Uniform Continuity

Recall that if f is continuous at xy in its domain, then for any € > 0, 30 > 0 such that for
all # in the domain of f, |z — x| <0 = |f(z) — f(z0)| < e. The number ¢ will generally
depend on zy. In the future, we shall omit the phrase “for all z in the domain”, which is to
be understood.

e f(r) = x? is continuous at any x, € R.

PROOF: Let € > 0 be given, and suppose that |x — z¢| < 0. (We haven’t fixed d yet,
we're just fooling around.). Then

[f(2) = flzo)| = |2* — 25| = o — wol|lz + ol;
and |z — x| < § =

—0+xzy < x < =0+ x
200 —0 < w+x9g < 2T0+0.

And, since —2|xg| — 0 < 2z — 6, and 2z9+ I < 2|zg| + J, we have |x + xo| < 2|zo| + 9,
so that
|f(z) = f(zo)| = |z — @o||z + 20| < 6[2]z0] + 4].

Since xg is fixed, the right hand side of this inequality can be made as small as we like
by choosing ¢ sufficiently small, and so we can find a § such that the right hand side
is < e.

For instance, if o = 2, we require 6(4 + 0) < e. And if zy = 476, we need (952 + ¢).
It should be clear that as xg — oo, d — 0, and this means that there is no single §
which works for every xy € R.

e f(x) =1/z on [1/2,1]. Let € > 0 be given, and let x,y € [1/2,0] with |z — y| < .
Then

[f(z) = fy)| =

1 1‘_!:6—31!
Ty lzy|

1
Since z,y € [1/2.1], |zy| > (3)* =1 = 2l <4. Soif |z — x| <6,

If(z) — f(y)| = "’L"x_y‘y’ <45 <eif§ < e/d

Here, § does not depend on z and y. It works for any pair of numbers in the interval
[1/2,1] with |z —y| < 6.

DEFINITION: A function f : D — R is said to be uniformly continuous on D <= Ve >
0, 30 > 0 such that |z —y| < = f(x) — f(y)| <e.



The function f(z) = 22 is continuous, but not uniformly continuous on R, as we've seen
above. The function f(x) = 1/ is uniformly continuous on the closed interval [1/2,1].
It’s also continuous on the open interval (0, 1), but we might expect problems with uniform
continuity since this function is unbounded on its domain (as is f(z) = 2?):

e The function f(z) = 1/z is not uniformly continuous on (0, 1):

PROOF: To show this, we need to find a “counterexample”; namely, we need to show
dep > 0 such that V6 > 0, 3 z,y € (0,1) with |z —y| < 0 and |f(x) — f(y)| > €.

With a little thought, this is easily done. Take ¢y = 1 and choose any 6 > 0 (we may
assume ¢ < 1, since if our example holds for this case, it certainly holds for § > 1.
Then put 2 =6/3, y =4§/6, so |z —y| = /6 < 0. And now

_ =yl 4/6 3

Z]_ZE().

We are going to need the notion of uniform continuity to prove the existence of the Riemann
integral for continuous functions in a bit. The main fact we need is given by the following

THEOREM: LET f : [a,b] — R BE CONTINUOUS ON THE CLOSED INTERVAL [a,b]. THEN
f 1S UNIFORMLY CONTINUOUS ON [a, b].

PROOF: (This is a mildly intricate proof, but it doesn’t involve anything new or surprising.
After you’ve understood it, you should be able to write it out yourself.)

Suppose f is continuous but not uniformly continuous. Then there exists an ¢y > 0 such that
the statement “|z —y| < d = |f(z) — f(y)| < € is false for every 0. In particular, for § =
1/n, we can find two points x,, y, € [a,b] such that |z, —y,| < 1/n and |f(z,) — f(yn)| > €o-
This gives us two sequences {z,} and {y,}, both lying in [a, b], and with |z, — y,,| — 0.

REMARK: Notice that if z, — = and y,, — y, then we’d have x = y, and because f is
continuous, |f(z,) — f(yn)| — 0, which would be a contradiction (why?). Now there’s no
reason to believe x, — z or y, — y, but since these sequences lie in the closed interval [a, b],
there are convergent subsequences, and this is how we’ll obtain the contradiction.

Continuing with the proof, by the Bolzano-Weierstrass theorem, there exists a subsequence
{z,, } of {z,}, and a point = € [a,b], such that x,, — . (This is where we're using the
fact that the inteval is closed.) Now put &) = x,,, and Jx = ypn,. S0 T — x, and T is
a subsequence of the original sequence y,,. By the same reasoning, there exists a y € [a, b
and a subsequence {yx_ } with yx, — y. Put &, = &k, s = gr.. Then Z; is a subsequence
of a convergent subsequence and hence also converges to x. Since ys — y, and we have
|Zs — Us| — 0, we must have |f(Zs) — f(9s)] — 0 (why?). This contradicts the assumption
that | f(z,) — f(yn)| is bounded away from 0 (why?). Therefore, our assumption that f is
not uniformly continuous is incorrect.



Exercises:

1. Why, in the proof of the theorem, can’t we just take a convergent subsequence of x,
and a convergent subsequence of y,, and proceed directly to the conclusion?

2. If f is differentiable on [a, b], then f is uniformly continuous on [a, b].

3. Show that sin z is uniformly continuous on R. (See the proof of the differentiability of
sin .



