weights, as in [7]), then the game admits an
exact potential function. The second result considers a variant of cost sharing
games, augmented with some weight vector β. Here the authors show that if the
total cost γx is shared according to the weighted Shapley values φβ of the players
using x, then the game admits a β-weighted potential function. Note that both
variants are special cases of GCG.

In a recent paper, Meir et al. [6] introduced the concept of agent failures
in congestion games, focusing on games with costs (negative utilities). In their
model, an original congestion game G is perturbed by randomly selecting a set of
surviving players S ⊆ N , according to some distribution p, where

∑
S⊆N p(S) =

1. The cost for every player in the perturbed game is her expected cost over all
instantiations of the game. Since the expected total cost is well defined, this is
a GCG. The authors show that every such game admits a weighted potential
function.

3 Results

Monderer and Shapley [8] show in their paper a modest version of the connection
between TU games and congestion games, linking the HMC potential to the
potential of non-cooperative “participation games”.



For any TU game (N, v) + point solution concept ψ, Monderer and Shap-
ley define the induced non-cooperative “participation game” Γ (v, ψ). That is,
ui(a) = ψi(Na, v), where Na is that set of agents that chose to participate.

Lemma 1 (Monderer and Shapley [8]). (a) Γ has an exact potential func-
tion iff ψ is the Shapley value. (b) Γ has a weighted potential function iff ψ is
the weighted Shapley value for the same weight vector (with the same weights).

As expected, Monderer and Shapley prove the lemma by mapping the participa-
tion game to a TU game, and applying the [weighted] HMC potential function
Pw. We are now ready to present our results.

Theorem 1. Let G be a GCG.

1. If the total utility Ux on every x ∈ F is divided by the Shapley value, i.e. if
uix(Nx) = φi(Nx, Ux) for all x, i, then G has an exact potential function.

2. If the total utility Ux on every x ∈ F is divided by a weighted Shapley value,
i.e. if uix(Nx) = φiw(Nx, Ux) for all x, i, then G has a w-potential function.

Proof. It is sufficient to prove the second part, as the first part is a special case for
equal weights. Every resource x ∈ F induces a participation game Γx = Γ (Ux, φ),
where the set of “participating” agents in Γx is the set Nx (players who use
resource x). Thus by Lemma 1(b), Γx has a w-potential function Pw(Nx, Ux).
We define the function

Φ(a) = Φ(N1, . . . , N|F |) =
∑
x∈F

Pw(Nx, Ux),

and argue that it is a w-weighted potential function of G.
Indeed, suppose that some agent i switches from resources ai ⊆ F to a′i ⊆ F .

W.l.o.g. ai, a
′
i are disjoint, as resources in the intersection do not change the

difference in utility or potential.

wi(ui(ai)− ui(a′i)) = wi
∑
x∈ai

ux,i(Nx) + wi
∑
x∈a′i

ux,i(Nx)

− wi

∑
x∈ai

ux,i(Nx \ {i}) +
∑
x∈a′i

ux,i(Nx ∪ {i})


=
∑
x∈ai

wi(ux,i(Nx)− ux,i(Nx \ {i}))−
∑
x∈a′i

wi(ux,i(Nx ∪ {i})− ux,i(Nx))

=
∑
x∈ai

DiPw(Nx, Ux)−
∑
x∈a′i

DiPw(Nx ∪ {i}, Ux)

=
∑
x∈ai

(Pw(Nx, Ux)− Pw(Nx \ {i}, Ux))−
∑
x∈a′i

(Pw(Nx ∪ {i}, Ux)− Pw(Nx, Ux))

=
∑
x∈F

(Pw(Nx, Ux)− Pw(N ′x, Ux)) = Φ(a)− Φ(a−i, a
′
i).

Thus Φ is a w-potential function of G. ut



3.1 GCG + Shapley division are just congestion games

Since in congestion games the equal share of utility coincides with the Shapley
value, Rosenthal’s result that every congestion game has a potential function (the
“easy” direction of the characterization) follows as a special case from Theorem 1.
Since by Monderer and Shapley the other direction is also true, we get the
following corollary:

Corollary 1. Every GCG with Shapley division (as in the first part of Theo-
rem 1), is isomorphic to a congestion game.

In fact, given such a GCG G, we can construct an isomorphic (standard)
congestion game G∗ = (N,F ∗, (A∗i )i∈N , (U

∗
x)x∈F ) directly: For every resource

x ∈ F , consider the unique decomposition of (N,Ux) to unanimity games, and
in particular the coefficients (αS)S⊆N . For every x ∈ F we add 2n − 1 resources
{xS} to F ∗, one for each non-empty subset of N . We set U∗xS

(k) = αS if k ≥ |S|,
and U∗xS

(k) = 0 otherwise. Although this is not required for our proof, we note
that the value of the coefficient αS can be written explicitly as

αS = Ux(S)−
∑

T ′⊆S,|T ′|=|S|−1

Ux(T ′) +
∑

T ′′⊆S,|T ′′|=|S|−2

Ux(T ′′)− · · · ±
∑
i∈N

Ux({i}),

i.e. using the Möbius transform [10]. Next, we define the strategy sets A∗i . We
map every ai ∈ Ai in the original GCG to a single strategy a∗i ⊆ F as a∗i =
{xS ∈ F ∗ : x ∈ ai, i ∈ S}. Then, we set A∗i = {a∗i : ai ∈ Ai}.

Since U∗xS
is evenly divided among users of xS , G∗ is indeed a congestion

game. It is left to prove that G∗ is isomorphic to G. That is, that for every
profile a = (aj)j∈N and every agent i, the utility of i in G is equal to the utility
of i from profile a∗ = (a∗j )j∈N in G∗ (formally, that u∗i(a∗) = ui(a)).

First note that agent i selects resource xS in a∗ iff i ∈ Nx and i ∈ S. Thus
the resource xS contributes non-zero utility only if the entire set S selects it (i.e.
all i ∈ S select x in a).

For every x ∈ F , it holds that∑
S⊆Nx

u∗ixS
(NxS

) =
∑
S⊆Nx

u∗ixS
(S) =

∑
S⊆Nx:i∈S

U∗xS
(S)

|S|

=
∑

S⊆Nx:i∈S

αS
|S|

(Eq. (1))
= φi(Nx, Ux) = uix(Nx).

That is, for each x ∈ F the equal share of utility in G∗ over all resources
{xS}S⊆Nx

, is equal to the utility gained from resource x in the original GCG.
Finally, summing over all resources,

u∗i(a∗) =
∑

xS∈F∗
u∗ixS

(NxS
) =

∑
x∈F

∑
S⊆Nx

u∗ixS
(NxS

) =
∑
x∈F

uix(Nx) = ui(a).



4 Implications

It is not hard to see that any finite non-cooperative game can be represented as
a very large GCG, with one resource for every profile of pure actions. Even if
restricted to succinct representations, GCGs can still model an extremely wide
class of games: any TU game can be used to construct each Ux. For example
Ux can be based on weights of players [2], their skills [1], location [12], etc. As
long as the total utility on each resource is distributed according to the Shapley
value, the game will have a potential function.

4.1 Weighted variants of congestion games

In the two classes studied by Kollias and Roughgarden [5], costs are divided ac-
cording to the Shapley value and the weighted Shapley value, respectively. Thus
both follow as special cases from Theorem 1. Moreover, our theorem highlights
the fact that although both classes were presented in the paper as variants of
weighted congestion games (in the sense of [7]), the “weights” used in each result
have different technical meaning. As said in the previous paragraph, any utility
function would lead to a potential, and this includes functions that happen to
be defined using weights. Further note that the first result of Kollias and Rough-
garden can be substantially strengthened: utility does not have to be negative
or monotone. Also, players may have different weights on each edge.

The role of weights in the application to cost-sharing games (the second result
in [5]) is different. Here Ux(Nx) = −γx is fixed and does not depend on weights at
all. Thus dividing the cost according to the Shapley value simply means an equal
share of the cost, as is the case in “standard” (unweighted) cost sharing games.
True, such a division leads to a potential function but this is already known by
Rosenthal [9]. The augmentation with weights β and dividing according to φβ
allows for an additional β-weighted potential function to emerge.

To see why these implications are different, note that we could combine the
two: take a weighted congestion game, where the total utility/cost is defined
using weights β (i.e. Ux(Nx) = Ux(β(Nx))); now divide the utility according to
some weighted Shapley value φw, then the game admits a w-weighted potential
function, regardless of β.

4.2 Congestion games with failures

Following the notation of Meir et al. [6], We denote by p(S : T ) the probability
that from the set T , exactly the agents of S survive . Formally, p(S : T ) =∑
R⊆N\T p(S ∪ R). In particular, we denote by pi = p({i} : {i}) the marginal

survival probability of i.
The cost of using resource x to each agent in the base game G is cx(|Nx|),

for each agent that is using resource x. Applying the notation of GCG, the
total utility in G is Ux(Nx) = |Nx|ux(Nx) = −|Nx|cx(|Nx|), and it is equally
shared between players of Nx. The perturbed game is denoted by Gp. The cost



of resource x to an agent i ∈ Nx in the game Gp was defined by Meir et al. as
the expected cost over all possible sets of survivors that include i. Formally,

cpi,x(Nx) =
∑

R⊂Nx\i

p(R : Nx|i)cx(|R|+ 1) (3)

=
∑

R⊂Nx:i∈R
p(R : Nx|i)cx(|R|). (4)

As in standard congestion games, the total cost to player i (conditioned on
survival) in profile a is costpi (a) =

∑
x∈F c

p
i,x(Nx). If i does not survive, her

utility is 0. Thus upi,x(Nx) = −picpi,x(Nx), and upi (a) = picost
p
i (a).1

Note that upi,x(Nx) may depend on the identity of i or of Nx \{i}. Therefore,
Meir et al. claim, Gp is not necessarily a congestion game. In any case it is easy
to see that Gp is still a GCG, where

Up
x (Nx) =

∑
S⊆Nx

p(S : Nx)Ux(S) =
∑
i∈Nx

upi,x(Nx).

Potential functions For any fixed subset of survivors T ⊆ N , let ΦT denote
the potential function of the subgame G|T (which is a congestion game). The
weighted potential of profile a = (Nx)x∈F in the perturbed game Gp is defined
as the convex combination of potential functions of all 2n subgames. Formally,

Φ∗(a) =
∑
T⊆N

p(T )ΦT (a|T ) =
∑
T⊆N

p(T )
∑
x∈F

|Nx∩T |∑
k=1

cx(k).

where a|T = (Nx ∩ T )x∈F . Meir et al. prove directly that for any profiles a,a′

that differ by the strategy of player i, Φ∗(a)−Φ∗(a′) = pi(cost
p
i (a)− costpi (a′)).

That is, that Φ∗ is a weighted potential function.

We will next revisit this result in order to reach a sharper conclusion. By
reversing the order of summation, we can write Φ∗ as Φ∗(a) =

∑
x∈F Φ

∗
x(Nx),

where

Φ∗x(Nx) =
∑
T⊆Nx

p(T : Nx)

|T |∑
k=1

cx(k).

Let DiΦ∗x(Nx) = Φ∗x(Nx)− Φ∗x(Nx \ {i}).

Lemma 2. DiΦx(Nx) = pic
p
i,x(Nx).

1 In [6], pi does not appear in the definition of cpi,x, since the cost is conditioned on
the fact that i survived.



Proof. DiΦ∗x(Nx) = Φ∗x(Nx)− Φ∗x(Nx \ {i})

=
∑
T⊆Nx

p(T : Nx)

|T |∑
k=1

cx(k)−
∑

T⊆Nx\{i}

p(T : Nx \ {i})
|T |∑
k=1

cx(k)

=
∑

T⊆Nx\{i}

[(1− pi)p(T : Nx \ {i}|¬i)
|T |∑
k=1

cx(k) + pip(T : Nx|i)
|T |+1∑
k=1

cx(k)]

−
∑

T⊆Nx\{i}

[(1− pi)p(T : Nx \ {i}|¬i)
|T |∑
k=1

cx(k) + pip(T : Nx|i)
|T |∑
k=1

cx(k)]

= pi
∑

T⊆Nx\{i}

p(T : Nx|i)(
|T |+1∑
k=1

cx(k)−
|T |∑
k=1

cx(k))

= pi
∑

T⊆Nx\{i}

p(T : Nx|i)cx(|T |+ 1) = pic
p
i,x(Nx). ut

Since upi,x(Nx) = −picpi,x(Nx) = −DiΦx(Nx), the participation game on
resource x (or, equivalently, the TU game induced by it) has an exact potential
function Φ∗x (the HMC potential). According to Lemma 1(a), this means that
the total (negative) utility Ux in a game with failures, is necessarily divided
according to the Shapley value of players using resource x.

Finally, by applying Theorem 1, we find that the entire game Gp has an exact
(not weighted!) potential function, namely Φ∗. This means that every congestion
game with failures is isomorphic to a “standard” congestion game - possibly with
a much larger set of resources. It seems that Meir et al. [6] missed this point since
they used the conditional cost cpi rather than the actual utility (not conditioned
on survival of i).

5 Discussion

We defined a generalized class of congestion games, where any game in the class
admits a [weighted] potential function as long as utility on each resource is
divided according to the [weighted] Shapley value of agents using the resource.
Several recent results from the literature follow as special cases, and can even
be strengthened, as a consequence from this observation.

It would be interesting to find what other natural classes of games can be
shown to admit a potential function using this approach.
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