5: Forces and Newton's Laws

Name:	Ke	y		
1. In the	e absence	e of all	forces,	a mo

- ving object will
 - a) Slow down and eventually stop
 - (b) Move at constant velocity
 - c) Immediately come to rest
 - d) Cannot determine without more detail
- 2. Action-reaction forces
 - sometimes act on the same object
 - always acts on the same object b)
 - may be at right angles c)
 - always act on different objects
- 3. An object of mass m sits on a flat table. The earth pulls on this object with a force mg, which we will call the action force. What is the reaction force?
 - The table pushing up on the object with force mg
 - b) The object pushing down on the table with force mg
 - c) The table pushing down on the floor with force mg
 - d) The object pulling upward on the earth with force mg
- 4. Mass and weight
 - a) Both measure the same thing
 - b) Are exactly equal
 - c) Are two different quantities
 - d) Are both measured in kg
- 5. An object of mass M is hanging by a string from the roof of an elevator. The elevator is moving upward and is speeding up. What is the tension in the string?
 - a) equal to Mg
 - b) less than Mg
 - c) greater than Mg
 - d) zero

- 1. A 100 kg man stands in an elevator on a scale that reads weight in Newtons. What does the scale read if the elevator is accelerating downward at 1.5 m/s²? (8 points)
 - a. Draw the free body diagram for the man. (2 points)

b. Determine the force of the scale pushing on the man. (4 points)

 $F_N - F_N = MQ$ $F_N - MQ = MQ$ $F_N - 100(98) = 100(-1.5)$ $F_N = 980 - 150$ $F_N = 830N$

c. If the elevator was accelerating upward, would the scale read a higher or lower value than when the elevator is accelerating downward? Explain. (2 points)

higher, scale balances gravity plus provides accleration $F_N - F_w = M q$ $F_N = F_w + M q$