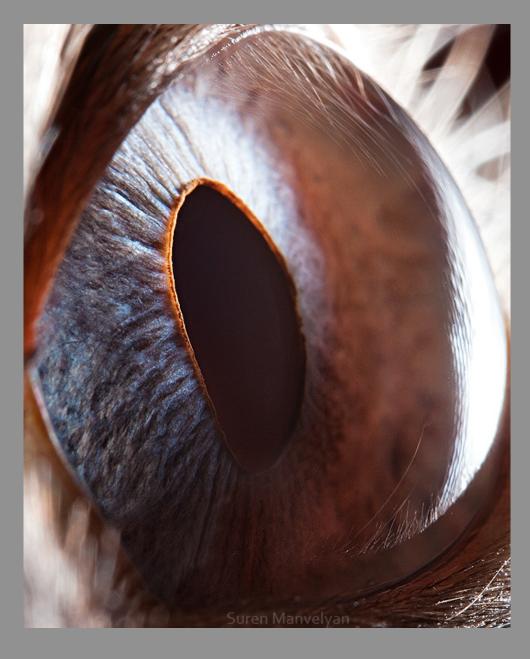


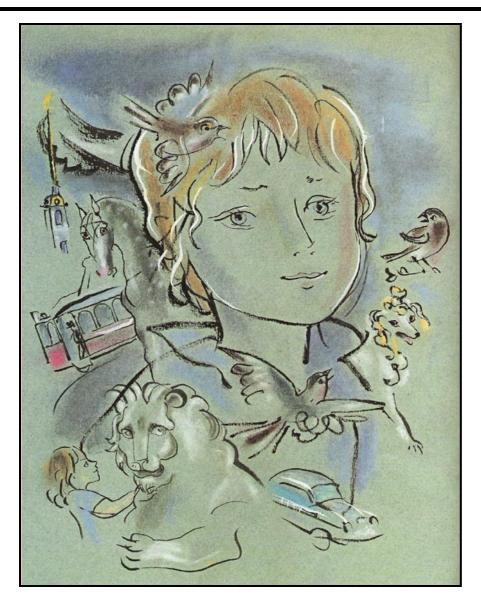
By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116





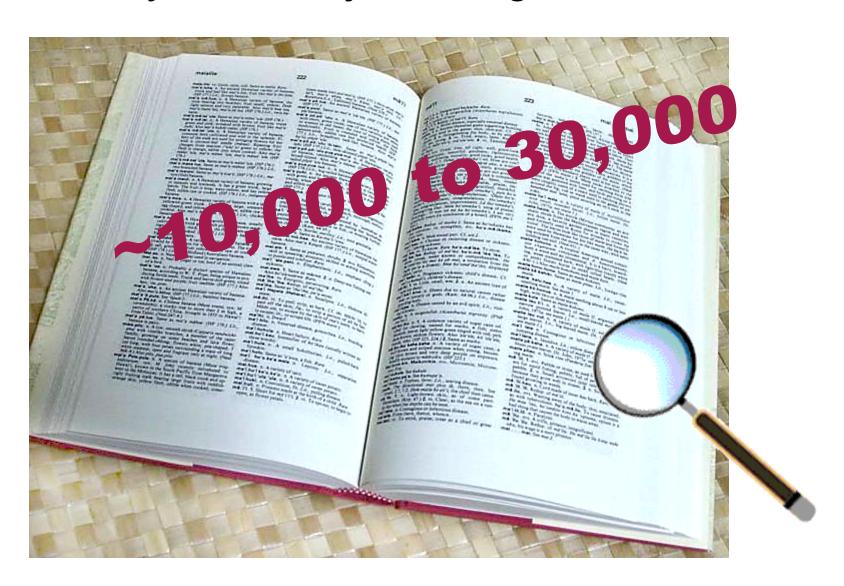
By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

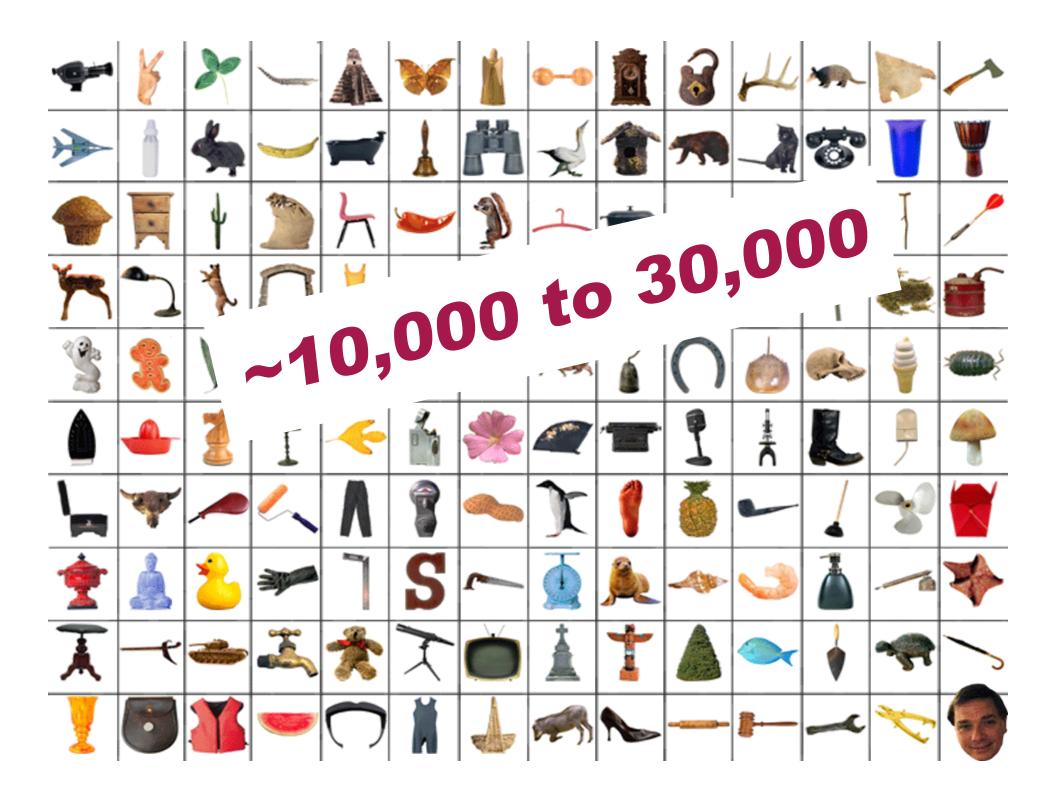
Recognition: Overview and History

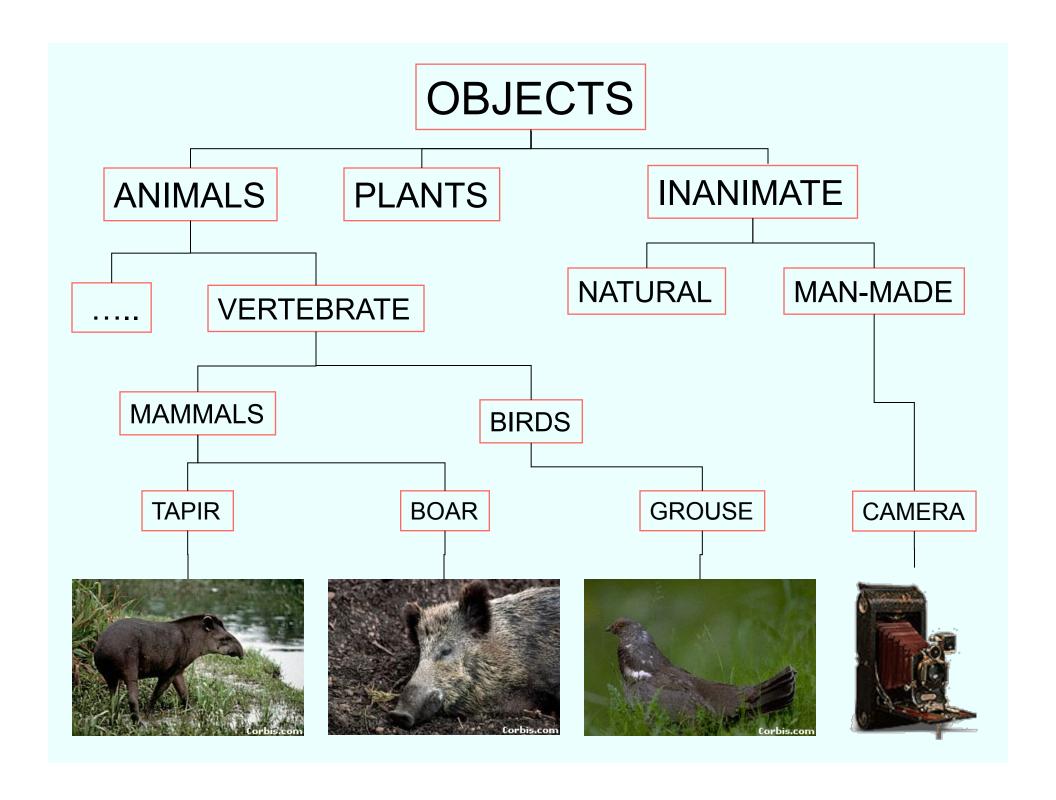


Slides from James Hays, Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce

How many visual object categories are there?







Specific recognition tasks

Scene categorization or classification

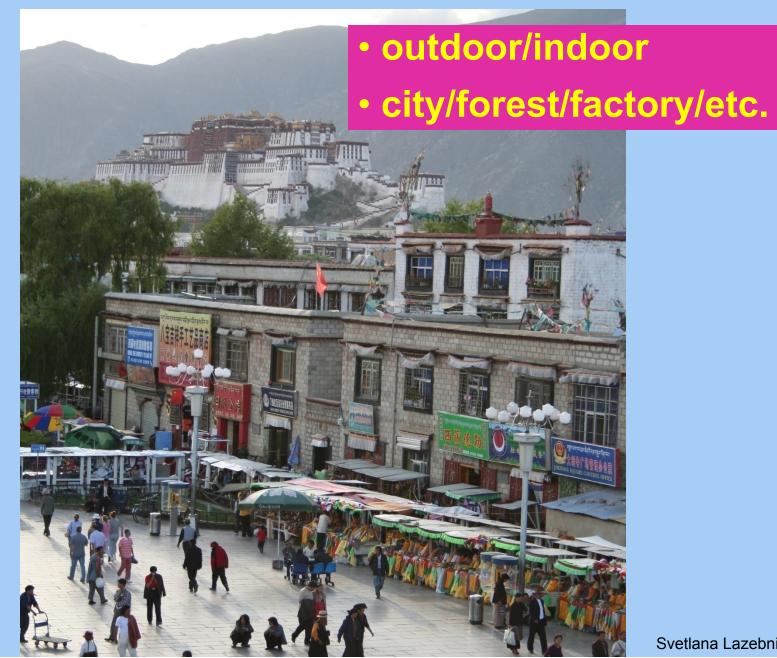
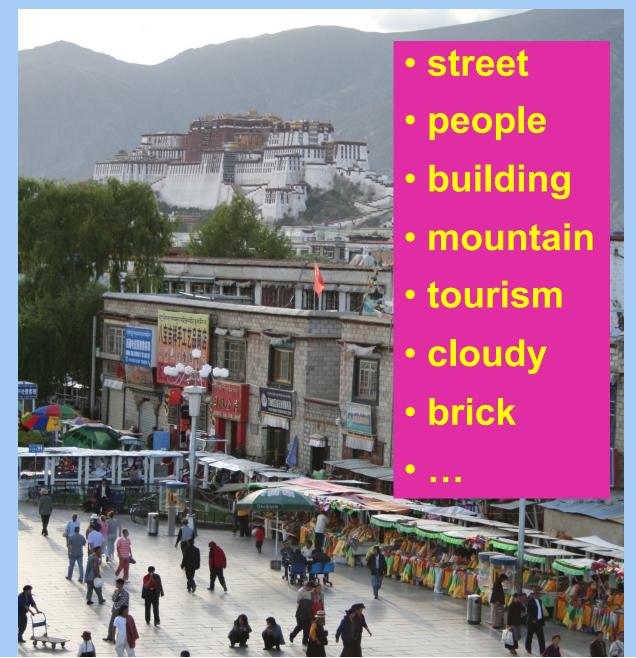


Image annotation / tagging / attributes



Object detection

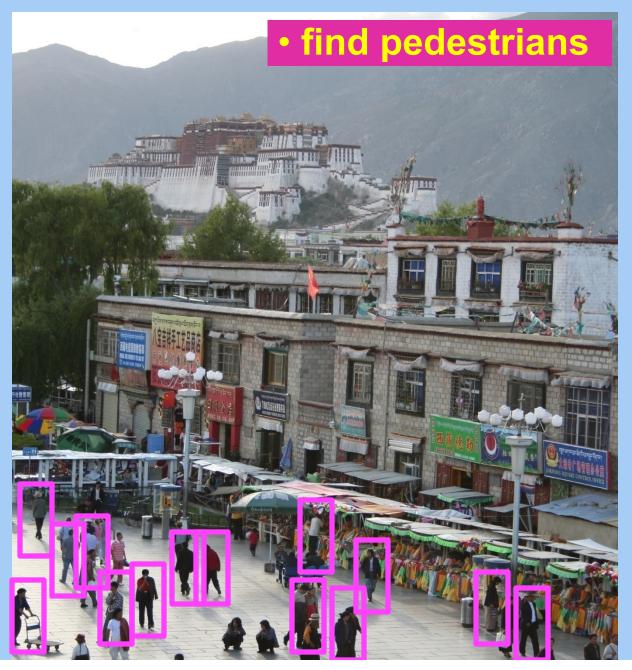
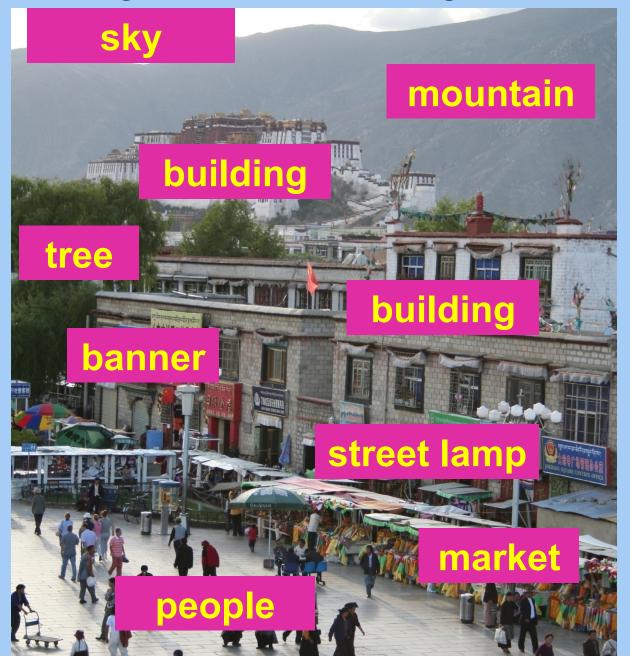
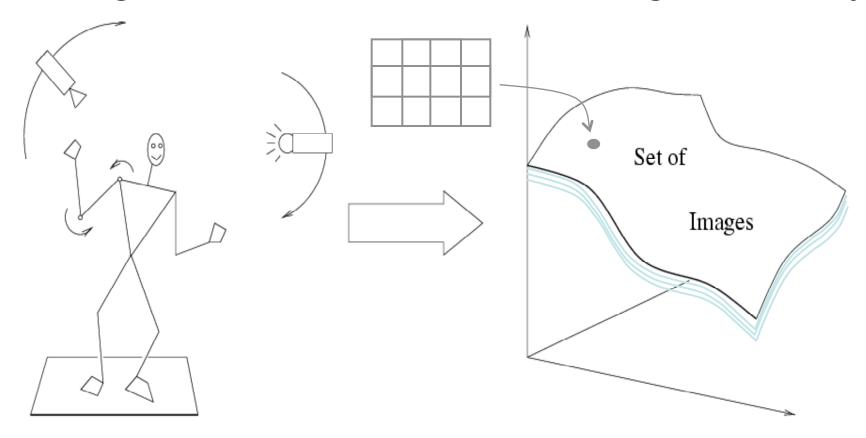


Image parsing / semantic segmentation



Scene understanding?

Recognition is all about modeling variability



Variability: Camera position

Illumination

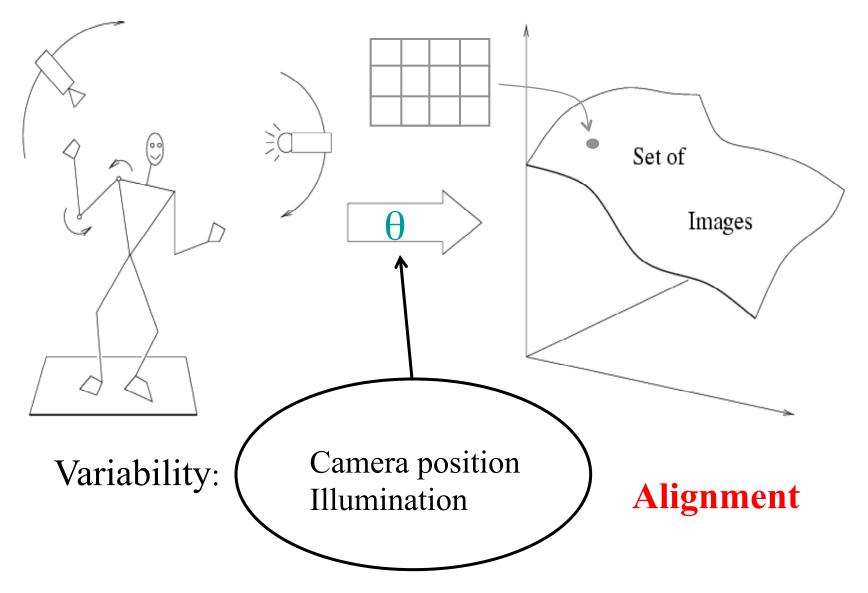
Shape parameters

Within-class variations?

Within-class variations

History of ideas in recognition

• 1960s – early 1990s: the geometric era



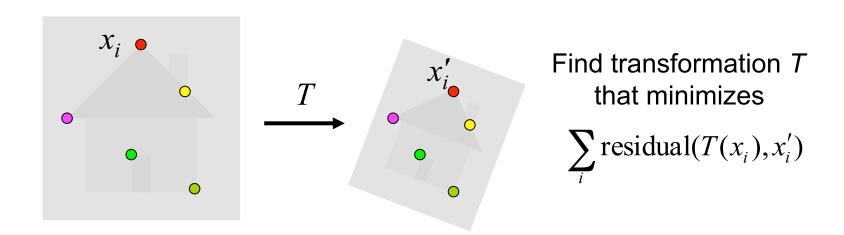
Shape: assumed known

Roberts (1965); Lowe (1987); Faugeras & Hebert (1986); Grimson & Lozano-Perez (1986); Huttenlocher & Ullman (1987)

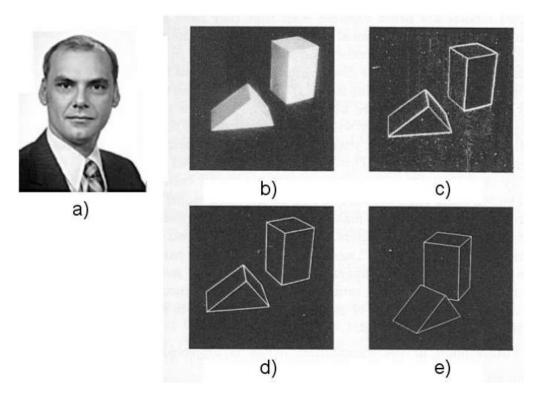
Svetlana Lazebnik

Recall: Alignment

 Alignment: fitting a model to a transformation between pairs of features (*matches*) in two images



Recognition as an alignment problem: Block world



L. G. Roberts,

Machine Perception of

Three Dimensional

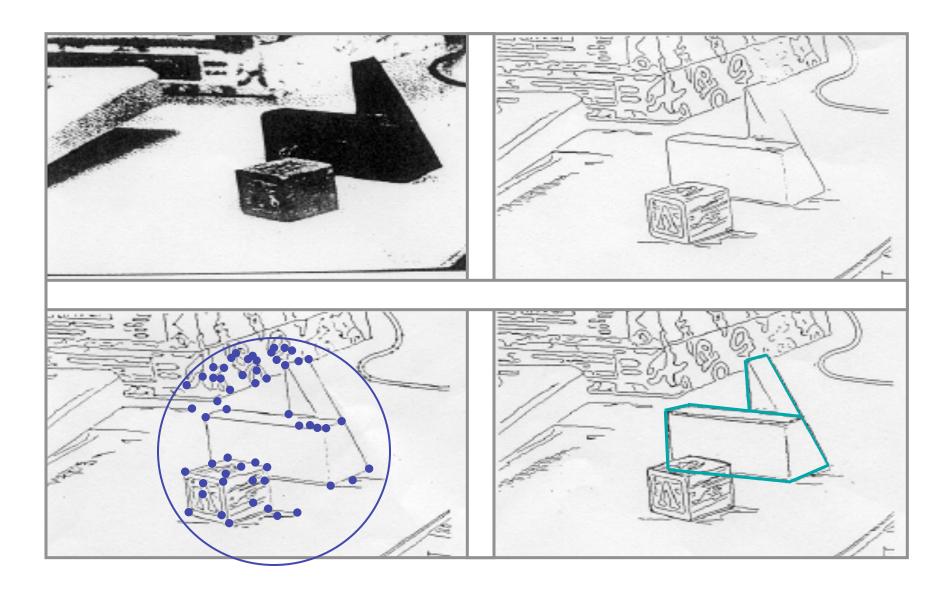
Solids, Ph.D. thesis, MIT

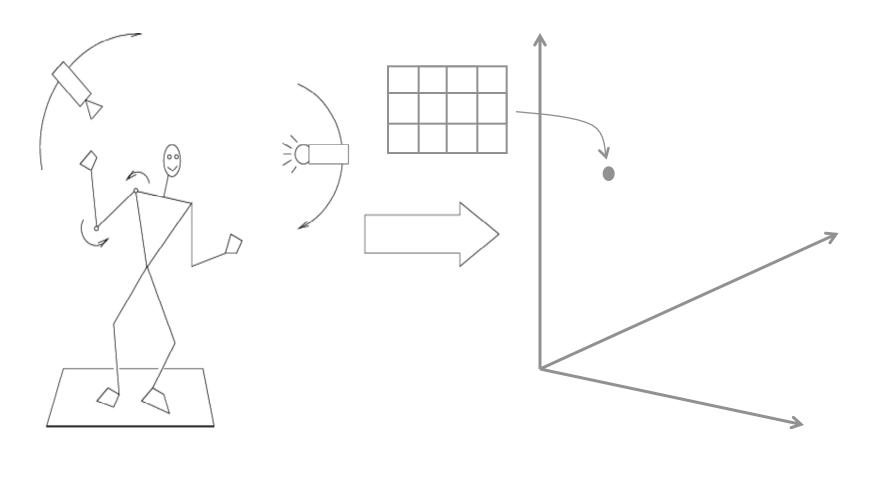
Department of Electrical
Engineering, 1963.

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b)A blocks world scene. c)Detected edges using a 2x2 gradient operator. d) A 3-d polyhedral description of the scene, formed automatically from the single image. e) The 3-d scene displayed with a viewpoint different from the original image to demonstrate its accuracy and completeness. (b) - e) are taken from [64] with permission MIT Press.)

J. Mundy, Object Recognition in the Geometric Era: a Retrospective, 2006

Alignment: Huttenlocher & Ullman (1987)





Variability

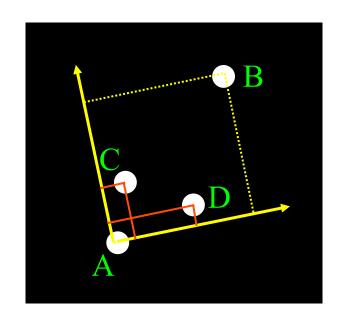
Invariance to: Camera position

Illumination

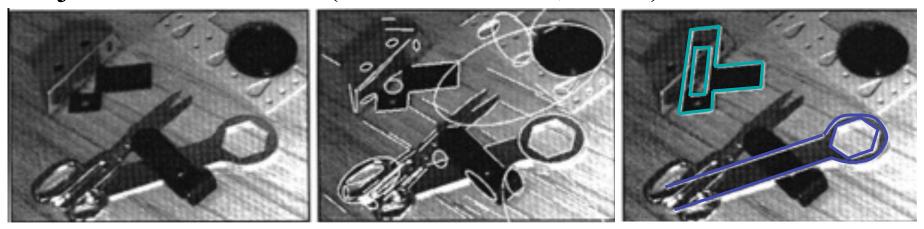
Internal parameters

Duda & Hart (1972); Weiss (1987); Mundy et al. (1992-94); Rothwell et al. (1992); Burns et al. (1993)

Example: invariant to similarity transformations computed from four points

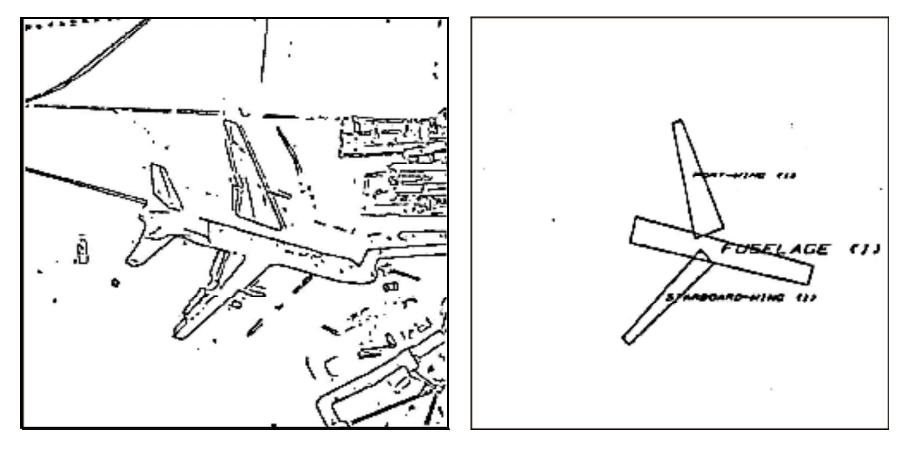


Projective invariants (Rothwell et al., 1992):



General 3D objects do not admit monocular viewpoint invariants (Burns et al., 1993)

Representing and recognizing object categories is harder...

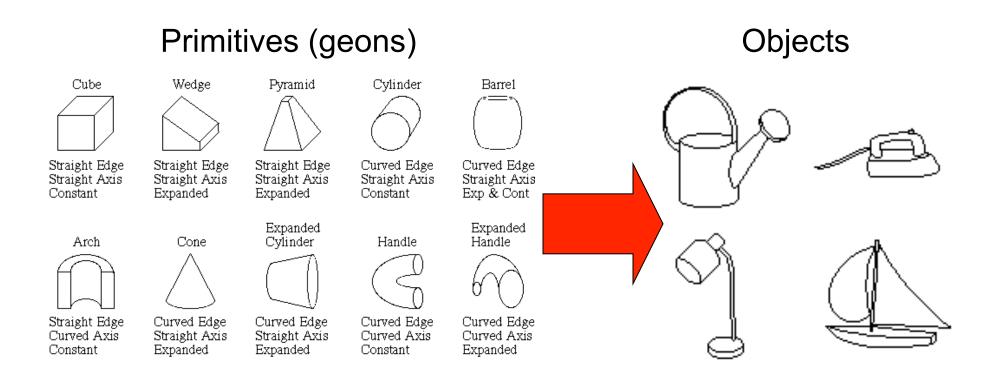


ACRONYM (Brooks and Binford, 1981)

Binford (1971), Nevatia & Binford (1972), Marr & Nishihara (1978)

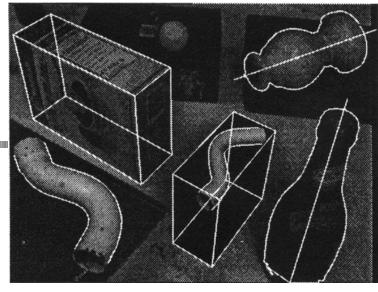
Recognition by components

Biederman (1987)



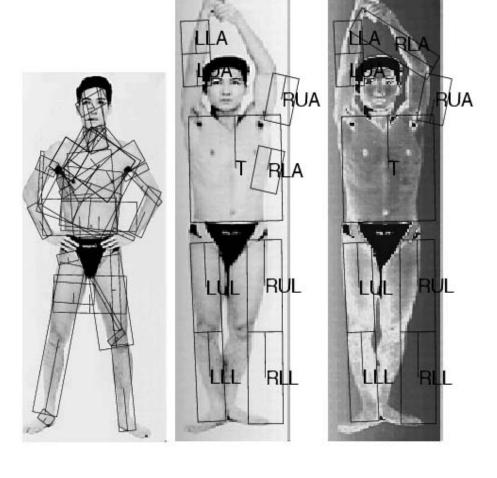
http://en.wikipedia.org/wiki/Recognition_by_Components_Theory

Generalized cylinders Ponce et al. (1989)



Zisserman et al. (1995)

General shape primitives?

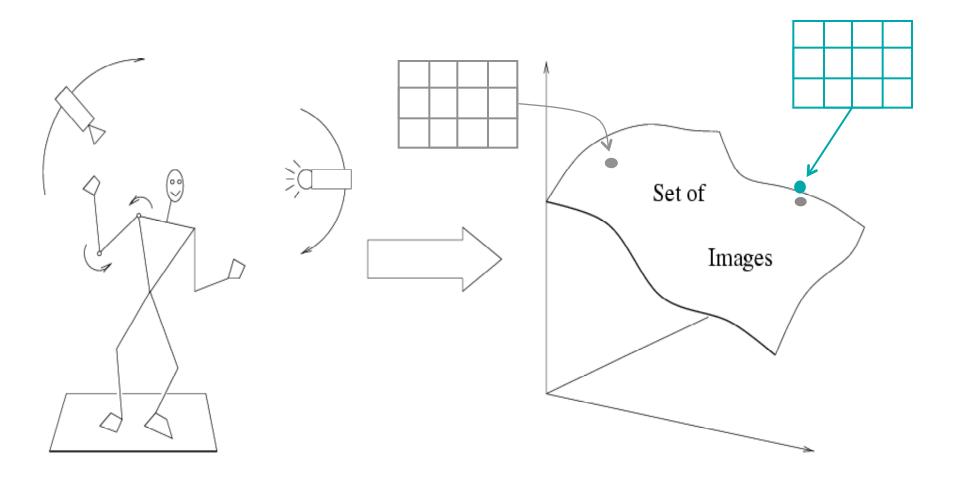


Forsyth (2000)

Svetlana Lazebnik

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models

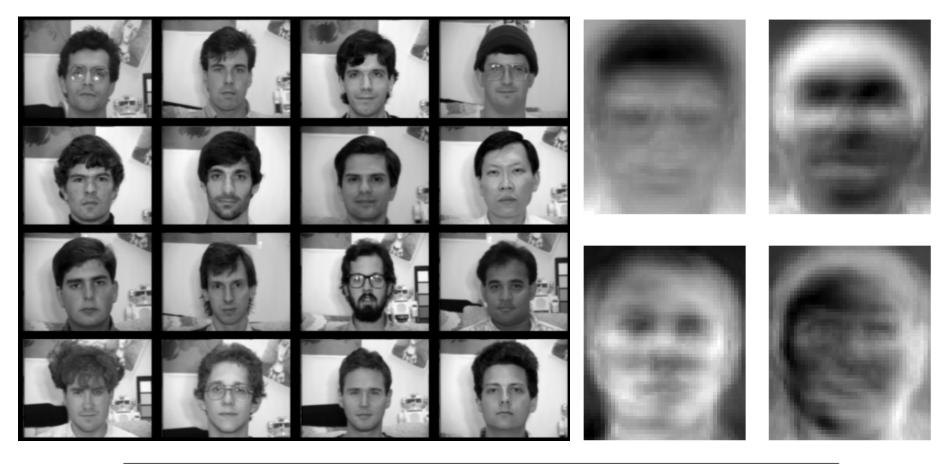


Empirical models of image variability

Appearance-based techniques

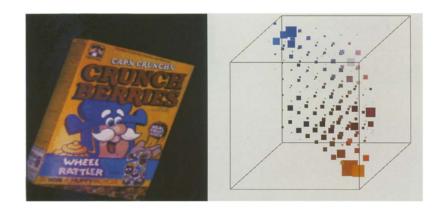
Turk & Pentland (1991); Murase & Nayar (1995); etc.

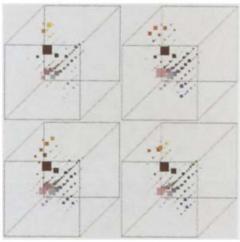
Eigenfaces (Turk & Pentland, 1991)



Experimental	Correct/Unknown Recognition Percentage		
Condition	Lighting	Orientation	Scale
Forced classification	96/0	85/0	64/0
Forced 100% accuracy	100/19	100/39	100/60
Forced 20% unknown rate	100/20	94/20	74/20

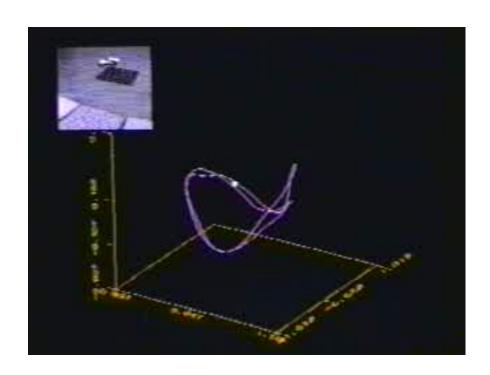
Color Histograms





Swain and Ballard, Color Indexing, IJCV 1991.

Appearance manifolds



H. Murase and S. Nayar, Visual learning and recognition of 3-d objects from appearance, IJCV 1995

Limitations of global appearance models

- Requires global registration of patterns
- Not robust to clutter, occlusion, geometric transformations

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- 1990s present: sliding window approaches

Sliding window approaches

Sliding window approaches

- Turk and Pentland, 1991
- Belhumeur, Hespanha, & Kriegman, 1997
- Schneiderman & Kanade 2004
- Viola and Jones, 2000

- Schneiderman & Kanade, 2004
- Argawal and Roth, 2002
- Poggio et al. 1993

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features

Local features for object instance recognition

Large-scale image search

Combining local features, indexing, and spatial constraints

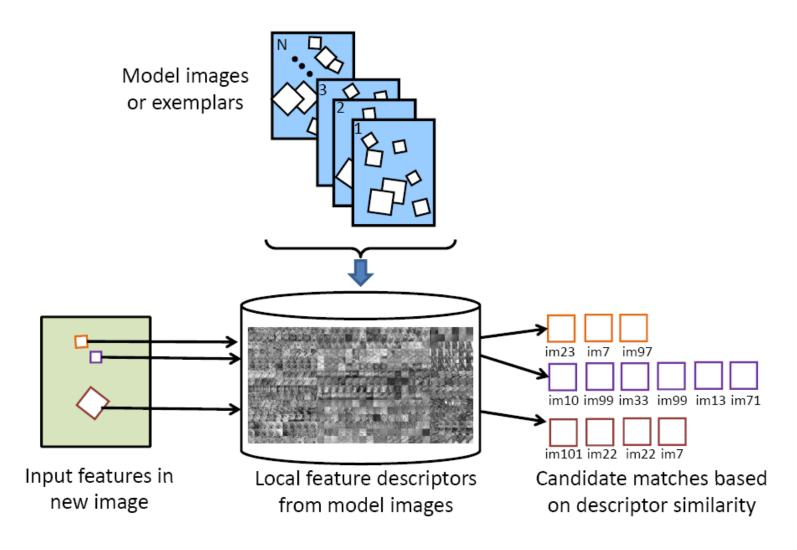
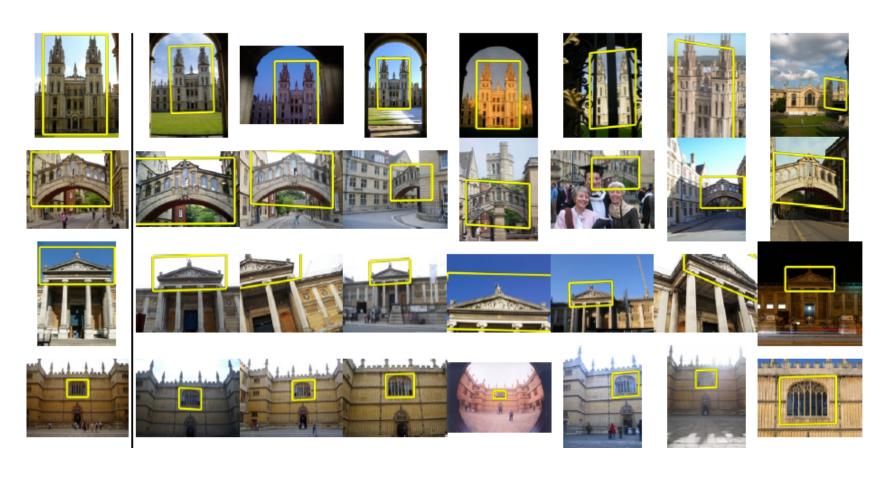


Image credit: K. Grauman and B. Leibe

Large-scale image search

Combining local features, indexing, and spatial constraints



Philbin et al. '07

Large-scale image search

Combining local features, indexing, and spatial constraints

Google Goggles in Action

Click the icons below to see the different ways Google Goggles can be used.

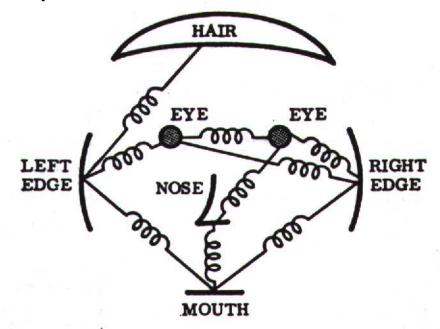
Available on phones that run Android 1.6+ (i.e. Donut or Eclair)

History of ideas in recognition

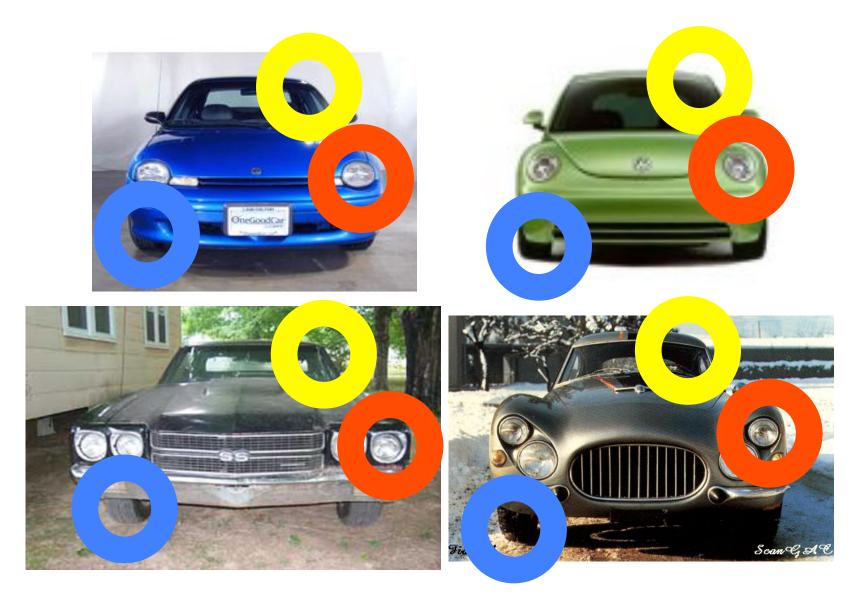
- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models

Parts-and-shape models

- Model:
 - Object as a set of parts
 - Relative locations between parts
 - Appearance of part



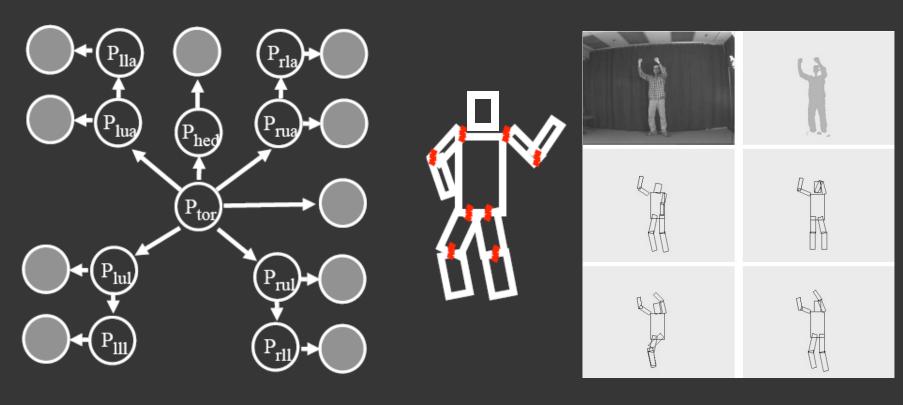
Constellation models



Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

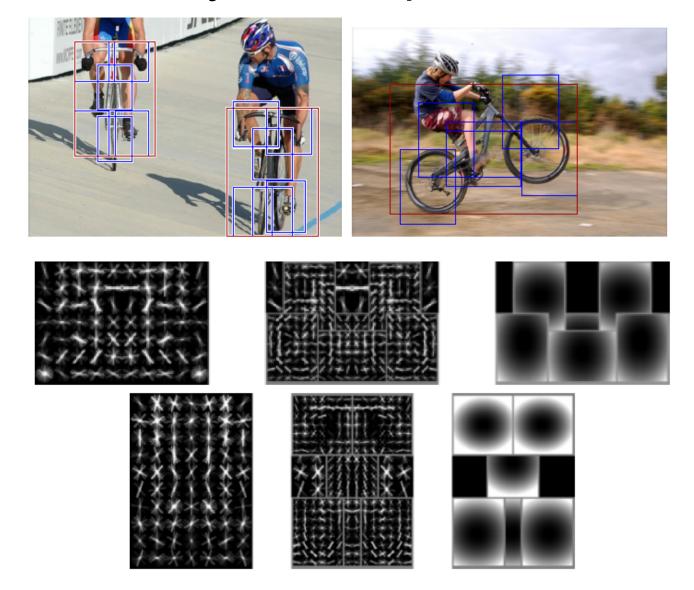
Pictorial structure model

Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)



$$\Pr(P_{\text{tor}}, P_{\text{arm}}, \dots | \text{Im}) \stackrel{\alpha}{=} \prod_{i,j} \Pr(P_i \mid P_j) \prod_i \Pr(\text{Im}(P_i))$$
part geometry part appearance

Discriminatively trained part-based models



P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, "Object Detection with Discriminatively Trained Part-Based Models,"

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features

Bag-of-features models

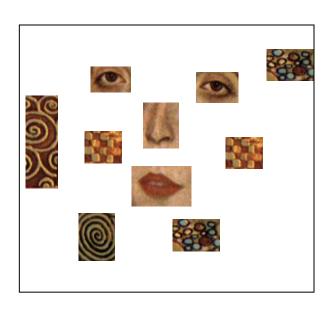
Bag-of-features models

Object

Bag of 'words'

Objects as texture

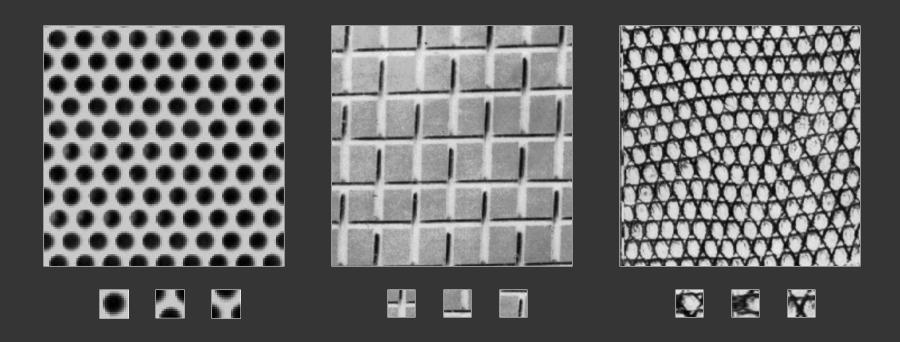
All of these are treated as being the same



 No distinction between foreground and background: scene recognition?

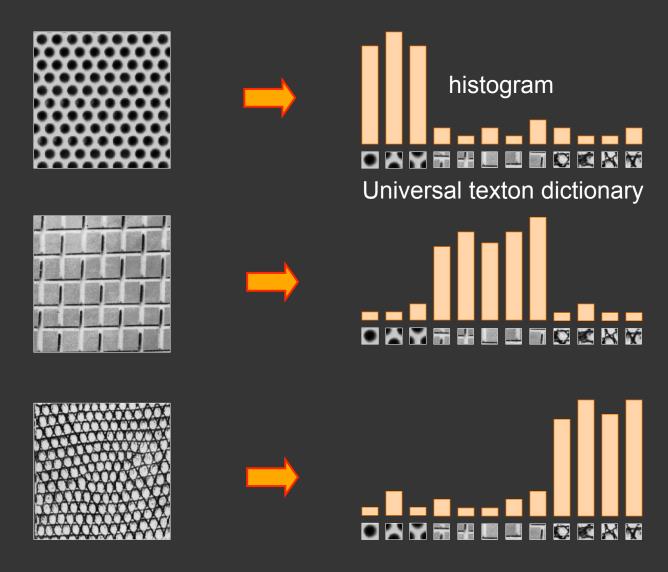
Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or textons
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Origin 1: Texture recognition



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

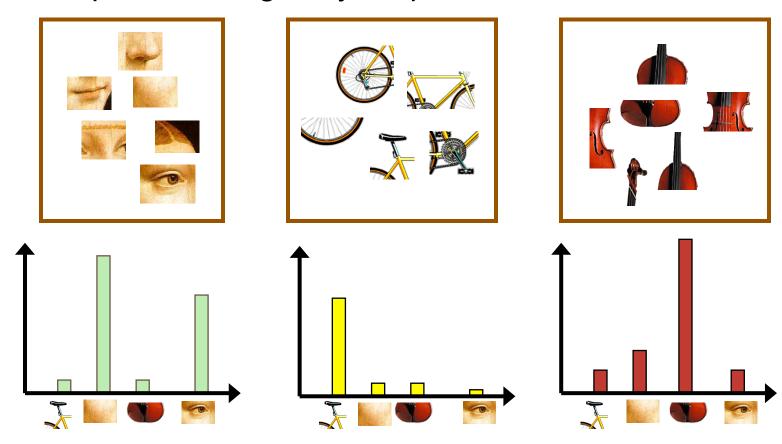
abandon accountable affordable afghanistan africa aided ally anbar armed army baghdad bless challenges chamber chaos choices civilians coalition commanders commitment confident confront congressman constitution corps debates deduction deficit deliver democratic deploy dikembe diplomacy disruptions earmarks economy einstein elections eliminates expand extremists failing faithful families freedom fuel funding god haven ideology immigration impose insurgents iran iraq islam julie lebanon love madam marine math medicare moderation neighborhoods nuclear offensive palestinian payroll province pursuing qaeda radical regimes resolve retreat rieman sacrifices science sectarian senate september shia stays strength students succeed sunni tax territories territories threats uphold victory violence violent War washington weapons wesley

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

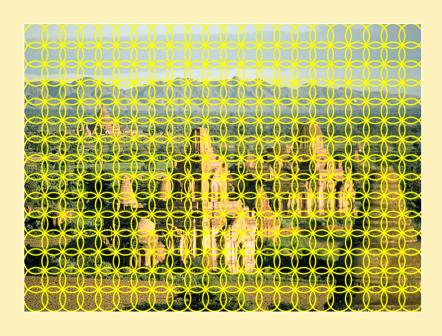
Bag-of-features steps

- Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

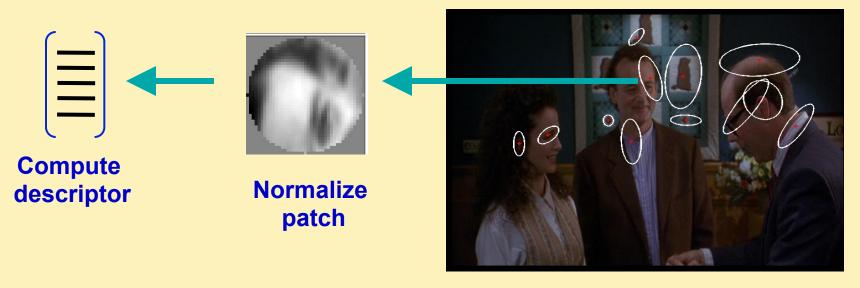


1. Feature extraction

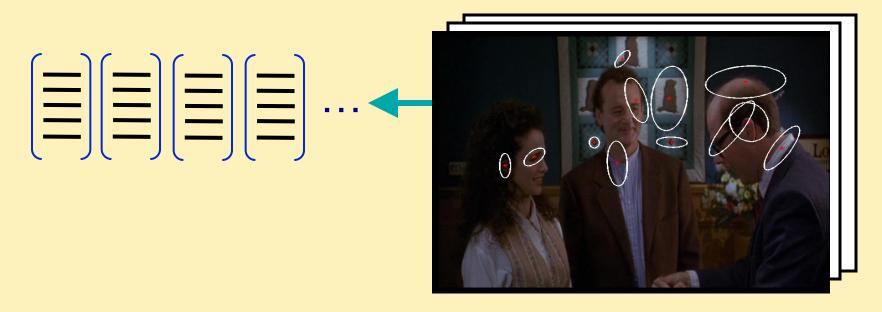
Regular grid or interest regions



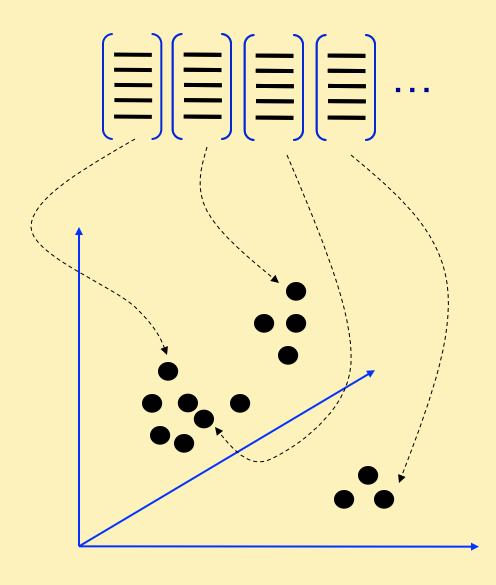
1. Feature extraction



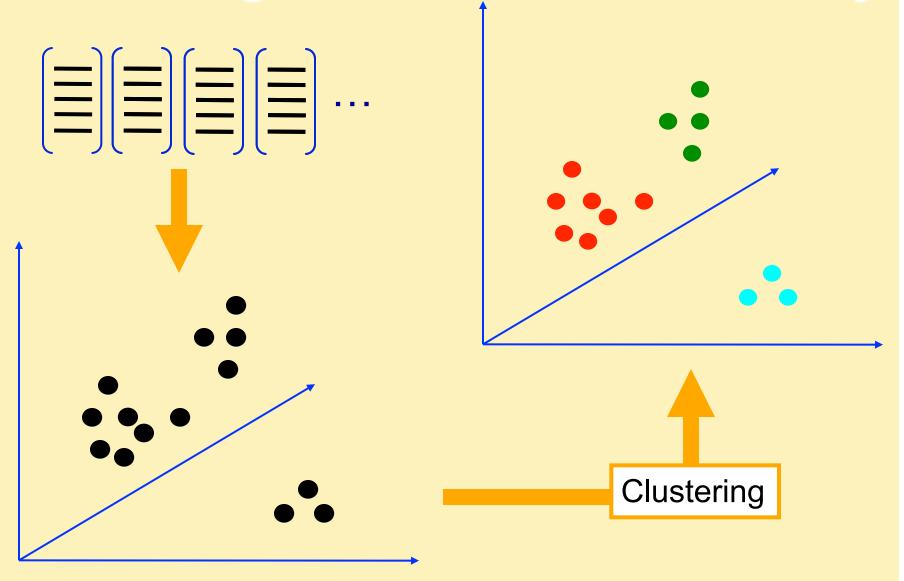
1. Feature extraction



2. Learning the visual vocabulary

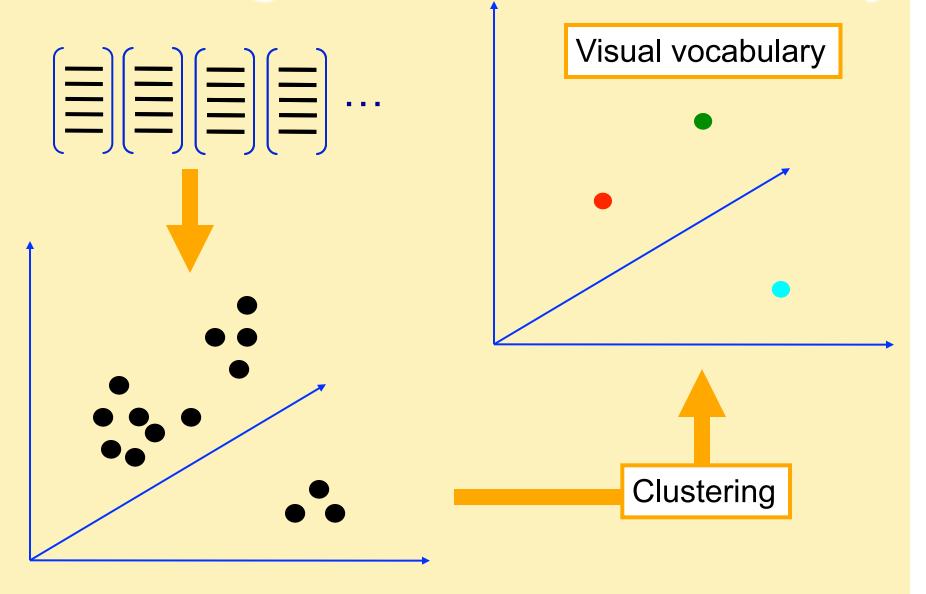


2. Learning the visual vocabulary



Slide credit: Josef Sivic

2. Learning the visual vocabulary



Slide credit: Josef Sivic

K-means clustering

 Want to minimize sum of squared Euclidean distances between points x_i and their nearest cluster centers m_k

$$D(X,M) = \sum_{\text{cluster } k} \sum_{\substack{\text{point } i \text{ in } \\ \text{cluster } k}} (x_i - m_k)^2$$

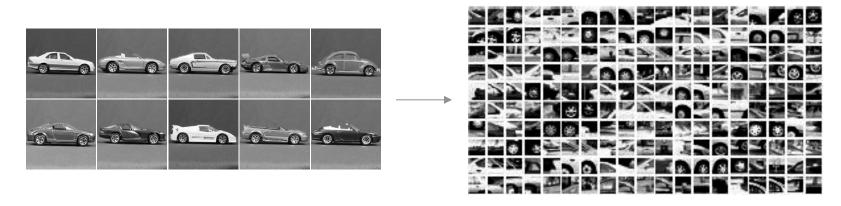
Algorithm:

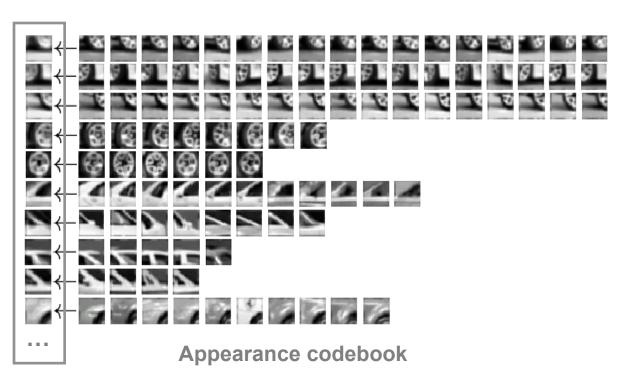
- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each data point to the nearest center
 - Recompute each cluster center as the mean of all points assigned to it

Clustering and vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
 - Unsupervised learning process
 - Each cluster center produced by k-means becomes a codevector
 - Codebook can be learned on separate training set
 - Provided the training set is sufficiently representative, the codebook will be "universal"
- The codebook is used for quantizing features
 - A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
 - Codebook = visual vocabulary
 - Codevector = visual word

Example codebook

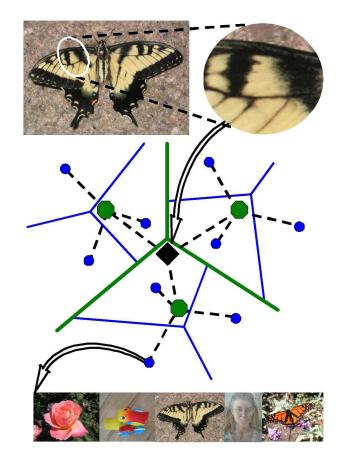




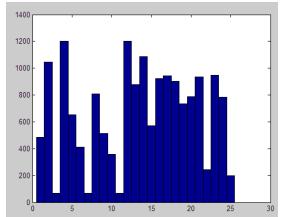
Another codebook

Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting
- Computational efficiency
 - Vocabulary trees (Nister & Stewenius, 2006)

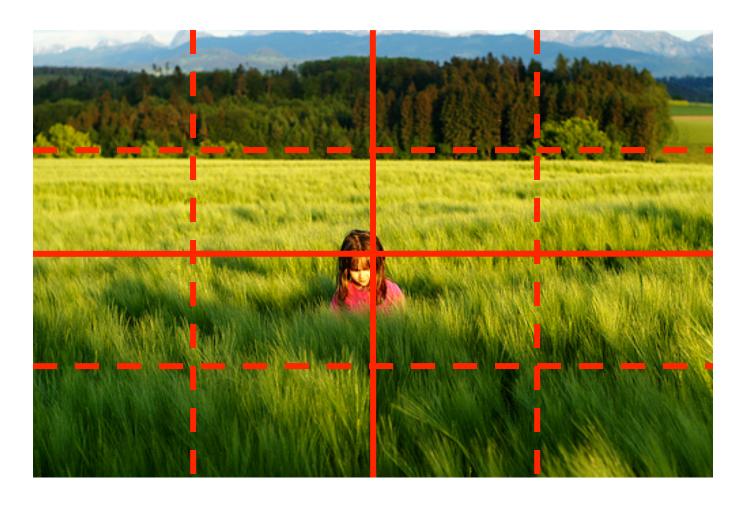


But what about layout?



All of these images have the same color histogram

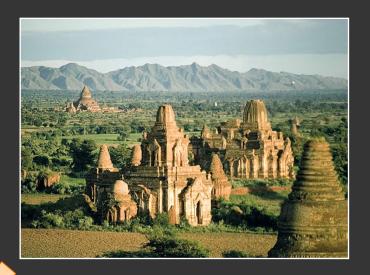
Spatial pyramid

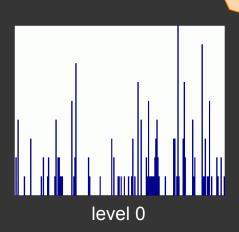


Compute histogram in each spatial bin

Spatial pyramid representation

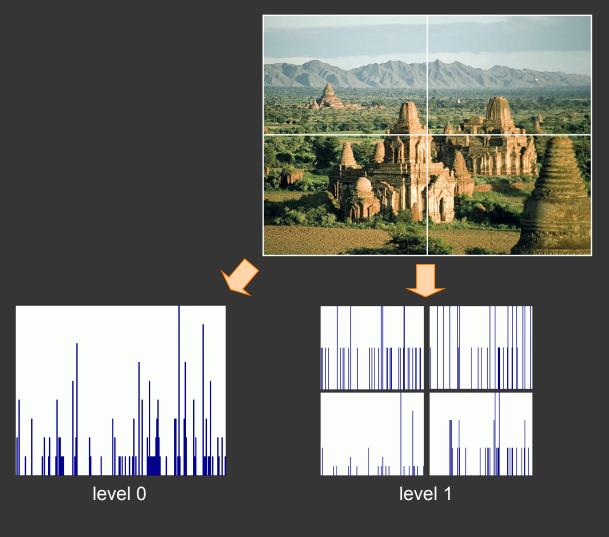
- Extension of a bag of features
- Locally orderless representation at several levels of resolution





Spatial pyramid representation

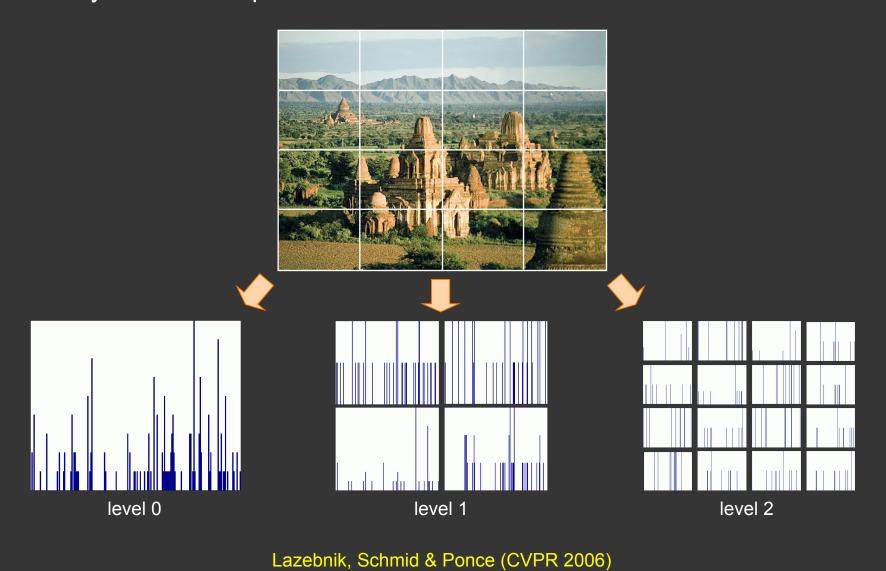
- Extension of a bag of features
- Locally orderless representation at several levels of resolution



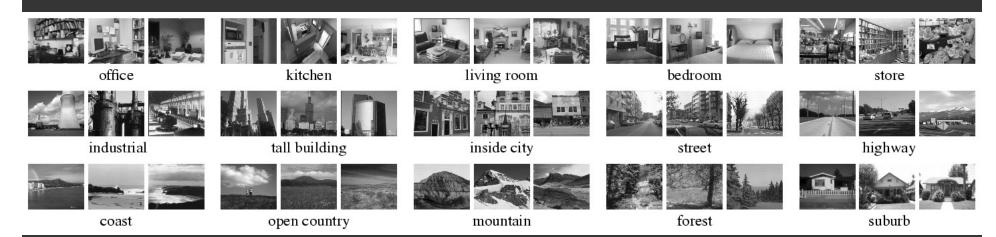
Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution



Scene category dataset



Multi-class classification results (100 training images per class)

	Weak features		Strong features	
	(vocabulary size: 16)		(vocabulary size: 200)	
Level	Single-level	Pyramid	Single-level	Pyramid
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6	
$1(2\times2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ± 0.5
$2(4\times4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ± 0.3
$3(8\times8)$	63.3 ± 0.8	66.8 ± 0.6	77.2 ± 0.4	80.7 ± 0.3

Caltech101 dataset

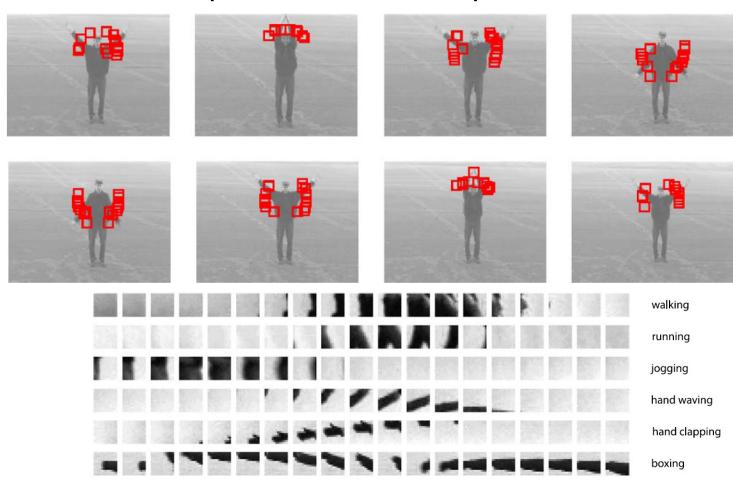
http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

Multi-class classification results (30 training images per class)

	Weak features (16)		Strong features (200)	
Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ± 0.8
3	52.2 ± 0.8	54.0 ± 1.1	60.3 ± 0.9	64.6 ± 0.7

Bags of features for action recognition

Space-time interest points



Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei,

<u>Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words</u>,

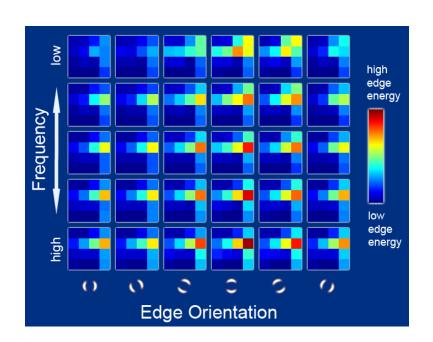
IJCV 2008.

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features
- Present trends: combination of local and global methods, data-driven methods, context

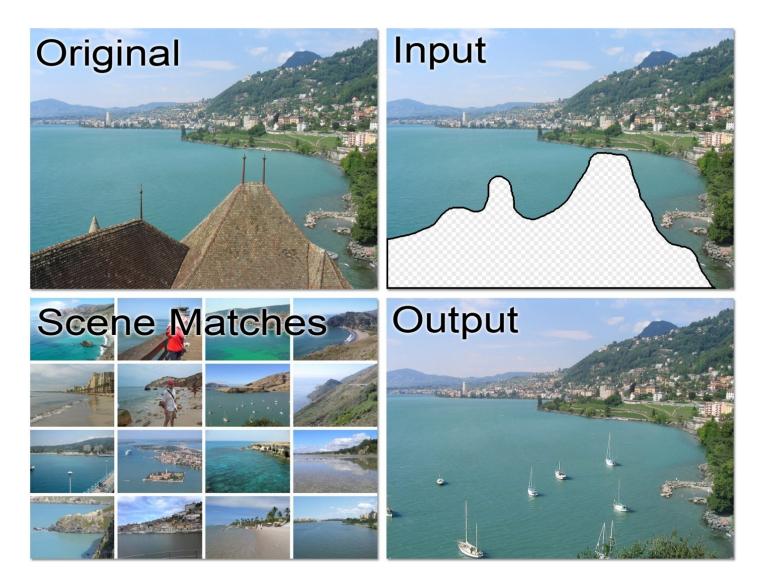
Global scene descriptors

The "gist" of a scene: Oliva & Torralba (2001)



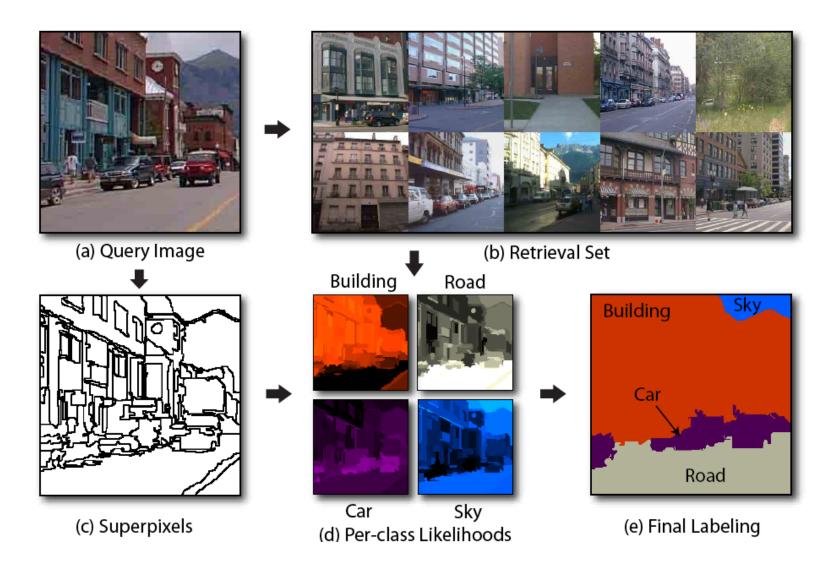
http://people.csail.mit.edu/torralba/code/spatialenvelope/

Data-driven methods



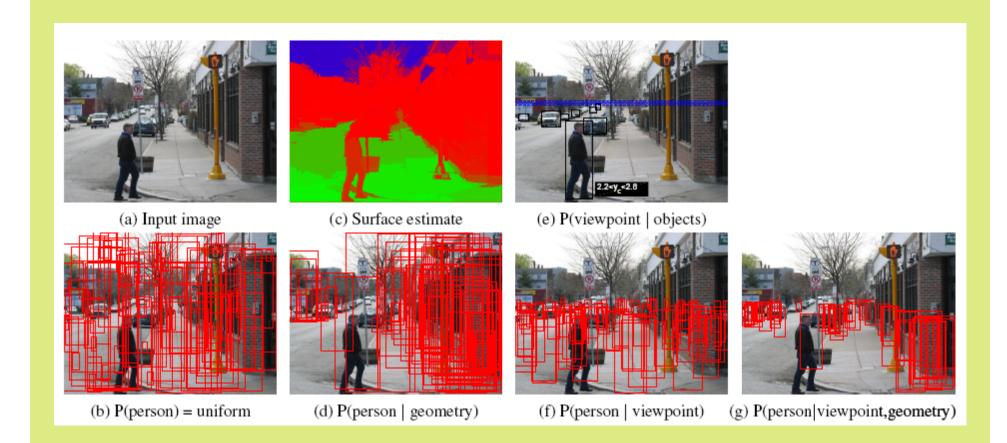
J. Hays and A. Efros, Scene Completion using Millions of Photographs, SIGGRAPH 2007

Data-driven methods



J. Tighe and S. Lazebnik, ECCV 2010

Geometric context



D. Hoiem, A. Efros, and M. Herbert.

Putting Objects in Perspective. CVPR 2006.

Reading license plates, zip codes, checks

- Reading license plates, zip codes, checks
- Fingerprint recognition

- Reading license plates, zip codes, checks
- Fingerprint recognition
- Face detection

[Face priority AE] When a bright part of the face is too bright

- Reading license plates, zip codes, checks
- Fingerprint recognition
- Face detection
- Recognition of flat textured objects (CD covers, book covers, etc.)

