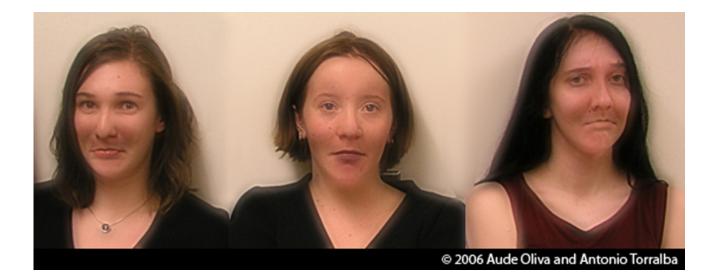
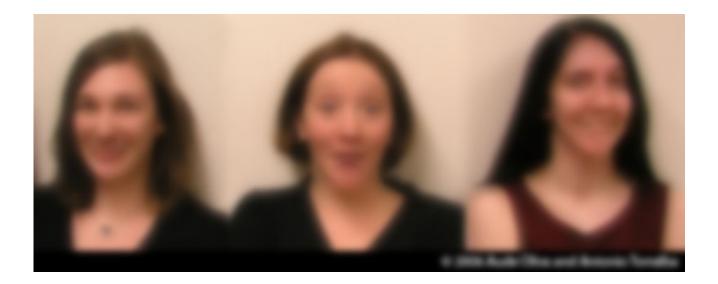
Image filtering



Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

Image filtering



Hybrid Images, Oliva et al., <u>http://cvcl.mit.edu/hybridimage.htm</u>

Reading

Szeliski, Chapter 3.1-3.2

What is an image?

Images as functions

We can think of an **image** as a function, f, from R^2 to R:

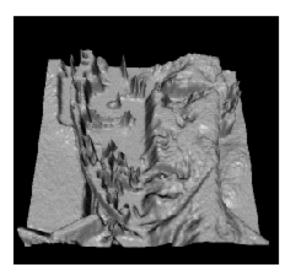
- f(x, y) gives the **intensity** at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 - $f: [a,b]\mathbf{x}[c,d] \rightarrow [0,1]$

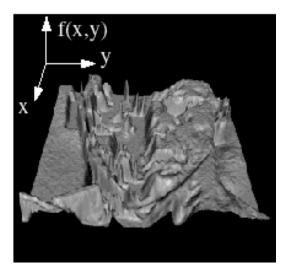
A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Images as functions







What is a digital image?

We usually work with **digital** (**discrete**) images:

- **Sample** the 2D space on a regular grid
- **Quantize** each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:

 $f[i, j] = \text{Quantize} \{ f(i \Delta, j \Delta) \}$

X

The image can now be represented as a matrix of integer values

		•						
*	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
¥	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

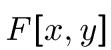
Filtering noise

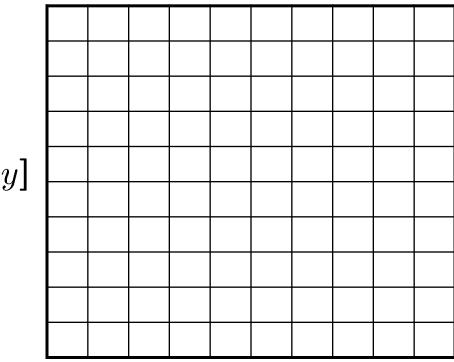
How can we "smooth" away noise in an image?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	100	130	110	120	110	0	0
0	0	0	110	90	100	90	100	0	0
0	0	0	130	100	90	130	110	0	0
0	0	0	120	100	130	110	120	0	0
0	0	0	90	110	80	120	100	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Mean filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



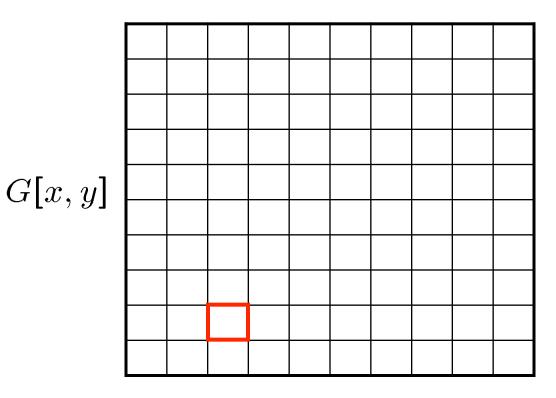


G[x, y]

Mean filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]



Mean filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
 10	10	10	0	0	0	0	0	

G[x, y]

Cross-correlation filtering

Let's write this down as an equation. Assume the averaging window is (2k+1)x(2k+1):

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

We can generalize this idea by allowing different weights for different neighboring pixels:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation and written:

$$G = H \otimes F$$

H is called the "filter," "kernel," or "mask."

The above allows negative filter indices. When you implement need to use: H[u+k,v+k] instead of H[u,v]

Mean kernel

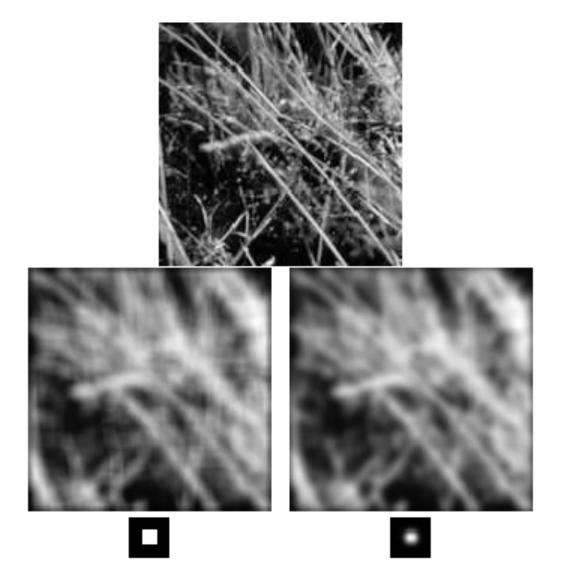
What's the kernel for a 3x3 mean filter?

	_								
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

H[u, v]

F[x, y]

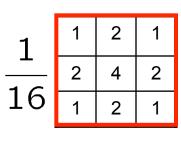
Mean vs. Gaussian filtering

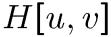


Gaussian filtering

A Gaussian kernel gives less weight to pixels further from the center of the window

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

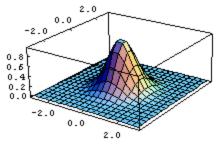




F[x, y]

This kernel is an approximation of a Gaussian function:

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$



What happens if you increase σ ?

Photoshop

demo

Image gradient

How can we differentiate a *digital* image F[x,y]?

- Option 1: reconstruct a continuous image, *f*, then take gradient
- Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx 0.5(F[x+1,y] - F[x-1,y])$$

How would you implement this as a cross-correlation?

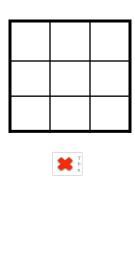


Image gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

It points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

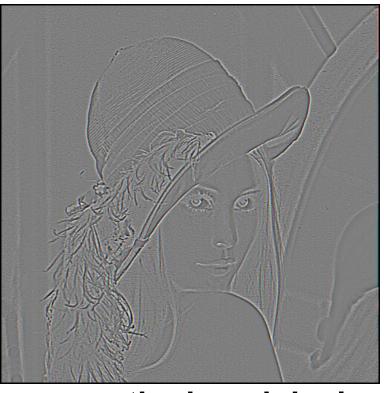
• how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

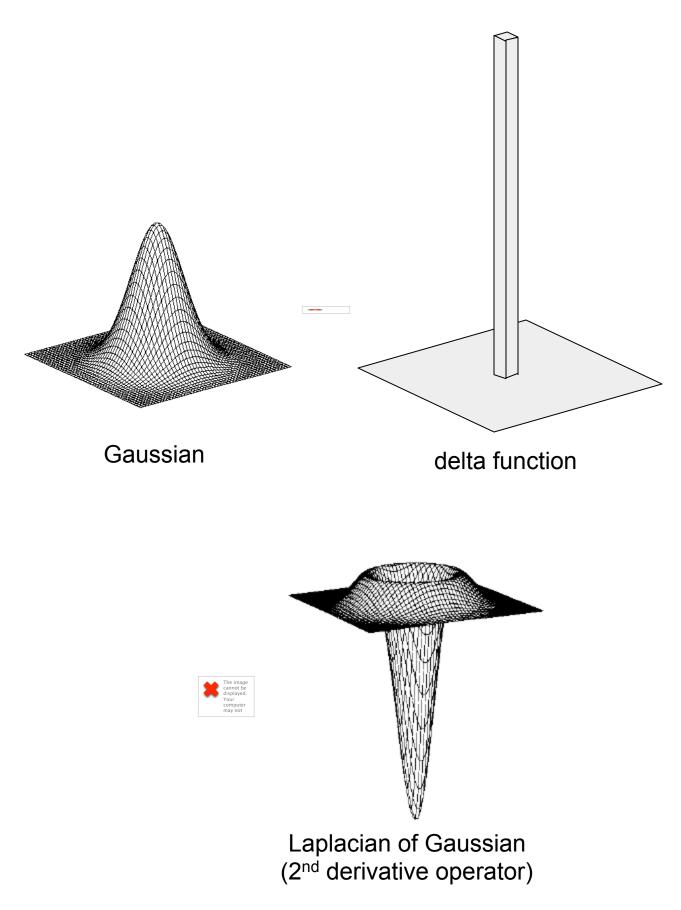
smoothed (5x5 Gaussian)

original



Why does this work?

smoothed – original (scaled by 4, offset +128)

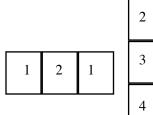


Use binomial filters as approximations of Gaussians

Faster computations, integer operations

p (order)	f (coeff.)	Filter	$\sigma^2 = p/4$
1	1/2	1 1	1/4
2	1/4	121	1/2
3	1/8	1331	3/4
4	1/6	14641	1
5	1/32	1 5 10 10 5 1	5/4
6	1/64	1 6 15 20 15 6 1	3/2
7	1/128	1 7 21 35 35 21 7 1	7/4
8	1/256	1 8 28 56 70 56 28 8 1	2

Separability



3	3		11
5	5		18
4	6		18

1		11			
2		18		65	
1		18			

1	x	1	2	1		1	2	1	2	3	3	=2 + 6 + 3 = 11
2				•	=	2	4	2	3	5	5	= 6 + 20 + 10 = 36
1						1	2	1	4	4	6	= 4 + 8 + 6 = 18

Convolution

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written: $G = H \star F$

Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

Suppose F is an impulse function (previous slide) What will G look like?

Continuous Filters

We can also apply filters to *continuous* images.

In the case of cross correlation: $g = h \otimes f$

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u,v) f(x+u,y+v) du dv$$

In the case of convolution: $g = h \star f$

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u,v) f(x-u,y-v) du dv$$

Note that the image and filter are infinite.

More on filters...

Cross-correlation/convolution is useful for, e.g.,

- Blurring
- Sharpening
- Edge Detection
- Interpolation

Convolution has a number of nice properties

- Commutative, associative
- Convolution corresponds to product in the Fourier domain

More sophisticated filtering techniques can often yield superior results for these and other tasks:

- Polynomial (e.g., bicubic) filters
- Steerable filters
- Median filters
- Bilateral Filters
- ♦ ...

(see text, web for more details on these)

Homework 1

- 1. Install OpenCV on your computer
- 2. Take one color or BW picture of your face
- 3. Apply several filtering operations to it:
 - Gaussian smoothing (σ =1,2,3).
 - Image derivatives in x, y directions for the original and smoothed images.
 Show magnitude images.
- 4. Email me the results with the programs/ scripts you used (or post them on your webpage and email me the link). Make sure that you put 'CS 482, Homework 1' in the subject of the message.
- 5. Due before Sep. 4 class