Projection

Readings

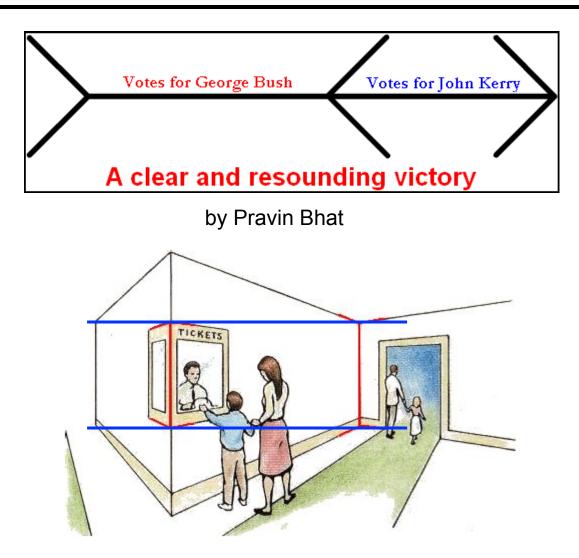
• Szeliski 2.1

Projection

Readings

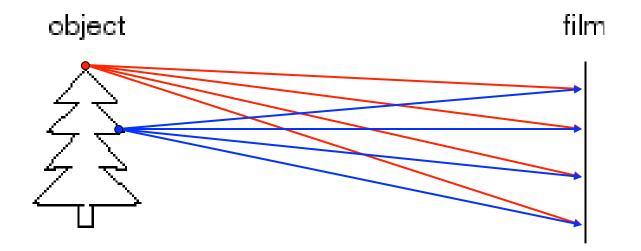
• Szeliski 2.1

Müller-Lyer Illusion



http://www.michaelbach.de/ot/sze_muelue/index.html

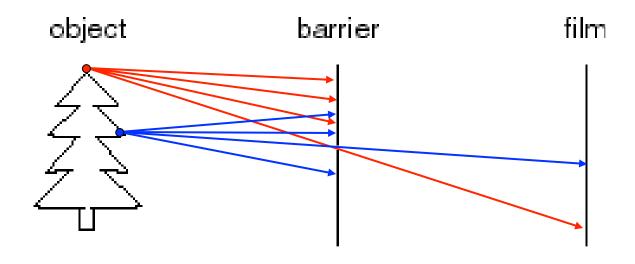
Image formation



Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

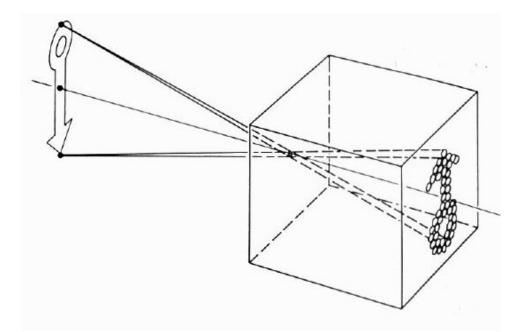
Pinhole camera



Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the **aperture**
- How does this transform the image?

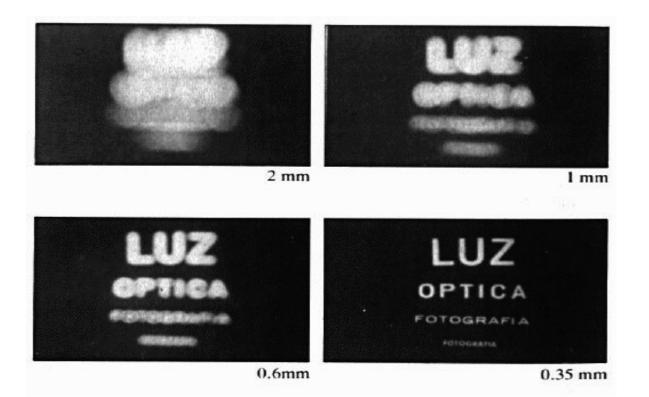
Camera Obscura



The first camera

- Known to Aristotle
- How does the aperture size affect the image?

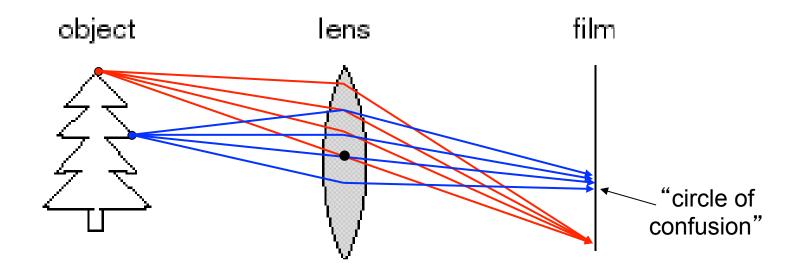
Shrinking the aperture



Why not make the aperture as small as possible?

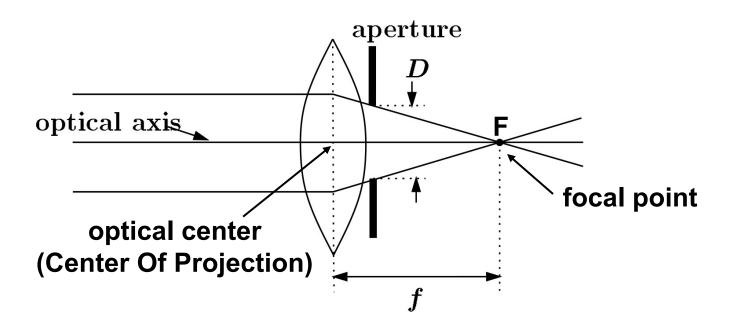
- Less light gets through
- Diffraction effects...

Shrinking the aperture



A lens focuses light onto the film

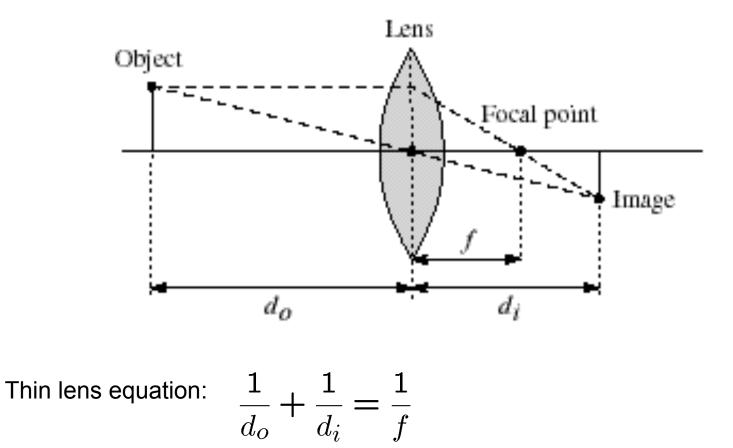
- There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance



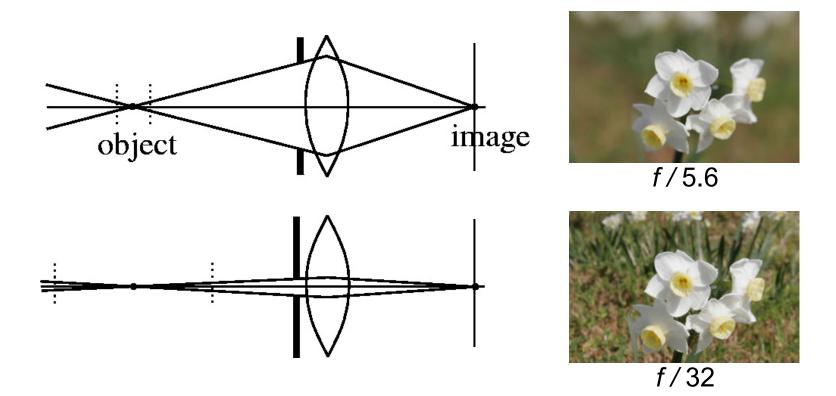
A lens focuses parallel rays onto a single focal point

- focal point at a distance *f* beyond the plane of the lens
 - f is a function of the shape and index of refraction of the lens
- Aperture of diameter D restricts the range of rays
 - aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)

Thin lenses



- · Any object point satisfying this equation is in focus
- What is the shape of the focus region?
- How can we change the focus region?
- Thin lens applet: <u>http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html</u> (by Fu-Kwun Hwang)

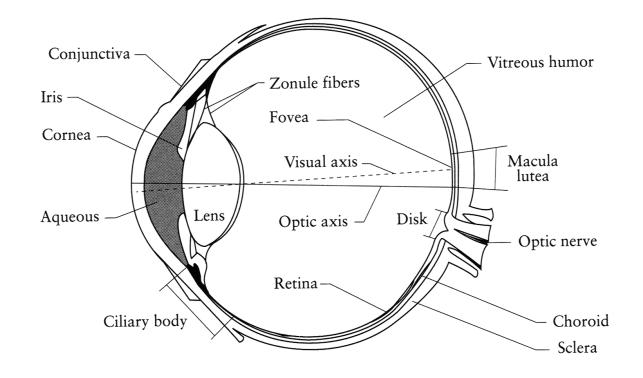


Changing the aperture size affects depth of field

• A smaller aperture increases the range in which the object is approximately in focus

Flower images from Wikipedia <u>http://en.wikipedia.org/wiki/Depth_of_field</u>

The eye



The human eye is a camera

- Iris colored annulus with radial muscles
- **Pupil** the hole (aperture) whose size is controlled by the iris
- What's the "film"?
 - photoreceptor cells (rods and cones) in the retina

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is a Charge Coupled Device
 - light-sensitive diode that converts photons to electrons
 - other variants exist: CMOS is becoming more popular
 - <u>http://electronics.howstuffworks.com/digital-camera.htm</u>

Issues with digital cameras

Noise

- big difference between consumer vs. SLR-style cameras
- low light is where you most notice <u>noise</u>

Compression

- creates artifacts except in uncompressed formats (tiff, raw)

Color

- <u>color fringing</u> artifacts from <u>Bayer patterns</u>

Blooming

- charge <u>overflowing</u> into neighboring pixels

In-camera processing

- oversharpening can produce halos
- Interlaced vs. progressive scan video
 - <u>even/odd rows from different exposures</u>
- Are more megapixels better?
 - requires higher quality lens
 - noise issues

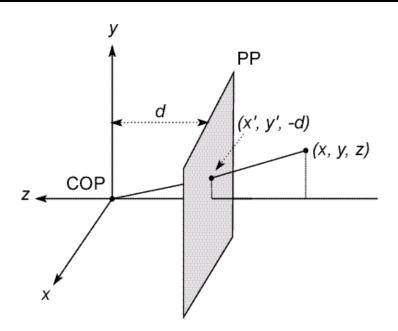
Stabilization

- compensate for camera shake (mechanical vs. electronic)

More info online, e.g.,

- <u>http://electronics.howstuffworks.com/digital-camera.htm</u>
- <u>http://www.dpreview.com/</u>

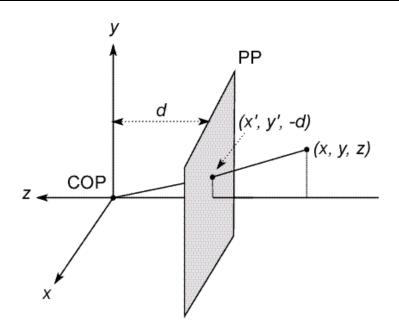
Modeling projection



The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (**P**rojection **P**lane) *in front* of the COP
 - Why?
- The camera looks down the *negative* z axis
 - we need this if we want right-handed-coordinates

Modeling projection



Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles (on board)

$$(x, y, z)
ightarrow (-drac{x}{z}, -drac{y}{z}, -d)$$

• We get the projection by throwing out the last coordinate:

$$(x, y, z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Homogeneous coordinates

Is this a linear transformation?

no—division by z is nonlinear

Trick: add one more coordinate:

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array}
ight]$$

homogeneous image homogeneous scene coordinates

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

This is known as perspective projection

- The matrix is the **projection matrix**
- Can also formulate as a 4x4 (today's reading does this)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by fourth coordinate

Perspective Projection

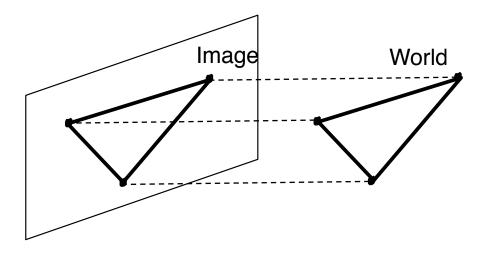
How does scaling the projection matrix change the transformation?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$
$$\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Orthographic projection

Special case of perspective projection

• Distance from the COP to the PP is infinite

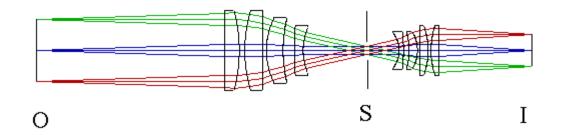


- Good approximation for telephoto optics
- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$
- What's the projection matrix?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Orthographic ("telecentric") lenses

Navitar telecentric zoom lens



http://www.lhup.edu/~dsimanek/3d/telecent.htm

Variants of orthographic projection

Scaled orthographic

• Also called "weak perspective"

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1/d \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1/d \end{bmatrix} \Rightarrow (dx, dy)$$

Affine projection

• Also called "paraperspective"

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x' _c, y' _c), pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$(x'_c, y'_c)$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

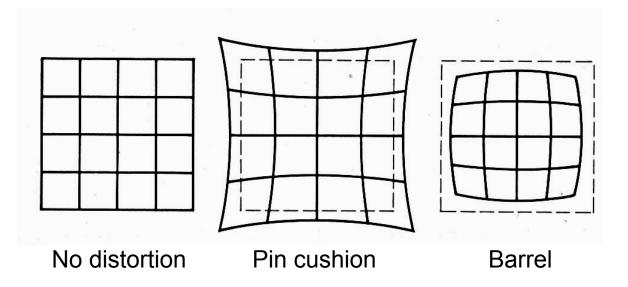
identity matrix

$$\boldsymbol{\Pi} = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$

intrinsics projection rotation translation

- The definitions of these parameters are **not** completely standardized
 - especially intrinsics-varies from one book to another

Distortion



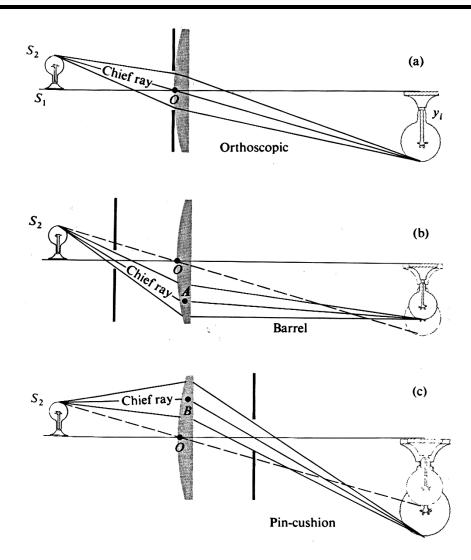
Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

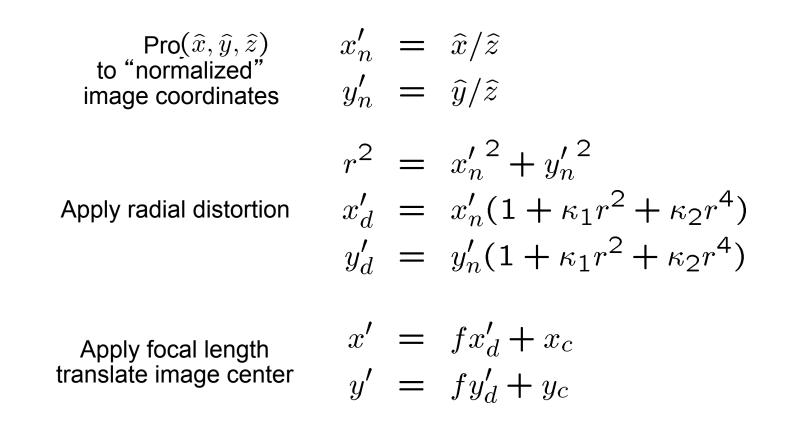
Correcting radial distortion

from Helmut Dersch

Distortion



Modeling distortion



To model lens distortion

 Use above projection operation instead of standard projection matrix multiplication

Other types of projection

Lots of intriguing variants... (I'll just mention a few fun ones)

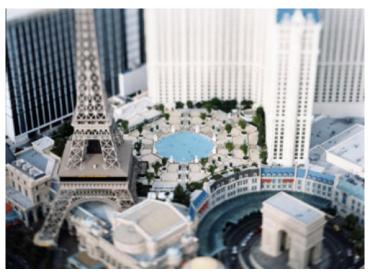
360 degree field of view...

Basic approach

- Take a photo of a parabolic mirror with an orthographic lens (Nayar)
- Or buy one a lens from a variety of omnicam manufacturers...
 - See <u>http://www.cis.upenn.edu/~kostas/omni.html</u>

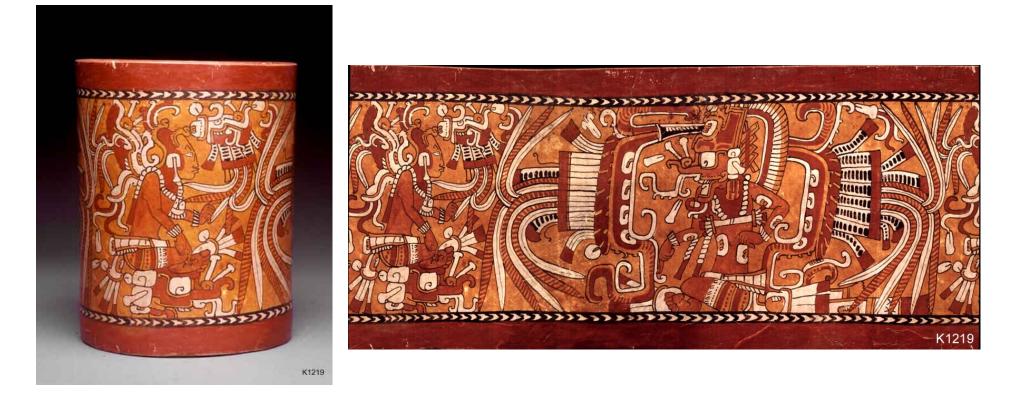
Tilt-shift

http://www.northlight-images.co.uk/article_pages/tilt_and_shift_ts-e.html



Titlt-shift images from <u>Olivo Barbieri</u> and Photoshop <u>imitations</u>

Rotating sensor (or object)



Rollout Photographs © Justin Kerr http://research.famsi.org/kerrmaya.html

Also known as "cyclographs", "peripheral images"

Photofinish

