Image Alignment

A lot of slides from Darrell and Szeliski

Roadmap

* Previous: Image formation, filtering, local features, connected
components, object features, matching, ...

 Today: Feature-based Alignment
— Stitching images together
— Homographies, RANSAC, Warping, Blending
— Global alignment of planar models

Today: Alignment

Homographies
Rotational Panoramas
RANSAC

Global alignment

Warping
Blending

Motivation: Recognition

Figures from David Lowe

Motivation: medical image
registration

Motivation: Mosaics

« Getting the whole picture
— Consumer camera: 50 x 35

Slide from Brown & Lowe 2003

Motivation: Mosaics

» Getting the whole picture

— Consumer camera: 50 x 35
— Human Vision: 176 x 135

Slide from Brown & Lowe 2003

Motivation: Mosaics

» Getting the whole picture
— Consumer camera: 50 x 35
— Human Vision: 176 x 135

-

. anoramicMosaic = up to 360 x 180° |

Slide from Brown & Lowe 2003

Motion models

Motion models

 What happens when we take two images with
a camera and try to align them?

e translation? -
e rotation?

e scale?

e offine?

e perspective?
e ...see interactive demo (VideoMosaic)

Image Warping

Image Warping

* image filtering: change range of image

f

* g(x) =

h(f(x))

f

N

[~

——»

X

X

* image warping: change domain of image

f

* g(x) =

flh(x)

NS

X

N

X

Image Warping

* image filtering: change range of image

Parametric (global) warping

 Examples of parametric warps:

perspective

cylindrical

Image Warping

* Given a coordinate transform x” = h(x) and a
source image f(x), how do we compute a
transformed image g(x’) = f(h(x))?

Forward Warping

* Send each pixel f(x) to its corresponding
location x” = h(x) in g(x’)
« What if pixel lands “between” two pixels?

Forward Warping

* Send each pixel f(x) to its corresponding
location x” = h(x) in g(x’)
« What if pixel lands “between” two pixels?

* Answer: add “contribution” to several pixels,
normalize later (splatting)

m
[}

x Y
xY

fix) g(x’)

Inverse Warping

* Get each pixel g(x’) from its corresponding
location x” = h(x) in f(x)
 What if pixel comes from “between” two pixels?

Inverse Warping

* Get each pixel g(x’) from its corresponding
location x” = h(x) in f(x)

« What if pixel comes from “between” two pixels?
* Answer: resample color value from
interpolated (prefiltered) source image

R A#

=
L3
XV

g(x’)

Inverse warping

_ T(xy) —=
Y L y’L
X

YAy gy

Get each pixel g(x’,y’) from its corresponding location
(x,y) = T'(x’,y’) in the first image

Q: what if pixel comes from “between” two pixels?

A: Interpolate color value from neighbors

— nearest neighbor, bilinear...

Slide from Alyosha Efros, CMU >> help interp2

Bilinear interpolation

Sampling at f(x,y):

(¢, + 1)

(t+1,7+1)

(z,y)

(4, 7)

fz,y) = (1 —=a)(1-0)

+a(1 —-0)
“+ab

+(1 —a)b

Slide from Alyosha Efros, CMU

(i+1,5)

i, 7]

1+ 1,]
1+ 1,7+ 1]
2, + 1]

Interpolation

— nearest neighbor
— bilinear
— bicubic (interpolating)
—sinc / FIR

 Needed to prevent “jaggies”
and “texture crawl”

Prefiltering

e Essential for downsampling (decimation) to
prevent aliasing
e MIP-mapping [Williams’83]:
1. build pyramid (but what decimation filter?):
* block averaging

 Burt & Adelson (5-tap binomial)
e 7-tap wavelet-based filter (better)

2. trilinear interpolation
* bilinear within each 2 adjacent levels
* linear blend between levels (determined by pixel size)

2D coordinate transformations

translation: X' =x+t X =(x,y)
rotation: X'=Rx+t

similarity: xX'=sRx+t

affine: xX'=Ax+t

perspective: x’=Hx x=(xy,1)

(x is a homogeneous coordinate)

These all form a nested group (closed w/ inv.)

Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

x'7 [1 0 ¢][x] x'T s, 0 O][x]
Y={0 1 ¢ ||y y'I=(0 s, Ol|ly
1 0 0 111 1 0O 0 1]1
Translate Scale
T [cos® —sm® O][x] (x'T [1 sh. O][x]
y'|=|sin® cos® Offy y'|=|sh, 1 Ofly
1 0 0 1{]1 1 0 0 1|1
Rotate Shear

Source: Alyosha Efros

2D Affine Transformations

o N S

%-
I
oS

.
/
1-

)

E

Affine transformations are combinations of ...
* Linear transformations, and
 Translations

Parallel lines remain parallel

Projective Transformations

-x'-

!

S QO

C
/
! I

w

A~
I
0 S

)

Projective transformations:
 Affine transformations, and
* Projective warps

Parallel lines do not necessarily remain parallel

y / e Q projective
translation
_—y

I ¢
Euclidean

—

'1ﬁ111e

Image alignment

 Two broad approaches:
— Direct (pixel-based) alignment
« Search for alignment where most pixels agree
— Feature-based alignment
« Search for alignment where extracted features agree

« Can be verified using pixel-based alignment

Source: L. Lazebnik

Fitting an affine transformation

&'
e Pist s
== EE
< X st
B Sl
v % »
i< 3
- i: .
dl

Affine model approximates perspective projection of
planar objects.

Figures from David Lowe, ICCV 1999

Fitting an affine transformation

* Assuming we know the correspondences, how do we
get the transformation?

(x;,7,) @ -

Fitting an affine transformation

* Assuming we know the correspondences, how do we
get the transformation?

(X:Y:) @

/ /

Fitting an affine transformation

x, vy, 0 0 1 0]|m X,

l

0 0 x, y, 0 1f|m, YV

 How many matches (correspondence pairs) do we
need to solve for the transformation parameters?

* Once we have solved for the parameters, how do we
compute the coordinates of the corresponding point

for (xnew,ynew) ?

Panoramas

Z}19S 'S woJj abeuw

Obtain a wider angle view by combining multiple images.

Grauman

How to stitch together a panorama®

 Basic Procedure

— Take a sequence of images from the same position
» Rotate the camera about its optical center

— Compute transformation between second image and
first

— Transform the second image to overlap with the first
— Blend the two together to create a mosaic
— (If there are more images, repeat)

 ...but wait, why should this work at all”?
— What about the 3D geometry of the scene?
— Why aren’t we using it?

Source: Steve Seitz

Panoramas: generating synthetic views

real synthetic
camera camera

Can generate any synthetic camera view
as long as it has the same center of projection!

Source: Alyosha Efros

Image reprojection

SN mosaic PP

The mosaic has a natural interpretation in 3D
« The images are reprojected onto a common plane
 The mosaic is formed on this plane
« Mosaic is a synthetic wide-angle camera

Source: Steve Seitz

Homography

How to relate two images from the same camera center?
— how to map a pixel from PP1 to PP2?

Think of it as a 2D image warp from one image to another.

A projective transform is a mapping between any two PPs
with the same center of projection /

« rectangle should map to arbitrary quadrilateral

« parallel lines aren’t
« but must preserve straight lines PP2

called Homography

Wx, * ok ok X

wy'| = [* % #||y

W 1L PP
p’ H p

Source: Alyosha Efros

To apply a given homography H
« Compute p’ = Hp (regular matrix multiply)

« Convert p’ from homogeneous to image
coordinates

% % %

* X X

* X X

i-cl;.\"\< >‘<|

Homography

To compute the homography given pairs of corresponding
points in the images, we need to set up an equation where
the parameters of H are the unknowns...

Grauman

Solving for homographies

p’'=Hp
wx' ‘a b cl[x
wy'| = (d e [fl|y
w g h 1f|l

Can set scale factor i=1. So, there are 8 unknowns.
Set up a system of linear equations:
Ah=Db
where vector of unknowns h =[a,b,c,d,e,f,g,h]"
Need at least 8 eqs, but the more the better...
Solve for h. If overconstrained, solve using least-squares:

minHAh - sz

>> help mldivide

Recap: How to stitch together a

panorama?

 Basic Procedure

— Take a sequence of images from the same position
» Rotate the camera about its optical center

— Compute transformation between second image and
first

— Transform the second image to overlap with the first
— Blend the two together to create a mosaic
— (If there are more images, repeat)

Source: Steve Seitz

Image warping with homographies

ﬁ

image plane in front

black area
where no pixel
maps to

Source: Steve Seitz

Image rectification

4

Analysing patterns and shapes

The floor (enlarged)

Automatically
Slide from Criminisi rectified floor

Analysing patterns and shapes

1
e |
A

l\.»': TR

Aut_omatic rectification

From Martin Kemp The Science of Art
(manual reconstruction)

Slide from Crimf\rﬁ |

Analysing patterns and shapes

Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano
Slide from Criminisi

Analysing patterns and shapes

Automatic
rectification

From Martin Kemp, The Science of Art
/ (manual reconstruction)

Slide from Criminisi

changing camera center

Does it still work? synthetic PP

N

//" > =

/\‘/\'QR\

Source: Alyosha Efros

Planar scene (or far away)
Mg PP3

- PP2

l,FH
| .
T

PP3 is a projection plane of both centers of projection,

so we are OK!
This is how big aerial photographs are made

Source: Alyosha Efros

Grauman

TR

By,
02y
o A

Outliers

* Outliers can hurt the quality of our parameter
estimates, e.g.,
— an erroneous pair of matching points from two images

— an edge point that is noise, or doesn’t belong to the
line we are fitting.

Grauman

Example: least squares line fitting

« Assuming all the points that belong to a particular line are
Known

Outliers affect least squares fit

6

4

2

0
2L
4
-6
-8

-10+

-12+

_]4 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -8 -6 <4 -2 0 2 4 B

Outliers affect least squares fit

6

4

2

0
2Lk
4
-6
-8

-10+

-12+

_]4 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -8 -6 <4 -2 0 2 4 B

RANSAC

« RANdom Sample Consensus

* Approach: we want to avoid the impact of
outliers, so let’s look for “inliers”, and use those
only.

* |Intuition: if an outlier is chosen to compute the
current fit, then the resulting line won’t have
much support from rest of the points.

RANSAC

RANSAC loop:

Randomly select a seed group of points on which to
base transformation estimate (e.g., a group of matches)

Compute transformation from seed group
Find inliers to this transformation

If the number of inliers is sufficiently large, re-compute
least-squares estimate of transformation on all of the
inliers

Keep the transformation with the largest number of
inliers

RANSAC Line Fitting Example

o
o
o
° o
o
° ¢ °
$
o
o o Task:
¢ Estimate best line

Slide credit: Jinxiang Chai, CMU

RANSAC Line Fitting Example

o ° Sample two points

RANSAC Line Fitting Example

o ° Fit Line

RANSAC Line Fitting Example

Total number of
points within a
threshold of line.

RANSAC Line Fitting Example

o ° Repeat, until get a
o good result

RANSAC Line Fitting Example

Repeat, until get a
good result

RANSAC Line Fitting Example

Repeat, until get a
e good result

RANSAC example: Translation

i»l

"";ur.." #""

!E;:*l W ﬂ: H) |

Putative matches

Source: Rick Szeliski

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

i»l

"";ur.." #""

!Eui‘:*l W ﬂ: H Wl ‘3

Find “average” translation vector

Feature-based alignment outline

Source: L. Lazebnik

Feature-based alignment outline

 Extract features

Source: L. Lazebnik

Feature-based alignment outline

-wi9®

e N,

« Extract features
 Compute putative matches

Source: L. Lazebnik

Feature-based alignment outline

« Extract features
 Compute putative matches

 Loop:
* Hypothesize transformation T (small group of putative
matches that are related by T)

Source: L. Lazebnik

Feature-based alignment outline

« Extract features
 Compute putative matches

 Loop:
* Hypothesize transformation T (small group of putative
matches that are related by T)
« Verify transformation (search for other matches consistent
with T)

Source: L. Lazebnik

Feature-based alignment outline

« Extract features
 Compute putative matches

 Loop:
* Hypothesize transformation T (small group of putative
matches that are related by T)
« Verify transformation (search for other matches consistent
with T)

Source: L. Lazebnik

Towards large-scale mosaics...

Motion models

Translation Affine Perspective 3D rotation

2 unknowns 6 unknowns 8 unknowns 3 unknowns

Szeliski

Plane perspective mosaics

— 8-parameter homographies

— Limitations:
* |local minima
* slow convergence
 difficult to control interactively

Rotational mosaics

— Directly optimize rotation and focal length

— Advantages:

 ability to build full-view
panoramas

e easier to control interactively

* more stable and accurate
estimates

Szeliski

3D - 2D Perspective Projection

|
=

.%<Q.

O O %

3x3

O~ O

~
A

A

)

o

?(cl Yc'Zc)

Yu

ue

Rotational mosaic

Projection equations

. Project from image to 3D ray
(XopYoZo) = (UgUy, VeV,

. Rotate the ray by camera motion
(xpypz) = Ry (X0.0.20)

. Project back into new (source) image
(uy,vy) = (fey/zytufy/zitv,)

Establishing correspondences

1. ‘Direct’ method: (more next week)
— Use generalization of affine motion model
[Szeliski & Shum "97]
2. Feature-based method

— Extract features, match, find consistent inliers
[Lowe ICCV’99; Schmid ICCV’98S,
Brown&Lowe ICCV’'2003]

— Compute R from correspondences
(absolute orientation)

Absolute orientation

[Arun et al., PAMI 1987] [Horn et al., JOSA A 1988]
Procrustes Algorithm [Golub & VanlLoan]

Given two sets of matching points, compute R

. p; =R p, 3D rays

’ A=%p,p," =Lpp/ R =USV'=(USU)R"
. Vi=U"R"

. R=VU"

Stitching demo

Szeliski

Panoramas

 What if you want a 360° field of view?

\ mosaic Projection Cylinder

Cylindrical panoramas

* Steps
— Reproject each image onto a cylinder
— Blend
— Output the resulting mosaic

Szeliski

Cylindrical Panoramas

 Map image to cylindrical or spherical
coordinates

— need known focal length

Image 384x300 f =180 (pixels) f =280 f =380

Szeliski

Determining the focal length

. Initialize from homography H
(see text or [SzSh’97])

. Use camera’s EXIF tags (approx.)
. Use a tape measure

» 1m

4dm

Cylindrical projection

—

- -
- ~
- ~~

N— -
unit 1ylinder

(5707 gC)
—

0

unwrapped cylinder

N

/ (X,Y,Z) — Map 3D point (X,Y,Z) onto cylinder

(587?//\72) — \/m(X Y, Z)

Convert to cylindrical coordinates
(sinb, h,cost) = (Z,y, 2)

Convert to cylindrical image coordinates

(z,79) = (39 sh) + (mc, Yc)
— s defines size of the final image

— ~

x cylindrical image

Cylindrical warping

*Given focal length f and
image center (x_y,)

/O (X,Y,2)

(xcyl —xc)/ f
(ycyl —ye)/ f

Sin g

N oD
|

12)(5 Z = cosf
— T -~
| >, r = fx/zZ4 x

y = fy/zZ+ye

Spherical warping

*Given focal length f and
image center (x_y,)

| D

RN

(xcyl —xc)/ f
(ycyl —ye)/ f

sin @ cos @

Sin @

CcoS U cosS

Pz /% -

fy/% -

_yc

3D rotation

*Rotate image before placing

on unrolled sphere 0 — (xcyl — xc)/f
P (ycyl - yC)/f
xr = sSin@ cos ¢
,/'L’ (siﬁ‘@\cosd),cosec sé,sing) -]
. (\ . “ y = SIn (P
z — cO0S ¥ cos

B
)

595_’3\/_/\ T Lc

fg:j/fj—— Yc

S
|

Radial distortion

* Correct for “bending” in wide field of view lenses

) P2 = 324 2
7 = /(14 k17 + koft)
7 = §/(1 4 k7% + Kof?)
= r = f3'/Z+ xc
Yy — f@//g'"yc

Fisheye lens

* Extreme “bending” in ultra-wide fields of view

(cos 0 sin ¢, sin 6 sin ¢, cos @) = s (x,y, 2)

uations become

, ; x _170
r = Ss¢pcosf =s—tan " —,
r 2
. Y A
y = sosinf =sZtan " —,
r 2

Image Stitching

1. Align the images over each other
— camera pan <> translation on cylinder

2. Blend the images together

Szeliski

Assembling the panorama

 Stitch pairs together, blend, then crop

Problem: Drift

* Error accumulation
— small (vertical) errors accumulate over time
— apply correction so that sum = 0 (for 360° pan.)

Problem: Drift

(X1,¥1)

(Xn:¥n)

 Solution copy of first

— add another copy of first image at the end'™29°
— this gives a constraint: y, =y,

— there are a bunch of ways to solve this problem

* add displacement of (y, —vy,)/(n -1) to each image after the
first
e compute a global warp: y' =y + ax
* run a big optimization problem, incorporating this constraint
— best solution, but more complicated
— known as “bundle adjustment”

Full-view (360° spherical)
panoramas

Szeliski

Full-view Panorama

Szeliski

Texture Mapped Model

Szeliski

Global alighment

e Register all pairwise overlapping images
e Use a 3D rotation model (one R per image)

e Use direct alignment (patch centers) or
feature based

e Infer overlaps based on previous matches
(incremental)

e Optionally discover which images overlap
other images using feature selection (RANSAC)

Bundle adjustment formulations

Confidence / uncertainty of point i in image j
All pairs optimization:
Eall—pairs—QD = ZZ C—‘-zijCikabzik(iiﬁ st fj-. Ry, fk) — Lix

i jk Map 2D point i in image j to 2D point in image k

()

(9.29)

Full bundle adjustment, using 3-D point positions {Z; }
EBA. 2D —ZZC,JHZB,J 4 R fJ) 213,1 ., (930)

Map 3D point i /n to 2D point in image i

Bundle adjustment using 3-D ray:

Ega—-3p —ZZ(UH:U, (2i: Ry, f;) — =%, (9.31)

j 3-D ray from pomt/

All-pairs 3-D ray formulation:

Eall—pairs—BD — ZZC’J zAsz(mz_] R f_;) (A‘ik;Rk,fk)HQ. (9.32)

i gk rayfrom pomts i and/

PrOjeCtedPOint ﬂ :‘i:IJ ~ KJRJII,'Z and €r; ~ RJ_IKJ_ILi:,J €-— 3-D rayfrom pOfnt

Recognizing Panoramas

Matthew Brown & David Lowe
ICCV’'2003

Recognizing Panoramas

[Brown & Lowe,
ICCV'03]

Szeliski

Finding the panoramas

Szeliski

Finding the panoramas

Szeliski

Finding the panoramas

Szeliski

Finding the panoramas

Szeliski

Fully automated 2D stitching demo

Windows Live Photo Gallery

Easily manage and share your photos and videos

! & (
e 9

Locih e

Overview | Features | System Requirements Get this and more Windows Live services all at once

Easily share your photos

The "Publish" button makes it simple to share your photos and
videos online. Or you can easily e-mail as many photos as you'd
like to friends and family. You can also display your photos with
cool screensavers and slideshows.

Quickly find and organize your photos and videos
Import your photos from your digital camera; the Windows Live
Photo Gallery will automatically organize them based on date
and time. Keep your images organized by name, date, rating,
and type. Locate similar photos with tags you add.

Enhance your photos

Create a cool panoramic view by combining multiple photos.
Capture the moment by adding captions. Enhance your photos
by adjusting things like color and exposure. Improve your
photos with simple crop and red-eye fixes.

http://get.live.com/photogallery/overview

Szeliski

Rec.pano.: system components

1. Feature detection and description
— more uniform point density

-~ast matching (hash table)
RANSAC filtering of matches
ntensity-based verification
ncremental bundle adjustment

Al

[M. Brown, R. Szeliski, and S. Winder. Multi-image matching
using multi-scale oriented patches, CVPR'2005]

Multi-Scale Oriented Patches

* Interest points
— Multi-scale Harris corners
— Orientation from blurred gradient

— Geometrically invariant to similarity transforms

* Descriptor vector
— Bias/gain normalized sampling of local patch (8x8)

— Photometrically invariant to affine changes in
Intensity

Features

e Distribute points evenly over the image

Szeliski

Descriptor Vector

* Orientation = blurred gradient

* Similarity Invariant Frame
— Scale-space position (x, y, s) + orientation (0)

Szeliski

o]0)
=
L E
O
)
=
Q
S
>
i)
(O
D
L.
.C
i)
2
.Im
(O
O
O
S
ol

RANSAC motion model

Szeliski

RANSAC motion model

Szeliski

RANSAC motion model

Szeliski

Probabilistic model for verification

Szeliski

How well does this work?

Test on 100s of examples...

How well does this work?

Test on 100s of examples...

...still too many failures (5-10%)
for consumer application

Szeliski

Matching Mistakes: False Positive

Matching Mistakes: False Positive

Szeliski

Matching Mistake: False Negative

* Moving objects: large areas of disagreement

Matching Mistakes

* Accidental alignment
— repeated / similar regions

* Failed alighments
— moving objects / parallax
— low overlap

— “feature-less” regions
(more variety?)

* No 100% reliable
algorithm?

‘une t
‘une t
‘une t

‘une t

How can we fix these?

ne feature detector
ne feature matcher (cost metric)
ne RANSAC stage (motion model)

ne verification stage

Use “higher-level” knowledge

— e.g.,

typical camera motions

— Sounds like a big “learning” problem
— Need a large training/test data set (panoramas)

Image Blending

Image feathering

* Weight each image proportional to its distance from
the edge

* 1. Generate weight map for each image

e 2.Sum up all of the weights and divide by sum:
weightssumupto1l: w, ' =w,/ (2 w)

SN NN

Image Feathering

Szeliski

Feathering

Effect of window size

Szeliski

Effect of window size

Szeliski

Good window size

“Optimal” window: smooth but not ghosted
« Doesn'’t always work...

Szeliski

Pyramid Blending

(d)

Burt, P. J. and Adelson, E. H.,
A multiresolution spline with applications to image mosaics, ACM Transactionson
Graphics, 42(4), October 1983, 217-236. Szeliski

Laplacian
level
4

8 w0 ®)

Laplacian
level
2

Laplacian
level
0

(a)

left pyramid right pyramid blended pyramid
Szeliski

Laplacian image blend

1. Compute Laplacian pyramid

2. Compute Gaussian pyramid on weight image (can
put this in A channel)

3. Blend Laplacians using Gaussian blurred weights
4. Reconstruct the final image

* Q: How do we compute the original weights?

* A:For horizontal panorama, use mid-lines

* Q:How about for a general “3D” panorama®

Weight selection (3D panorama)

* |dea: use original feather weights to select
strongest contributing image

SN NN

* Can be implemented using L-e norm: (p = 10)
* w, = [wp (X, wh)'

l

Poisson Image Editing

cloning seamless cloning

sources/destinations

* Blend the gradients of the two images, then integrate
* For more info: Perez et al, SIGGRAPH 2003

Szeliski

De-Ghosting

Local alignment (deghosting)

* Use local optic flow to compensate for small
motions [Shum & Szeliski, ICCV’98]

Figure 3: Deghosting a mosaic with motion parallax: (a)
with parallax; (b) after single deghosting step (patch size
32); (¢) multiple steps (sizes 32, 16 and 8).

Szeliski

Local alignment (deghosting)

* Use local optic flow to compensate for radial
distortion [Shum & Szeliski, ICCV'98]

Figure 4: Deghosting a mosaic with optical distortion: (a)
with distortion; (b) after multiple steps.

Szeliski

Region-based de-ghosting

e Select only one image in regions-of-difference
using weighted vertex cover
[Uyttendaele et al., CVPR'01]

(A)) (B)

Figure 5 — (A) Ghosted mosaic. (B) Result of de-ghosting algorithm.

Region-based de-ghosting

*Select only one image in
regions-of-difference using
weighted vertex cover
[Uyttendaele et al., CVPR'01]

(B)

Figure 6 — (A) Ghosted mosaic. (B) Result of de-ghosting algorithm.

Cutout-based de-ghosting

eSelect only one image per
output pixel, using spatial
continuity

eBlend across seams using
gradient continuity (“Poisson
blending”)

[Agarwala et al., SG'2004]

Cutout-based compositing

* Photomontage [Agarwala et al., SG'2004]

e Interactively blend different images:
group portraits

(ﬁf o, P Ny \ & . 5
e o . b ' R

Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone i

s smiling
and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the designated source image objective over the people we

wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left (middle).

Cutout-based compositing

* Photomontage [Agarwala et al., SG'2004]

e Interactively blend different images:
focus settings

- ~ ey

Figure 2 A set of macro photographs of an ant (three of eleven used shown on the left) taken at d

image objective to compute the graph-cut composite automatically (top left, with an inset to show detail, and the labeling shown directly below). A small
number of remaining artifacts disappear after gradient-domain fusion (top, middle). For comparison we show composites made by Auto-Montage (top, right),
by Haeberli’s method (bottom, middle). and by Laplacian pyramids (bottom, right). All of these other approaches have artifacts: Haeberli’s method creates
excessive noise, Auto-Montage fails to attach some hairs to the body, and Laplacian pyramids create halos around some of the hairs.

Szeliski

Cutout-based compositing

 Photomontage [Agarwala et al., SG’2004

e Interactively blend different images:
people’s faces

Figure 6 We use a set of portraits (first row) to mix and match facial features, to either improve a portrait, or create entirely new people. The faces are first
hand-aligned, for example, to place all the noses in the same location. In the first two images in the second row, we replace the closed eyes of a portrait with the
open eyes of another. The user paints strokes with the designated source objective to specify desired features. Next, we create a fictional person by combining
three source portraits. Gradient-domain fusion is used to smooth out skin tone differences. Finally, we show two additional mixed portraits.

Other types of mosaics

* Can mosaic onto any surface if you know the geometry
— See NASA’s Visible Earth project for some stunning earth mosaics

» http://earthobservatory.nasa.gov/Newsroom/BlueMarble/

Final thought:

Tracking a subject

Repeated (best) shots

Multiple exposures

“Infer” what photograp

Slide Credits

* Steve Seitz
 Kristen Grauman
e Alyosha Efros

Next time: Parametric Motion and
Optic Flow

 The ‘Direct Motion’ analogue to today...

