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Finish statistics (quick!)
Directed graphical models
Factorization of joint distributions
Conditional independence
Terminology and notation

MLE Example #3
Suppose we have a DNA sequence of 
length n

Assume bases are iid from a multinomial 
distribution

We wish to estimate the parameters of 
this distribution by maximum likelihood  

x = CGATCTAG... = (x1, x2, . . . , xn)

f(xi) =










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



πA xi = A

πC xi = C

πG xi = G

πT xi = T
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The Likelihood
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lnL(π|x) = nA lnπA + nC lnπC + nG lnπG + nT lnπT

=
∑

b∈A

nb lnπb where A = {A, C, G, T}
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Solving for the MLEs
Define Lagrangian

Solve for “dummy” variable

The MLEs are the relative frequencies

nb = λπb∑

b∈A

nb =

∑

b∈A

λπb

n = λ

=⇒ πA =

nA

n
, πC =

nC

n
, πG =

nG

n
, πT =

nT

n

lnL(π|x) =
∑

b∈A

nb lnπb

l̃(π|x) =
∑

b∈A

nb lnπb + λ

(

1 −
∑

b∈A

πb

)

∂

∂πb

l̃(π|x) =
nb

πb

− λ = 0
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ML Estimation for 
Complex Models

Theta may have very high dimension (tens, 
hundreds, even thousands of parameters)
Even if the (negative) likelihood function is 
convex, it may not be possible to solve for the 
MLE analytically
Often multiple local maxima
Numerical optimization methods are used: 
gradient descent, Newton’s method, quasi-
Newton methods, conjugate gradients
Stochastic methods can also be used
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Bayesian Inference
Bayes’ formula:

Combination of likelihood and prior
Parameters are treated like random 
variables
Idea is to infer posterior distributions for 
parameters, given the data

p(θ|x) =
p(x|θ)p(θ)

p(x)
=

p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ
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Bayesian Coin Flipping
Suppose coin with weight   .  Huckster at 
fair is taking bets on outcomes.  What 
is   ?
You have a weak prior belief that the 
coin is not fair (   > 0.5)
Prior distribution: Beta(  =3,   =2).  
Reason: mathematical convenience

p(θ|α, β) =
1

B(α, β)
θα−1(1 − θ)β−1 1 ≤ θ ≤ 0
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Solving for the Posterior

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

∝ p(x|θ)p(θ)

= θ
s+α−1(1 − θ)n−s+β−1

= Beta(s + α, n − s + β)
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∝ θ
s(1 − θ)n−s

θ
α−1(1 − θ)β−1

11

0.0 0.2 0.4 0.6 0.8 1.0

Theta

0.0 0.2 0.4 0.6 0.8 1.0

Theta

0.0 0.2 0.4 0.6 0.8 1.0

Theta

0.0 0.2 0.4 0.6 0.8 1.0

Theta

n=20

n=5 n=10

n=30

prior

likelihood
posterior First: Graphs

A graph consists of nodes and edges.  The 
edges may be directed or undirected, and 
may be weighted or unweighted. 
A path from node u to node v is a sequence 
of connected edges leading from u to v
The length of a path is its total number of 
edges.  The weight of a path is the sum of 
the weights of all edges.
A cycle is a path (of nonzero length) from a 
node to itself.  An undirected graph without 
cycles is called a tree.
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Directed Acyclic 
Graphs (DAGs)

A DAG is a directed graph that does not 
contain (directed) cycles
A directed tree is a DAG in which every 
node has at most one parent
A polytree is a DAG whose underlying 
undirected graph is a tree
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Examples
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Directed 
cycle DAG

Polytree Directed 
tree

Directed Graphical Models

Let X = {X1, ..., Xn} be a set of (discrete) 
random variables of interest. 
Let G = (V, E) be a directed acyclic graph.  
Nodes in G correspond one-to-one with 
variables in X. 
Let Xv be the variable associated with v ∈ V,  
let XU be associated with U ⊆ V 
The graph defines the joint distribution, 
p(X1, ..., Xn).  From this we can obtain various 
marginal or conditional distributions of 
interest
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(Bayesian Networks)
Marginals and Conditionals
By the law of total probability a marginal 
probability p(xU) = p(XU = xU) is given by,

By the definition of conditional probability, 

where:
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p(xU |xW ) =
p(xU∪W )

p(xW )

p(xU ) =
∑

xT :T=V −U

p(xU , xT )

p(xW ) =
∑

xS′ :S′
=V −W

p(xW , xS′)

p(xU∪W ) =
∑

xS :S=V −(U∪W )

p(xU∪W , xS)

Example
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1X

2X

3X

X 4

X 5

X6

p(x1, x2|x3, x4) =

∑
x5,x6

p(x1, x2, x3, x4, x5, x6)
∑

x1,x2,x5,x6
p(x1, x2, x3, x4, x5, x6)

Sunny Bike ride

Playground

Sleeps well

Pleasant dinner

Productive day

May be expensive!

Let πv be the set of parents of v.  
The corresponding set of variables 
is Xπv.   
Let p(xv | xπv) be the local conditional 
distribution of v given πv  
The local conditional distributions 
together define a joint distribution:

Local Conditionals
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p(x1, . . . , xn) =
∏

v

p(xv|xπv
)

Xv

Xπv



Factorization Example
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1X

2X

3X

X 4

X 5

X6

p(x1, x2, x3, x4, x5, x6) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2, x5)

Theorem
Suppose associated with every node v 
and its parents πv is an arbitrary function, 
fv(xv, xπv), such that:

Let:

Then it must be true that:  
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fv(xv, xπv
) ≥ 0 ∀xv,

∑

xv

fv(xv, xπv
) = 1

f(x1, . . . , xn) =
∏

v

fv(xv, xπv
)

f(x1, . . . , xn) ≥ 0 ∀x1, . . . , xn∑

x1,...,xn

f(x1, . . . , xn) = 1

Theorem, cont.

Furthermore, the joint distribution

has marginals: 
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p(x1, . . . , xn) = f(x1, . . . , xn)

p(xv|xπv
) = fv(xv, xπv

)

Sketch of Proof
Nonnegativity follows from nonnegativity 
of the fvs
The sum of one can be seen by listing 
the variables in topological order, sliding 
summations to the right, and replacing 
sums with 1s from right to left, e.g.,
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1 1

∑

x1,...,xn

f(x1, . . . , xn) = 1

∑

x1

· · ·

∑

xn

f1(x1, xπ1
) · · · fn(xn, xπn

) = 1

∑

x1

f1(x1, xπ1
) · · ·

∑

xn

fn(xn, xπn
) = 1

1 = 1

Sketch of Proof, cont.

To show that the marginals have to be 
the fvs, start with the root nodes, e.g.,

The proofs for the downstream nodes 
proceed in a similar way, by induction.

23

p(x1|.) =
∑

x2,...,xn

f(x1, . . . , xn)

= f1(x1, .)
∑

x2

f2(x2, xπ2
) · · ·

∑

xn

fn(xn, xπn
)

= f1(x1, .) · 1 · · · 1

= f1(x1, .)

If discrete and finite, there 
is a table associated with 
each edge of G
Now exponential in
      rather than in 
Degree of reduction defined 
by factorization 

Tables
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The graph defines a family of joint distributions, 
all of which factor in the same way
Each member has an economic representation 
in terms of its local conditional distributions



The graph G  also represent a set of 
conditional independence statements
We say X2 and X3 are conditionally 
independent given X1 if 

or

for all x1, x2, and x3 such that p(x1) > 0
Thus, by assuming:
instead of:
we assume CI of x2 and x3 given x1

Conditional Independence
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p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x1)

p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x1, x2)

X1

X2 X3

p(x2, x3|x1) = p(x2|x1)p(x3|x1)

p(x2|x1, x3) = p(x2|x1)

Examples
No conditional independence 
assertions = fully connected graph

Complete independence = fully 
unconnected graph

First-order Markov dependencies =  
linear chain

Branching Markov dependencies =  
directed tree
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X1

X2 X3

X1

X2 X3

X1 X2 X3

X1

X2 X3
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Non-descendants

Claim:       is 
conditionally 
independent of its 
non-descendants 
given its parents   

Xπv

Xv

Xv

Xπv

XN

XD

Descendants
XN

Graph Separation & CI Factorization
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Non-descendants

Note that it is 
possible to factor the 
joint distribution as:  

Xπv

Xv

XN

XD

Descendants
P (X1, . . . , Xn) =

P (XN )P (Xπv
|XN )P (Xv|Xπv

)

× P (XD|Xv, Xπv
, XN )

Theorem

Claim: 
Proof: 
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P (Xv|Xπv
, XN ) = P (Xv|Xπv

)

P (Xv|Xπv
, XN ) =

∑
XD

P (XN )P (Xπv
|XN )P (Xv|Xπv

)P (XD|Xv, Xπv
, XN )

∑
XD

∑
Xv

P (XN )P (Xπv
|XN )P (Xv|Xπv

)P (XD|Xv, Xπv
, XN )

=
P (XN )P (Xπv

|XN )P (Xv|Xπv
)
∑

XD
P (XD|Xv, Xπv

, XN )

P (XN )P (Xπv
|XN )

∑
Xv

P (Xv|Xπv
)
∑

XD
P (XD|Xv, Xπv

, XN )

=
P (Xv|Xπv

)
∑

Xv
P (Xv|Xπv

)

= P (Xv|Xπv
)

Blocking of Dependency
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1X

2X

3X

X 4

X 5

X6

p(x6|x1, x2, x3) =

∑
x4,x5

p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2, x5)∑
x4,x5,x6

p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2, x5)

=
p(x1)p(x2|x1)p(x3|x1)

∑
x5

p(x5|x3)p(x6|x2, x5)
∑

x4
p(x4|x2)

p(x1)p(x2|x1)p(x3|x1)
∑

x4
p(x4|x2)

∑
x5

p(x5|x3)
∑

x6
p(x6|x2, x5)

=
p(x1)p(x2|x1)p(x3|x1)

∑
x5

p(x5|x3)p(x6|x2, x5)

p(x1)p(x2|x1)p(x3|x1)

=
∑

x5

p(x5|x3)p(x6|x2, x5)

= p(x6|x2, x3) =⇒ X1 ⊥⊥ X6 |X2, X3



Next Time

More general blocking of dependency 
(Bayes ball algorithm and D-separation)
Relationship between a particular 
factorization and a particular set of 
conditional independence assumptions 
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Continuous vs. Discrete 
Models

So far, emphasis on discrete random 
variables, but most points hold with 
continuous variables
In particular, factorization, conditional 
independence, and blocking are 
unchanged
Proofs remain the same but with 
summations replaced by integrals
Algorithms for inference do change
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A Word About Notation
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Plate NotationSeries Notation

Parameters Observed Variables

That’s All
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The class is now full
Everyone should be signed up for Piazza: 
https://piazza.com/cornell/fall2013/btry6790cs6782/home

The time for the discussion section is set at 
Wed 3:30-4:30, but the room will change
Keep up with readings!

Bishop chapter 8 (8.0–8.3), Jordan chapter 2  
Jordan & Weiss, Kevin Murphy reviews

First assignment posted tomorrow or Sat


