
Cardinal numbers

� Definition: A set X is finite if for some n ∈ N there’s a bijection f : X → {1, 2, . . . , n}.
We say that the cardinal number of X is n and write Card(X) = n.

� Definition: A set X is infinite if it’s not finite. (For any natural number n, no bijection
between X and {1, 2, . . . , n} exists.) Examples of infinite sets include N, Z, Q, and R, (which
we haven’t yet defined!)

� Definition: A set X is countably infinite if there’s a bijection f : X → N. For example,
the set Z is countable: define

f(n) =


0 if n = 0

2n if n > 0
−2n− 1 if n < 0

� Definition: A set is countable if it’s finite or countably infinite - that is, if there’s a
bijection from X onto a subset (possibly all) of N.

� Definition: A countably infinite set is said to have cardinality ℵ0. (Read “aleph nought”
- this is the Hebrew letter aleph (a).) So Card(N) = Card(Z) = ℵ0.

Countably infinite sets have some strange properties. Suppose you have N hotel rooms, and
they’re all booked. You can accommodate a new guest by moving the person in room 1 to
room 2, . . . , room n to room n+1, etc., and putting the new guest in room 1. If a countably
infinite number of new guests appear, you can move the current occupant of room n to room
2n, and put the new guests into rooms 1, 3, 5, . . . .

A set is countable if you can produce an algorithm which makes an ordered list out of the
elements of the set, and exhausts the set. That is, if you have a method for selecting a first
element, then a second one, etc., and you can show that, proceeding in this fashion, you
eventually list every element of the set, then you can write x1 for the first element, x2 for the
second and so on. The bijection is f(n) = xn. For example, with the set Z, our algorithm is
to write the elements in the order 0, 1,−1, 2,−2, 3,−3, 4,−4, . . .. The function defined above
corresponds to this listing.

Proposition: The union of two countable sets is countable. From this it
follows that the union of any finite number of countable sets is countable.
In fact, the union of a countable number of countable sets is countable.

Proof: Suppose X1, X2, . . . , Xn, . . . is a countable collection of countable sets. Denote the
elements of X1 by

X1 = {x11, x12, x13, x14, . . .},

and the elements of Xn by
Xn = {xn1, xn2, xn3, xn4, . . .}.
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Now make a 2-dimensional listing of all the elements of these sets. It looks like

x11, x12, x13, x14, . . .
x21, x22, x23, x24, . . .
x31, x32, x33, x34, . . .
x41, x42, x43, x44 . . .

...

Then starting from the upper left corner of this array, you work your way through the entire
list by going up the diagonals. The listing is

x11, x21, x12, x31, x22, x13, x41, x32, x23, x14, x51, . . .

Can you write out the function f(n)?

Proposition: If X and Y are countable, then so is X × Y .

Proof: This is not much different from the preceding proof. Since X is countable, we can
list its elements: X = {x1, x2, x3, . . .}, and similarly for Y . The Cartesian product is then
X × Y = {(xi, yj) | i, j ∈ N}. Then use the same proof as above, identifying the ordered
pair (xi, yj) with xij in the list above.

♣ Exercise: Prove the following:

1. Any subset of a countable set is countable.

2. Q is countable.

� Definition: A set X which is not countable is said to be (you guessed it) uncountable.
Since such a set is not countable, it’s not finite. Nor can it be put in 1-1 correspondence
with N.

Assuming, for the moment, that we know what real numbers are, there’s a cute proof, due
originally to Cantor, that R is uncountable. What we’ll show is that the open unit interval
is uncountable, using the decimal (or binary, or hexadecimal, etc.) representations of real
numbers:

Suppose, to the contrary, that the set of real numbers in (0, 1) is countable. Then, as we’ve
seen, we can write them out in an ordered list: x1, x2, x3, . . . . Now each real number xn has
a decimal expansion which we write as

xn = .an1an2an3an4 · · ·

where each anm is in {0, 1, . . . , 9}. Now consider the following decimal expansion,

b = .b1b2b3b4 · · · ,
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where each integer bn is chosen so that bn 6= ann. (There are 9 possible choices for each bn;
it doesn’t matter which choice is made.) So b 6= xn for any n since the decimal expansion
of b differs from that of xn in the nth slot. Therefore b cannot be in the list of the xns. But
clearly b ∈ (0, 1), so this is a contradiction - the supposed list did not contain all the numbers
in the interval. Since the set (0, 1) is uncountable, and is a subset of R, it follows that R is
uncountable as well.
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