Motion estimation

Many slides from Szeliski

Why estimate visual motion?

Visual Motion can be annoying

- Camera instabilities, jitter
- Measure it; remove it (stabilize)

Visual Motion indicates dynamics in the scene

- Moving objects, behavior
- Track objects and analyze trajectories
- Visual Motion reveals spatial layout
 - Motion parallax

Today's lecture

- image warping (skip: see previous lecture)
- patch-based motion (optic flow)
- parametric (global) motion
- application: image morphing
- advanced: layered motion models

Readings

- Szeliski, R. CVAA
 - Ch. 8.1, 8.2, 4.4
- Bergen *et al. Hierarchical model-based motion estimation*. ECCV' 92, pp. 237–252.
- Shi, J. and Tomasi, C. (1994). Good features to track. In CVPR' 94, pp. 593–600.
- Baker, S. and Matthews, I. (2004). Lucaskanade 20 years on: A unifying framework. IJCV, 56(3), 221–255.

Patch-based motion estimation

Classes of Techniques

Feature-based methods

- Extract visual features (corners, textured areas) and track them
- Sparse motion fields, but possibly robust tracking
- Suitable especially when image motion is large (10s of pixels)

Direct-methods

- Directly recover image motion from spatio-temporal image brightness variations
- Global motion parameters directly recovered without an intermediate feature motion calculation
- Dense motion fields, but more sensitive to appearance variations
- Suitable for video and when image motion is small (< 10 pixels)

Patch matching (revisited)

How do we determine correspondences?

• *block matching* or *SSD* (sum squared differences)

$$E(x, y; d) = \sum_{(x', y') \in N(x, y)} [I_L(x' + d, y') - I_R(x', y')]^2$$

The Brightness Constraint

Brightness Constancy Equation:

$$J(x,y) \approx I(x+u(x,y), y+v(x,y))$$

Or, equivalently, minimize :

$$E(u, v) = (J(x, y) - I(x + u, y + v))^{2}$$

Linearizing (assuming small (*u*,*v*)) using Taylor series expansion:

$$J(x,y) \approx I(x,y) + I_x(x,y) \cdot u(x,y) + I_y(x,y) \cdot v(x,y)$$

CS 482, Fall 2013

Gradient Constraint (or the Optical Flow Constraint)

$$E(u,v) = (I_x \cdot u + I_y \cdot v + I_t)^2$$

Minimizing: $\frac{\partial E}{\partial u} = \frac{\partial E}{\partial v} = 0$ $I_x(I_x u + I_y v + I_t) = 0$ $I_y(I_x u + I_y v + I_t) = 0$

In general $I_x, I_y \neq 0$

Hence,
$$I_x \cdot u + I_y \cdot v + I_t \approx 0$$

CS 482, Fall 2013

Patch Translation [Lucas-Kanade]

Assume a single velocity for all pixels within an image patch

$$E(u,v) = \sum_{x,y\in\Omega} (I_x(x,y)u + I_y(x,y)v + I_t)^2$$

Minimizing

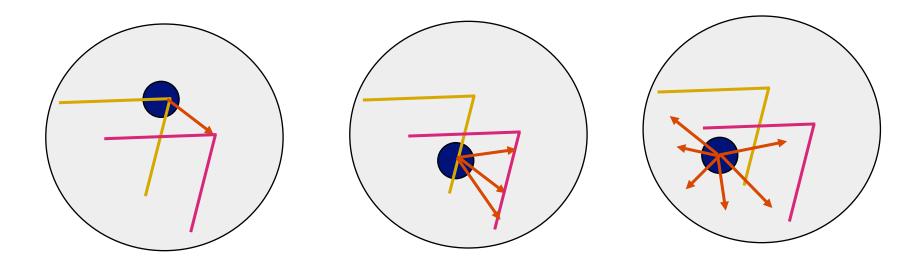
$$\begin{pmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = - \begin{pmatrix} \sum I_x I_t \\ \sum I_y I_t \end{pmatrix}$$
$$\begin{pmatrix} \sum \nabla I (\nabla I)^T \end{pmatrix} \vec{U} = -\sum \nabla I I_t$$

LHS: sum of the 2x2 outer product of the gradient vector

CS 482, Fall 2013

Local Patch Analysis

How *certain* are the motion estimates?

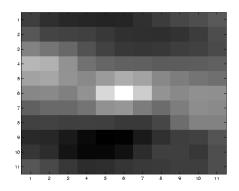


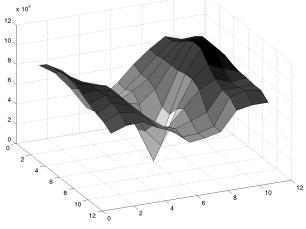
The Aperture Problem

Let
$$M = \sum \nabla I (\nabla I)^T$$
 and $\vec{b} = -\sum \nabla I I_t$

- Algorithm: At each pixel compute \vec{U} by solving $M\vec{U}=\vec{b}$
- *M* is singular if all gradient vectors point in the same direction
 - e.g., along an edge
 - of course, trivially singular if the summation is over a single pixel or there is no texture
 - i.e., only normal flow is available (aperture problem)
- Corners and textured areas are OK

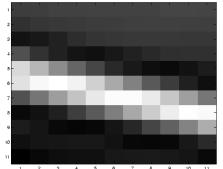
SSD Surface – Textured area

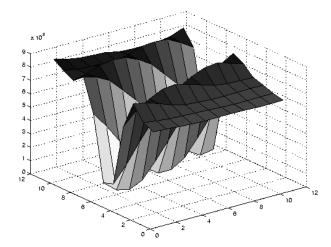




CS 482, Fall 2013

SSD Surface -- Edge



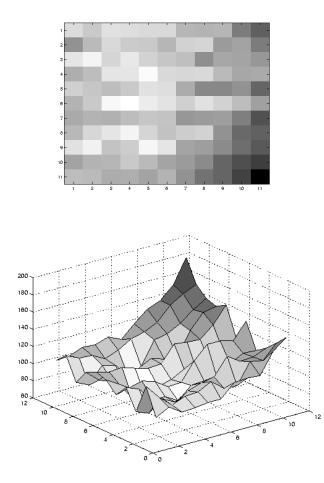


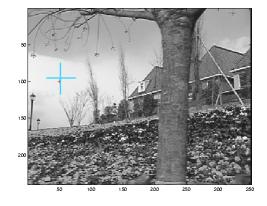
CS 482, Fall 2013

Moti

14

SSD – homogeneous area

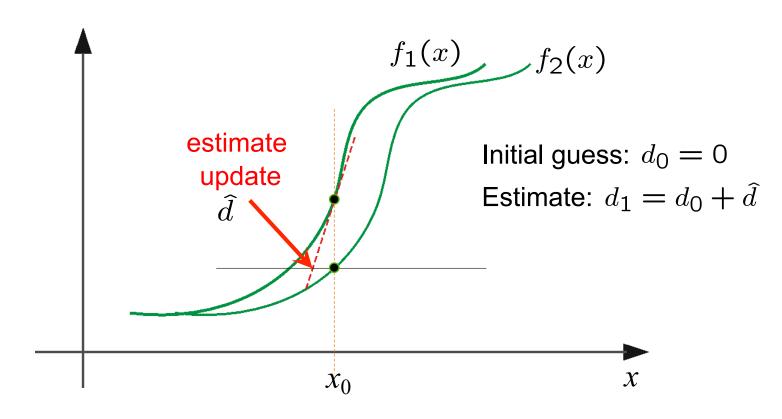




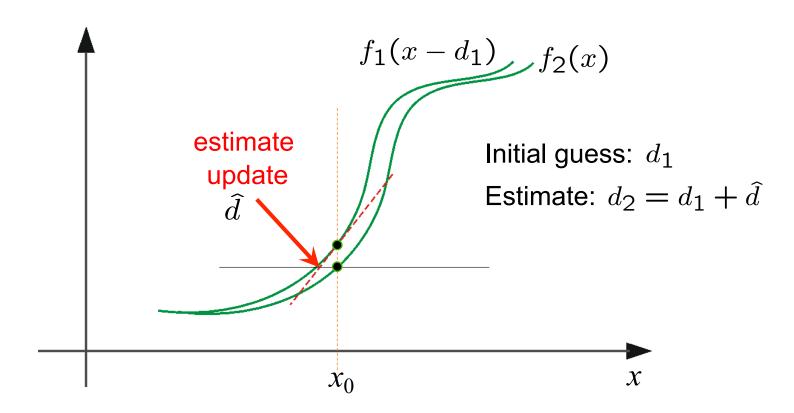
CS 482, Fall 2013

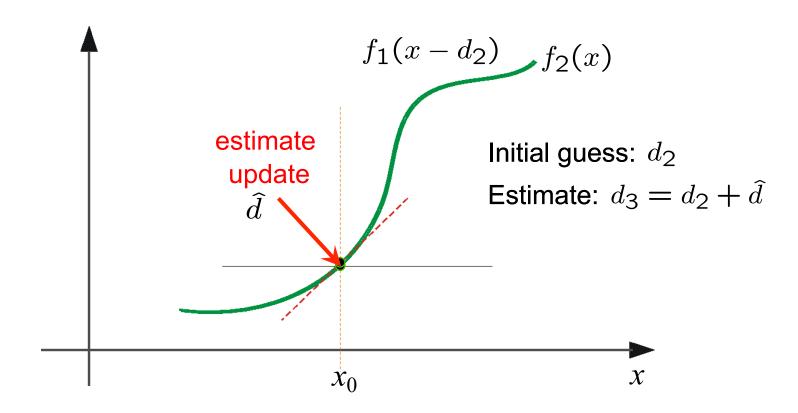
Iterative Refinement

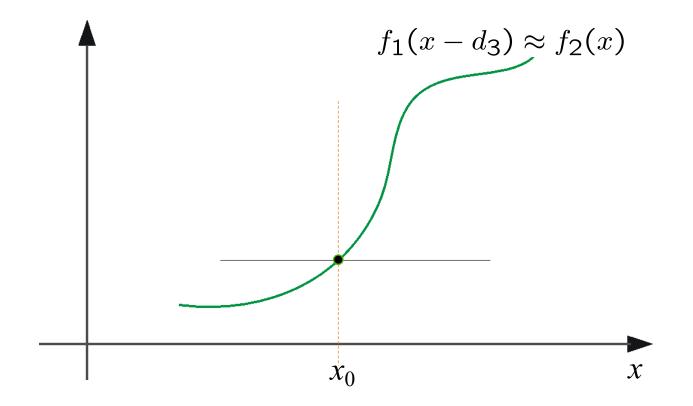
Estimate velocity at each pixel using one iteration of Lucas and Kanade estimation Warp one image toward the other using the estimated flow field *(easier said than done)* Refine estimate by repeating the process



(using *d* for *displacement* here instead of *u*)





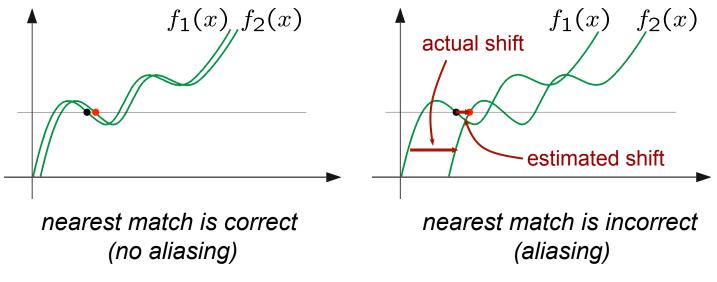


Some Implementation Issues:

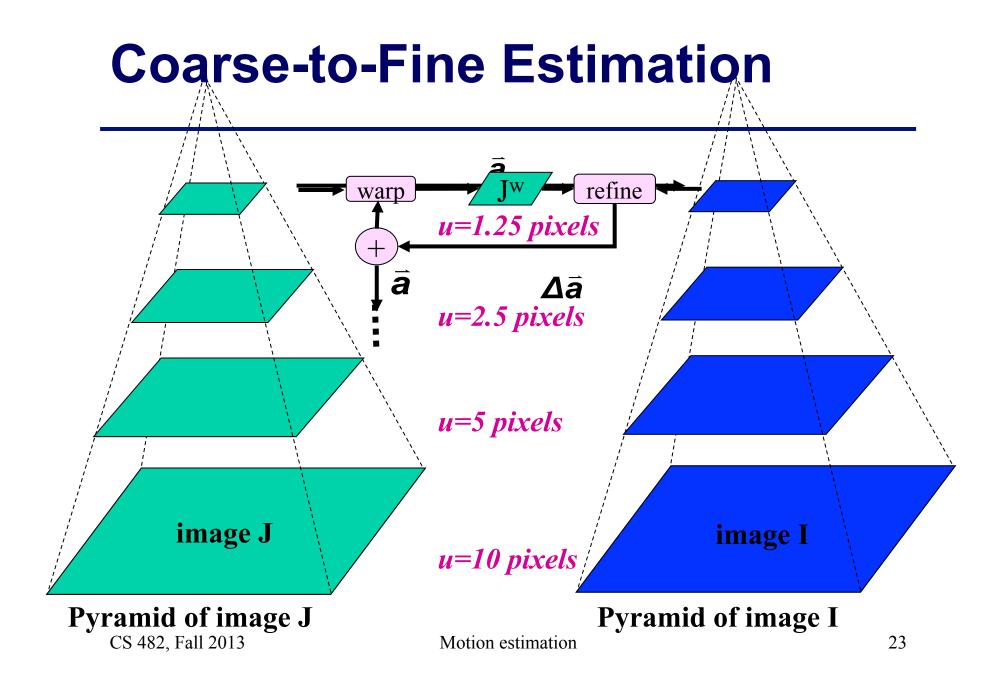
- Warping is not easy (ensure that errors in warping are smaller than the estimate refinement)
- Warp one image, take derivatives of the other so you don't need to re-compute the gradient after each iteration.
- Often useful to low-pass filter the images before motion estimation (for better derivative estimation, and linear approximations to image intensity)

Optical Flow: Aliasing

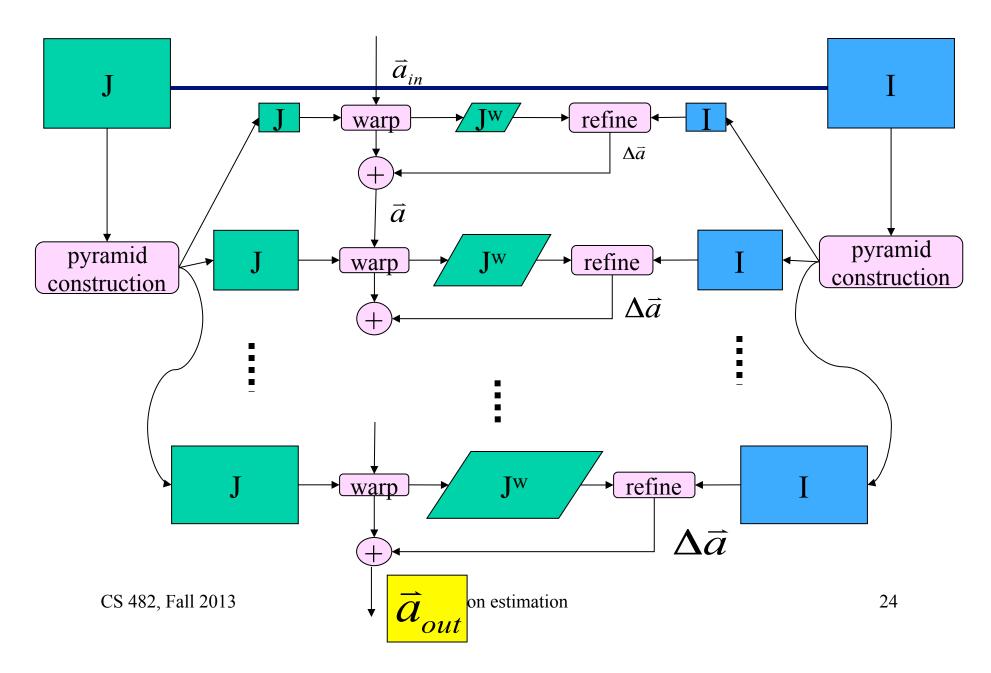
Temporal aliasing causes ambiguities in optical flow because images can have many pixels with the same intensity. I.e., how do we know which 'correspondence' is correct?



To overcome aliasing: coarse-to-fine estimation.



Coarse-to-Fine Estimation



Parametric motion estimation

Global (parametric) motion models

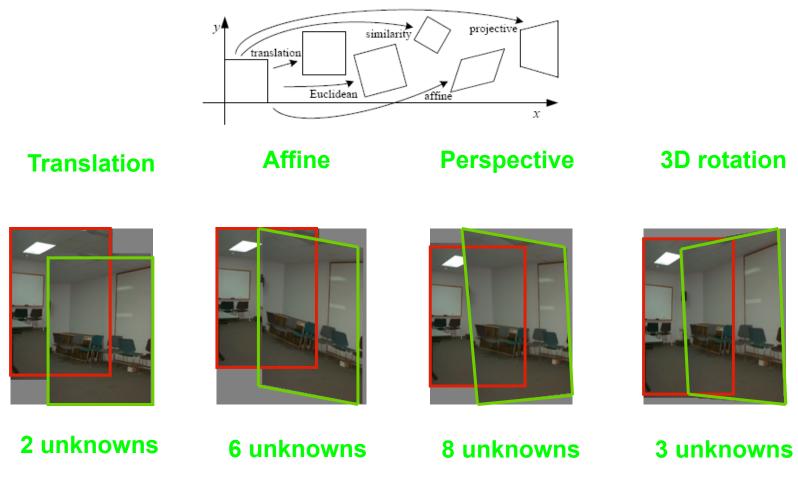
<u>2D Models:</u> Affine Quadratic Planar projective transform (Homography)

<u>3D Models:</u>

Instantaneous camera motion models Homography+epipole Plane+Parallax

CS 482, Fall 2013

Motion models



CS 482, Fall 2013

Example: Affine Motion

$$\begin{split} u(x,y) &= a_1 + a_2 x + a_3 y \text{ Substituting into the B.C. Equation:} \\ v(x,y) &= a_4 + a_5 x + a_6 y \\ &I_x u + I_y v + I_t \approx 0 \\ &I_x (a_1 + a_2 x + a_3 y) + I_y (a_4 + a_5 x + a_6 y) + I_t \approx 0 \end{split}$$

Each pixel provides 1 linear constraint in 6 global unknowns

Least Square Minimization (over all pixels):

$$Err(\vec{a}) = \sum (I_x(a_1 + a_2x + a_3y) + I_y(a_4 + a_5x + a_6y) + I_t)^2$$

CS 482, Fall 2013

Other 2D Motion Models

Quadratic –
instantaneous
approximation to
planar motion
$$u = q_1 + q_2 x + q_3 y + q_7 x^2 + q_8 x y$$

 $v = q_4 + q_5 x + q_6 y + q_7 x y + q_8 y^2$
 $x' = \frac{h_1 + h_2 x + h_3 y}{h_7 + h_8 x + h_9 y}$ Projective – exact planar motion $y' = \frac{h_4 + h_5 x + h_6 y}{h_7 + h_8 x + h_9 y}$
and

$$u = x' - x, \quad v = y' - y$$

Patch matching (revisited)

How do we determine correspondences?

• *block matching* or *SSD* (sum squared differences)

$$E(x, y; d) = \sum_{(x', y') \in N(x, y)} [I_L(x' + d, y') - I_R(x', y')]^2$$

Correlation and SSD

For larger displacements, do template matching

- Define a small area around a pixel as the template
- Match the template against each pixel within a search area in next image.
- Use a match measure such as correlation, normalized correlation, or sum-of-squares difference
- Choose the maximum (or minimum) as the match
- Sub-pixel estimate (Lucas-Kanade)

Shi-Tomasi feature tracker

- Find good features (min eigenvalue of 2×2 Hessian)
- 2. Use Lucas-Kanade to track with pure translation
- 3. Use affine registration with first feature patch
- 4. Terminate tracks whose dissimilarity gets too large
- 5. Start new tracks when needed

Tracking results

Figure 1: Three frame details from Woody Allen's Manhattan. The details are from the 1st, 11th, and 21st frames of a subsequence from the movie.

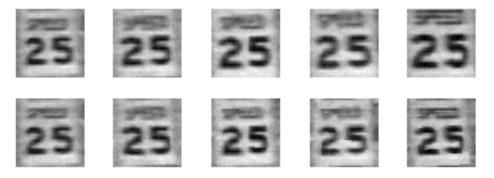


Figure 2: The traffic sign windows from frames 1,6,11,16,21 as tracked (top), and warped by the computed deformation matrices (bottom).

Tracking - dissimilarity

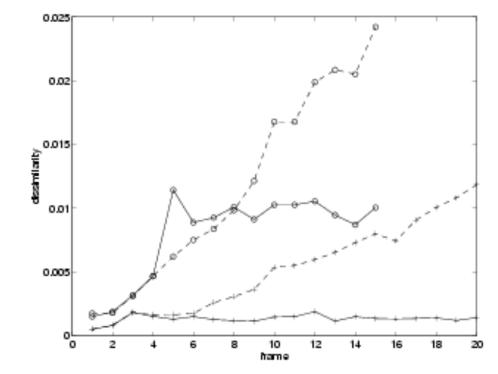


Figure 3: Pure translation (dashed) and affine motion (solid) dissimilarity measures for the window sequence of figure 1 (plusses) and 4 (circles).

Tracking results

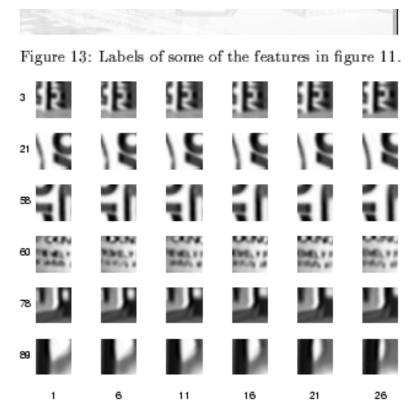


Figure 14: Six sample features through six sample frames.

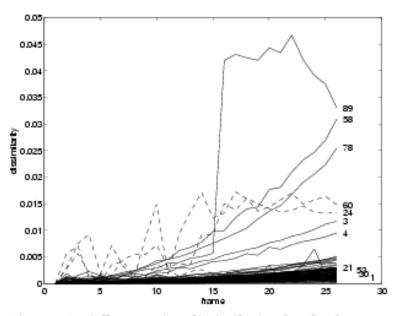


Figure 15: Affine motion dissimilarity for the features in figure 11. Notice the good discrimination between good and bad features. Dashed plots indicate aliasing (see text).

Features 24 and 60 deserve a special discussion, and

Correlation Window Size

Small windows lead to more false matches Large windows are better this way, but...

- Neighboring flow vectors will be more correlated (since the template windows have more in common)
- Flow resolution also lower (same reason)
- More expensive to compute

Small windows are good for local search: more detailed and less smooth (noisy?)Large windows good for global search: less detailed and smoother

Robust Estimation

Noise distributions are often non-Gaussian, having much heavier tails. Noise samples from the tails are called outliers.

Sources of outliers (multiple motions):

- specularities / highlights
- jpeg artifacts / interlacing / motion blur
- multiple motions (occlusion boundaries, transparency)

CS 482, Fall 2013

Motion estimation

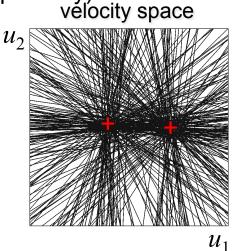


Image Morphing

Image Warping – non-parametric

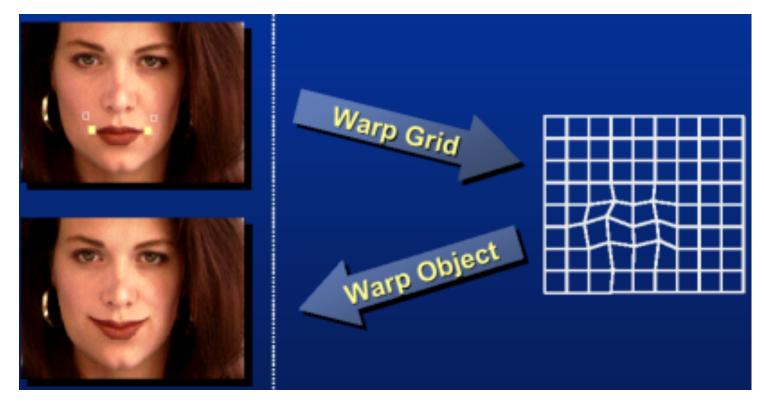
Specify more detailed warp function

Examples:

- splines
- triangles
- optical flow (per-pixel motion)

Image Warping – non-parametric

Move control points to specify spline warp

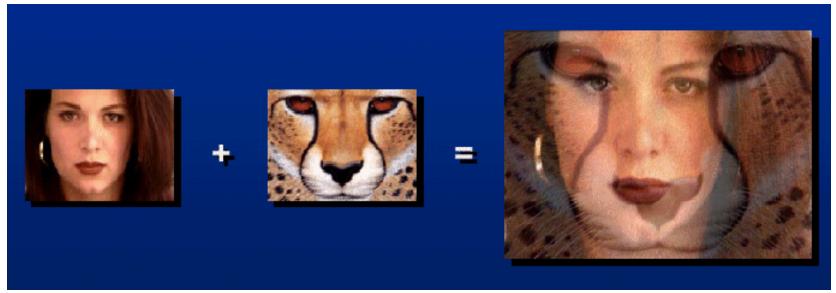


CS 482, Fall 2013

Image Morphing

How can we *in-between* two images?

1. Cross-dissolve

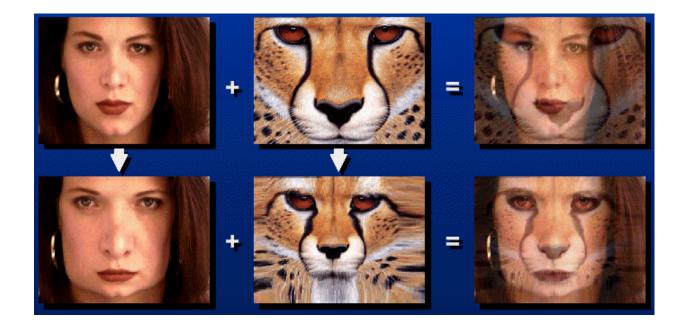


(all examples from [Gomes et al.' 99])

Image Morphing

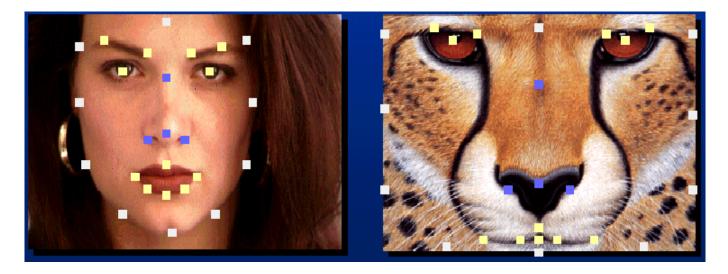
How can we *in-between* two images?

2. Warp then cross-dissolve = *morph*



How can we specify the warp?

- 1. Specify corresponding *points*
 - *interpolate* to a complete warping function



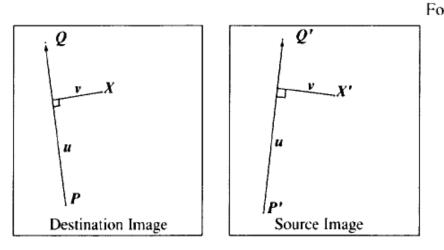
• Nielson, Scattered Data Modeling, IEEE CG&A' 93]

How can we specify the warp?

- 2. Specify corresponding vectors
 - *interpolate* to a complete warping function

How can we specify the warp?

- 2. Specify corresponding vectors
 - *interpolate* [Beier & Neely, SIGGRAPH' 92]



```
For each pixel X in the destination

DSUM = (0,0)

weightsum = 0

For each line P_i Q_i

calculate u,v based on P_i Q_i

calculate X'<sub>i</sub> based on u,v and P_i'Q_i'

calculate displacement D_i = X_i' \cdot X_i for this line

dist = shortest distance from X to P_i Q_i

weight = (length^p / (a + dist))^b

DSUM += D_i * weight

weightsum += weight

X' = X + DSUM / weightsum

destinationImage(X) = sourceImage(X')
```

How can we specify the warp?

- 3. Specify corresponding spline control points
 - *interpolate* to a complete warping function

