
Uniform Continuity

Recall that if f is continuous at x0 in its domain, then for any ε > 0, ∃δ > 0 such that for
all x in the domain of f , |x− x0| < δ =⇒ |f(x)− f(x0)| < ε. The number δ will generally
depend on x0. In the future, we shall omit the phrase “for all x in the domain”, which is to
be understood.

• f(x) = x2 is continuous at any x0 ∈ R.

Proof: Let ε > 0 be given, and suppose that |x − x0| < δ. (We haven’t fixed δ yet,
we’re just fooling around.). Then

|f(x)− f(x0)| = |x2 − x2
0| = |x− x0||x+ x0|;

and |x− x0| < δ =⇒

−δ + x0 < x < −δ + x0

2x0 − δ < x+ x0 < 2x0 + δ.

And, since −2|x0| − δ < 2x0− δ, and 2x0 + δ < 2|x0|+ δ, we have |x+ x0| < 2|x0|+ δ,
so that

|f(x)− f(x0)| = |x− x0||x+ x0| < δ[2|x0|+ δ].

Since x0 is fixed, the right hand side of this inequality can be made as small as we like
by choosing δ sufficiently small, and so we can find a δ such that the right hand side
is < ε.

For instance, if x0 = 2, we require δ(4 + δ) < ε. And if x0 = 476, we need δ(952 + δ).
It should be clear that as x0 → ∞, δ → 0, and this means that there is no single δ
which works for every x0 ∈ R.

• f(x) = 1/x on [1/2, 1]. Let ε > 0 be given, and let x, y ∈ [1/2, 0] with |x − y| < δ.
Then

|f(x)− f(y)| =
∣∣∣∣1

x
− 1

y

∣∣∣∣ =
|x− y|
|xy|

.

Since x, y ∈ [1/2.1], |xy| ≥ (1
2
)2 = 1

4
=⇒ 1

|xy|
≤ 4. So if |x− x0| < δ,

|f(x)− f(y)| = |x− y|
|xy|

< 4δ < ε if δ < ε/4.

Here, δ does not depend on x and y. It works for any pair of numbers in the interval
[1/2, 1] with |x− y| < δ.

Definition: A function f : D → R is said to be uniformly continuous on D ⇐⇒ ∀ε >
0, ∃δ > 0 such that |x− y| < δ =⇒ f(x)− f(y)| < ε.
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The function f(x) = x2 is continuous, but not uniformly continuous on R, as we’ve seen
above. The function f(x) = 1/x is uniformly continuous on the closed interval [1/2, 1].
It’s also continuous on the open interval (0, 1), but we might expect problems with uniform
continuity since this function is unbounded on its domain (as is f(x) = x2):

• The function f(x) = 1/x is not uniformly continuous on (0, 1):

Proof: To show this, we need to find a “counterexample”; namely, we need to show

∃ε0 > 0 such that ∀ δ > 0, ∃ x, y ∈ (0, 1) with |x− y| < δ and |f(x)− f(y)| ≥ ε0.

With a little thought, this is easily done. Take ε0 = 1 and choose any δ > 0 (we may
assume δ < 1, since if our example holds for this case, it certainly holds for δ ≥ 1.
Then put x = δ/3, y = δ/6, so |x− y| = δ/6 < δ. And now

|f(x)− f(y)| = |x− y|
|xy|

=
δ/6

δ2/18
=

3

δ
≥ 1 = ε0.

We are going to need the notion of uniform continuity to prove the existence of the Riemann
integral for continuous functions in a bit. The main fact we need is given by the following

Theorem: Let f : [a, b] → R be continuous on the closed interval [a, b]. Then
f is uniformly continuous on [a, b].

Proof: (This is a mildly intricate proof, but it doesn’t involve anything new or surprising.
After you’ve understood it, you should be able to write it out yourself.)

Suppose f is continuous but not uniformly continuous. Then there exists an ε0 > 0 such that
the statement “|x− y| < δ =⇒ |f(x)− f(y)| < ε0” is false for every δ. In particular, for δ =
1/n, we can find two points xn, yn ∈ [a, b] such that |xn−yn| < 1/n and |f(xn)−f(yn)| ≥ ε0.
This gives us two sequences {xn} and {yn}, both lying in [a, b], and with |xn − yn| → 0.

Remark: Notice that if xn → x and yn → y, then we’d have x = y, and because f is
continuous, |f(xn) − f(yn)| → 0, which would be a contradiction (why?). Now there’s no
reason to believe xn → x or yn → y, but since these sequences lie in the closed interval [a, b],
there are convergent subsequences, and this is how we’ll obtain the contradiction.

Continuing with the proof, by the Bolzano-Weierstrass theorem, there exists a subsequence
{xnk
} of {xn}, and a point x ∈ [a, b], such that xnk

→ x. (This is where we’re using the
fact that the inteval is closed.) Now put x̃k = xnk

, and ỹk = ynk
. So x̃k → x, and ỹk is

a subsequence of the original sequence yn. By the same reasoning, there exists a y ∈ [a, b]
and a subsequence {yks} with yks → y. Put x̂s = x̃ks , ŷs = ỹks . Then x̂s is a subsequence
of a convergent subsequence and hence also converges to x. Since ŷs → y, and we have
|x̂s − ŷs| → 0, we must have |f(x̂s) − f(ŷs)| → 0 (why?). This contradicts the assumption
that |f(xn) − f(yn)| is bounded away from 0 (why?). Therefore, our assumption that f is
not uniformly continuous is incorrect.
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Exercises:

1. Why, in the proof of the theorem, can’t we just take a convergent subsequence of xn

and a convergent subsequence of yn and proceed directly to the conclusion?

2. If f is differentiable on [a, b], then f is uniformly continuous on [a, b].

3. Show that sin x is uniformly continuous on R. (See the proof of the differentiability of
sinx.
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