
Motion estimation 

Many slides from Szeliski 
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Why estimate visual motion? 

Visual Motion can be annoying 
•  Camera instabilities, jitter 
•  Measure it; remove it (stabilize) 

Visual Motion indicates dynamics in the scene 
•  Moving objects, behavior 
•  Track objects and analyze trajectories 

Visual Motion reveals spatial layout  
•  Motion parallax 
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Today’s lecture 

Motion estimation 
•  image warping (skip: see previous lecture) 
•  patch-based motion (optic flow) 
•  parametric (global) motion 
•  application: image morphing 
•  advanced: layered motion models 
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Readings 

•  Szeliski, R.  CVAA 
•  Ch. 8.1, 8.2, 4.4 

•  Bergen et al.  Hierarchical model-based 
motion estimation. ECCV’92,  pp. 237–252. 

•  Shi, J. and Tomasi, C. (1994). Good features 
to track. In CVPR’94, pp. 593–600. 

•  Baker, S. and Matthews, I. (2004). Lucas-
kanade 20 years on: A unifying framework.  
IJCV, 56(3), 221–255. 



Patch-based motion estimation 
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Classes of Techniques 
Feature-based methods 

•  Extract visual features (corners, textured areas) and track them 
•  Sparse motion fields, but possibly robust tracking 
•  Suitable especially when image motion is large (10s of pixels) 

Direct-methods 
•  Directly recover image motion from spatio-temporal image 

brightness variations 
•  Global motion parameters directly recovered without an 

intermediate feature motion calculation 
•  Dense motion fields, but more sensitive to appearance 

variations 
•  Suitable for video and when image motion is small (< 10 pixels) 
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Patch matching (revisited) 

How do we determine correspondences? 
•  block matching or SSD (sum squared differences) 
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Brightness Constancy Equation: 

Or, equivalently, minimize : 

Linearizing   (assuming small (u,v)) 
using Taylor series expansion: 

The Brightness Constraint 

J(x, y) ⇡ I(x+ u(x, y), y + v(x, y))

E(u, v) = (J(x, y)� I(x+ u, y + v))2

J(x, y) ⇡ I(x, y) + I

x

(x, y) · u(x, y) + I

y

(x, y) · v(x, y)
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Gradient Constraint (or the 
Optical Flow Constraint) 

Minimizing: 

In general 

Hence, 
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Minimizing 

Assume a single velocity for all pixels within an image patch 

LHS: sum of the  2x2 outer product of the gradient vector 

Patch Translation [Lucas-Kanade] 
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Local Patch Analysis 

How certain are the motion estimates? 
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The Aperture Problem 

Let 

•   Algorithm:  At each pixel compute      by solving 
 
•  M is singular if all gradient vectors point in the same direction 

•  e.g., along an edge 
•  of course, trivially singular if the summation is over a single pixel 
 or there is no texture 
•  i.e., only normal flow is available (aperture problem) 

•   Corners and textured areas are OK 

and M =
X

rI(rI)T ~b = �
X

rIIt

~U M ~U = ~b
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SSD Surface – Textured area 
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SSD Surface -- Edge 
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SSD – homogeneous area 
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Iterative Refinement 

Estimate velocity at each pixel using one 
iteration of Lucas and Kanade estimation 

Warp one image toward the other using the 
estimated flow field 
(easier said than done) 

Refine estimate by repeating the process 
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Optical Flow: Iterative Estimation 

x x0 

Initial guess:  
Estimate: 

estimate 
update 

(using d for displacement here instead of u) 
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Optical Flow: Iterative Estimation 

x x0 

estimate 
update 

Initial guess:  
Estimate: 
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Optical Flow: Iterative Estimation 

x x0 

Initial guess:  
Estimate: 
Initial guess:  
Estimate: 

estimate 
update 
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Optical Flow: Iterative Estimation 

x x0 
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Optical Flow: Iterative Estimation 

Some Implementation Issues: 
•  Warping is not easy (ensure that errors in warping 

are smaller than the estimate refinement) 
•  Warp one image, take derivatives of the other so 

you don’t need to re-compute the gradient after 
each iteration. 

•  Often useful to low-pass filter the images before 
motion estimation (for better derivative estimation, 
and linear approximations to image intensity) 
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Optical Flow: Aliasing 
Temporal aliasing causes ambiguities in optical flow because 
images can have many pixels with the same intensity. 
I.e., how do we know which ‘correspondence’ is correct?  

nearest match is correct 
(no aliasing) 

nearest match is incorrect 
(aliasing) 

To overcome aliasing: coarse-to-fine estimation. 

actual shift 

estimated shift 
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image I image J 

a!
Jw warp refine 

a! aΔ !
+ 

Pyramid of image J Pyramid of image I 

image I image J 

Coarse-to-Fine Estimation 

u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 
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J Jw I warp refine 
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Coarse-to-Fine Estimation 



Parametric motion estimation 
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Global (parametric) motion models 
2D Models: 
Affine 
Quadratic 
Planar projective transform (Homography) 
 
3D Models: 
Instantaneous camera motion models  
Homography+epipole 
Plane+Parallax 
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Motion models 

Translation 

2 unknowns 

Affine 

6 unknowns 

Perspective 

8 unknowns 

3D rotation 

3 unknowns 



CS 482, Fall 2013 Motion estimation 28 

Substituting into the B.C. Equation: 

Each pixel provides 1 linear constraint in 6 global unknowns 

Least Square Minimization  (over all pixels): 

Example:  Affine Motion 
u(x, y) = a1 + a2x+ a3y

v(x, y) = a4 + a5x+ a6y

I
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y

v + I
t

⇡ 0
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Quadratic – 
instantaneous 
approximation to 
planar motion  

Projective – exact planar motion 

Other 2D Motion Models 

u = q1 + q2x+ q3y + q7x
2 + q8xy

v = q4 + q5x+ q6y + q7xy + q8y
2

x

0 =
h1 + h2x+ h3y

h7 + h8x+ h9y

y

0 =
h4 + h5x+ h6y

h7 + h8x+ h9y

and 

u = x

0 � x, v = y

0 � y
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Patch matching (revisited) 

How do we determine correspondences? 
•  block matching or SSD (sum squared differences) 
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Correlation and SSD 

For larger displacements, do template matching 
•  Define a small area around a pixel as the template 
•  Match the template against each pixel within a 

search area in next image. 
•  Use a match measure such as correlation, 

normalized correlation, or sum-of-squares 
difference 

•  Choose the maximum (or minimum) as the match 
•  Sub-pixel estimate (Lucas-Kanade) 
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Shi-Tomasi feature tracker 

1.  Find good features (min eigenvalue of 2×2 
Hessian) 

2.  Use Lucas-Kanade to track with pure 
translation 

3.  Use affine registration with first feature patch 
4.  Terminate tracks whose dissimilarity gets 

too large 
5.  Start new tracks when needed 
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Tracking results 
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Tracking - dissimilarity 
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Tracking results 
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Correlation Window Size 
Small windows lead to more false matches 
Large windows are better this way, but… 

•  Neighboring flow vectors will be more correlated (since the 
template windows have more in common) 

•  Flow resolution also lower (same reason) 
•  More expensive to compute 

Small windows are good for local search: 
more detailed and less smooth (noisy?) 

Large windows good for global search: 
less detailed and smoother 
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Robust Estimation 
Noise distributions are often non-Gaussian, having much heavier 

tails.  Noise samples from the tails are called outliers. 
Sources of outliers (multiple motions): 

•  specularities / highlights 
•  jpeg artifacts / interlacing / motion blur 
•  multiple motions (occlusion boundaries, transparency) 

 

 

velocity space 

u1 

u2 

+ + 



Image Morphing 
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Image Warping – non-parametric 

Specify more detailed warp function 
 
 
 
Examples:  

•  splines 
•  triangles 
•  optical flow (per-pixel motion) 
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Image Warping – non-parametric 

Move control points to specify spline warp 
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Image Morphing 

How can we in-between two images? 
1.  Cross-dissolve 

 
 
 
 
 
 
 
 
(all examples from [Gomes et al.’99]) 
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Image Morphing 

How can we in-between two images? 
2.  Warp then cross-dissolve = morph 
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Warp specification 

How can we specify the warp? 
1.  Specify corresponding points 

•  interpolate to a complete warping function 
 
 
 
 
 
 
 
 
 

•  Nielson, Scattered Data Modeling, IEEE CG&A’93] 
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Warp specification 

How can we specify the warp? 
2.  Specify corresponding vectors 

•  interpolate to a complete warping function 
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Warp specification 

How can we specify the warp? 
2.  Specify corresponding vectors 

•  interpolate [Beier & Neely, SIGGRAPH’92] 
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Warp specification 

How can we specify the warp? 
3.  Specify corresponding spline control points 

•  interpolate to a complete warping function 


