### Relational Algebra

CSE462 Database Concepts

Demian Lessa/Jan Chomicki

Department of Computer Science and Engineering State University of New York, Buffalo

Fall 2013

### Introduction

Relational Algebra (RA) is an algebra of relations that provides simple yet powerful ways to construct new relations from existing ones. It is related both to first-order logic and set algebra.

- RA is fundamentally an abstract query language.
- Hence, modern database systems do not use RA.
- Instead, they use a concrete language such as SQL.
- It is important to note, however, that RA is at the core of SQL.
- DBMSs translate queries into RA (or variant) during query processing.

### Introduction

Why RA?

- I can do anything with <your favorite PL>!
  - Yes, but only in principle. In practice...
  - How do you represent tuples in <your favorite PL>?
  - How do multiple users share, query, and updated their data?
  - How do you achieve this while keeping, e.g., physical data independence?
- Practical importance.
  - RA is strictly less powerful than <your favorite PL>.
  - Easy to use, e.g., fewer and simpler syntactic constructs.
  - This allows the DBMS to search for efficient query evaluation plans.
  - RA is still expressible enough to be practically useful.
- Limitations.
  - Finite relations only (this is usually not a problem).
  - Set semantics (i.e., tuple duplication not allowed).
  - No aggregate functions (e.g., MIN, MAX, AVG);
  - No recursion (e.g., transitive closure);
  - No ordering (i.e., tuples returned in non-deterministic order).

#### Introduction

An algebra consists of one or more sets closed under one or more operations, satisfying some axioms.

- RA deals with sets of relations closed under certain operations.
- A relation is a set of *k*-tuples where tuple components are named.
- Relations are finite: their arity and extension are both finite.
- RA introduces six primitive operations.
  - Set union and set difference.
  - Selection, projection, cartesian product, and renaming.
- Additional operations may be included, for convenience.
  - However, they do not add expressive power to RA.
  - That is, they can be defined in terms of the primitive operations.

### Relational Algebra Constituents

- Operands.
  - Variables, that stand for relations.
  - Constants, that stand for fixed, finite relations.
- Primitive operations.
  - Set union  $(\cup)$ , set difference (-).
  - Selection ( $\sigma$ ), projection ( $\pi$ ), cartesian ( $\times$ ).
  - Rename (ρ).
- Derived operations (not extensive).
  - Set intersection  $(\cap)$ .
  - Natural join ( $\bowtie$ ), theta join ( $\bowtie_{\theta}$ ).
  - Quotient  $(\div)$ .

### **Relational Algebra Operations**

- Removing parts of a relation.
  - Selection eliminates rows, projection eliminates columns.
- Combining tuples.
  - Cartesian product pairs tuples of two relations in all possible ways.
  - Join pairs tuples of two relations selectively.
- Schema-preserving.
  - All set operations and the selection operation.
  - Rename modifies a relation schema without affecting its tuples.
  - Cartesian and joins output a relation with a "merged" schema.
- Operator Arity.
  - Unary: selection, projection, rename.
  - Binary: cartesian, all join operations, all set operations.
- Monotonicity.
  - All primitive operations, except set difference.

### Set Operations $(\cup, \cap, -)$

- Schema compatibility requirement.
  - *R* op *S*, *R* and *S* relations with the same arity,  $op \in \{\cup, \cap, -\}$ .
  - Attribute names and types must match based on presentation order.
- Set union ( $\cup$ ).
  - $R \cup S$  is the set of tuples that are in R or S or both.
  - Is  $R \cup S = S \cup R$ ?
- Set intersection ( $\cap$ ).
  - $R \cap S$  is the set of tuples that are in both R and S.
  - Is  $R \cap S = S \cap R$ ?
- Set difference (-).
  - R-S is the set of tuples that are in R but not in S.
  - Is R S = S R?
- In all set operations, a tuple may only appear once in the result.
- Hint: use renaming to achieve schema-compatibility.

# Set Operations: Example

|               | address                      | gender              | birthday    |
|---------------|------------------------------|---------------------|-------------|
| Carrie Fisher | 123 Maple St., Holywood      | F                   | 9/9/99      |
| Mark Hamill   | 456 Oak Rd., Brentwood       | М                   | 8/8/88      |
| Relati        | on : Contacts owned by Geor  | ge Lucas ( <i>R</i> | ).          |
| name          | address                      | gender              | birthday    |
| Carrie Fisher | 123 Maple St., Holywood      | F                   | 9/9/99      |
| Harrison Ford | 789 Palm Dr., Beverly Hills  | М                   | 7/7/77      |
| Relatio       | n : Contacts owned by Stever | n Spielberg (       | <i>S</i> ). |
|               |                              |                     |             |
| Answer:       |                              |                     |             |

### Projection $(\pi)$

- Projection takes a relation *R*, removes some of its attributes and/or rearranges its (remaining) attributes. It implicitly performs duplicate elimination as necessary.
- The projection of  $R(A_1, ..., A_m)$  onto components  $A_{i_1}, ..., A_{i_k}$ , where every  $i_j$  is an integer in the range 1 to m, is denoted  $\pi_{A_{i_1},...,A_{i_k}}(R)$ .
- Semantics: for every tuple  $(b_1, \ldots, b_k)$  in  $\pi_{A_{i_1}, \ldots, A_{i_k}}(R)$ , there exists a tuple  $(a_1, \ldots, a_m)$  in R for which  $b_j = a_{i_j}$  for all  $1 \le j \le k$ .
- Projection may also specify attributes by position. Note: do not combine names and positions when specifying a projection!

#### **Projection: Conceptual Examples**

- Compute  $\pi_{C,A,E}(R)$  for R(A, B, C, D, E) using the definition.
  - From the definition,  $(C, A, E) = (A_{i_1}, A_{i_2}, A_{i_3}) = (A_3, A_1, A_5).$
  - Assume  $(b_1, b_2, b_3) \in \pi_{C,A,E}(R)$ .
  - Then,  $(a_1, \ldots, a_m) \in R$  such that  $(b_1, b_2, b_3) = (a_{i_1}, a_{i_2}, a_{i_3})$ .
  - Using the values of the indexed subscripts,  $(b_1, b_2, b_3) = (a_3, a_1, a_5)$ .
  - But we know that  $(A_3, A_1, A_5) = (C, A, E)$ .
  - Thus,  $(b_1, b_2, b_3)$  are precisely the (C, A, E) components of  $(a_1, \ldots, a_m)$ .
- Equivalent projections for R(A, B, C, D, E) using names and indexes.
  - Relations  $\pi_{B,C,D}(R)$  and  $\pi_{2,3,4}(R)$  are equivalent.
  - Relations  $\pi_{C,A,E}(R)$  and  $\pi_{3,1,5}(R)$  are equivalent.

# Projection: Example

| Star Wa                 | ~           | year        | length<br>124 | genre                              |
|-------------------------|-------------|-------------|---------------|------------------------------------|
|                         |             | 1977        |               | scifi                              |
| Galaxy (                |             | 1999        | 104           | comedy                             |
| Wayne's                 | World       | 1992        | 95            | comedy                             |
|                         | -           | Table : Mov | ries          |                                    |
|                         |             |             | 2001          |                                    |
|                         |             |             |               |                                    |
| <b>a</b>                |             |             |               |                                    |
| Compute : $\pi_{title}$ | ,year,lengt | h(Movies    | ) Com         | pute: $\pi_{\text{genre}}(Movies)$ |
| title                   | year        | length      |               | genre                              |
| Star Wars               | 1977        | 124         |               | scifi                              |
| Galaxy Quest            | 1999        | 104         |               | comedy                             |
| Wayne's World           | 1992        | 95          |               |                                    |
|                         | I           | I           |               |                                    |
|                         |             |             |               |                                    |
|                         |             |             |               |                                    |
|                         |             |             |               |                                    |

### Selection ( $\sigma$ )

- Selection takes a relation *R* and a formula φ and removes all tuples from *R* that do not satisfy φ. The formula φ consists of:
  - Operands: constants and attribute names.
  - Comparison: <, =, >,  $\leq$ ,  $\neq$ ,  $\geq$ .
  - Logical: AND ( $\land$ ), OR ( $\lor$ ), NOT ( $\neg$ ) and the usual precedence:  $\neg > \land > \lor$ .
- The selection of  $R(A_1, \ldots, A_m)$  with formula  $\varphi$  is denoted  $\sigma_{\varphi}(R)$ .
- The output schema of  $\sigma_{\phi}(R)$  is identical to the schema of *R*.
- Semantics: a tuple  $(a_1, \ldots, a_m)$  in R is also in  $\sigma_{\varphi}(R)$  if, for all  $1 \le i \le m$ , when we substitute every occurrence of  $A_i$  in  $\varphi$  for  $a_i$ ,  $\varphi$  becomes true.

# Selection: Example

| title         | year | length | genre  |
|---------------|------|--------|--------|
| Star Wars     | 1977 | 124    | scifi  |
| Galaxy Quest  | 1999 | 104    | comedy |
| Wayne's World | 1992 | 95     | comedy |

Table: Movies.

#### $\text{Compute}: \sigma_{\texttt{length} \geq \texttt{100}}(\texttt{Movies})$

| title        | year | length | genre  |
|--------------|------|--------|--------|
| Star Wars    | 1977 | 124    | scifi  |
| Galaxy Quest | 1999 | 104    | comedy |

### Selection: Example

| title         | year | length | genre  |
|---------------|------|--------|--------|
| Star Wars     | 1977 | 124    | scifi  |
| Galaxy Quest  | 1999 | 104    | comedy |
| Wayne's World | 1992 | 95     | comedy |

Table : Movies.

 $Compute: \sigma_{\texttt{length} \ge 100 \text{ AND genre} = \texttt{`comedy'}(\texttt{Movies})$ 

| title        | year | length | genre  |
|--------------|------|--------|--------|
| Galaxy Quest | 1999 | 104    | comedy |

# Selection: Example

| tle year length genr<br>tar Wars 1977 124 scifi<br>ialaxy Quest 1999 104 come<br>Vayne's World 1992 95 come |     |
|-------------------------------------------------------------------------------------------------------------|-----|
| ialaxy Quest 1999 104 come<br>Vayne's World 1992 95 come                                                    | edv |
| Vayne's World 1992 95 com                                                                                   | eav |
|                                                                                                             | -   |
| Toble + Merri e e                                                                                           | edy |
| Table: Movies.                                                                                              |     |
| Compute : $\sigma_{\text{title} = \text{`E.T.'}}$ (Movies)                                                  |     |
| title year length genre                                                                                     |     |
| i                                                                                                           |     |
|                                                                                                             |     |
|                                                                                                             |     |
|                                                                                                             |     |
|                                                                                                             |     |

#### Cartesian Product ( $\times$ )

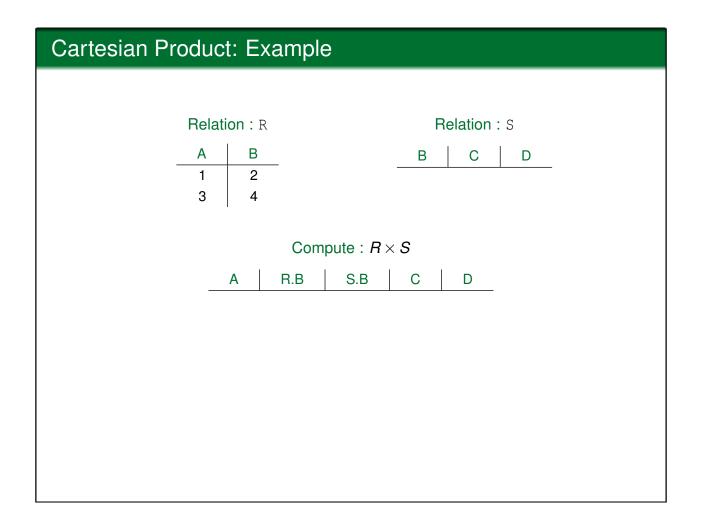
- Cartesian product (also cross product) takes relations *R* and *S* and computes the set of all possible tuples obtained from pairing every tuple in *R* with every tuple in *S*.
- The Cartesian product of *R* and *S* is denoted  $R \times S$ .
- The output schema of  $R \times S$  contains all attributes from both R and S.
  - If *R* and *S* have common attributes, new names are assigned to at least one (but usually both) of each pair of identical attributes.
  - By convention, we disambiguate by qualifying the attribute names with their relation names. E.g., for a common attribute *A*, we use *R*.*A* and *S*.*A*.
- Semantics: Let R and S have arities k<sub>1</sub> and k<sub>2</sub>, respectively. R × S is the set of all (k<sub>1</sub> + k<sub>2</sub>)-tuples whose first k<sub>1</sub> components come from a tuple in R and whose last k<sub>2</sub> components come from a tuple in S. If R and S have, respectively, n<sub>1</sub> and n<sub>2</sub> tuples, then R × S is a set of n<sub>1</sub> · n<sub>2</sub> tuples.

# Cartesian Product: Example

| Relati | on:R | F | Relation : | S  |   |
|--------|------|---|------------|----|---|
| А      | В    | В | С          | D  |   |
| 1      | 2    | 2 | 5          | 6  | - |
| 3      | 4    | 4 | 7          | 8  |   |
|        |      | 9 | 10         | 11 |   |

#### Compute : $R \times S$

| А | R.B | S.B | С  | D  |
|---|-----|-----|----|----|
| 1 | 2   | 2   | 5  | 6  |
| 1 | 2   | 4   | 7  | 8  |
| 1 | 2   | 9   | 10 | 11 |
| 3 | 4   | 2   | 5  | 6  |
| 3 | 4   | 4   | 7  | 8  |
| 3 | 4   | 9   | 10 | 11 |





### Theta Join $(\bowtie_{\theta})$

- Theta join is a derived operation that takes relations *R* and *S*, a formula θ consisting of arithmetic comparisons between *R* and *S* attributes, and returns all tuples in *R* × *S* satisfying the formula θ. References to common attributes in *R* and *S* must be qualified in θ.
- The theta join of *R* and *S* with formula  $\theta$  is denoted  $R \bowtie_{\theta} S$ .
- The output schema of  $R \bowtie_{\theta} S$  is the same as the schema of  $R \times S$ .
- Semantics:  $R \bowtie_{\theta} S$  is the result of  $\sigma_{\theta}(R \times S)$ .
- If  $\theta$  only involves equalities, it is called an equijoin.

# Theta Join: Example

| Rel | ation : | U |                  |                                                   | R           | elatio | on : | V  |
|-----|---------|---|------------------|---------------------------------------------------|-------------|--------|------|----|
| A   | В       | С |                  |                                                   | В           | С      |      | D  |
| 1   | 2       | 3 |                  |                                                   | 2           | 3      |      | 4  |
| 6   | 7       | 8 |                  |                                                   | 2           | 3      |      | 5  |
| 9   | 7       | 8 |                  |                                                   | 7           | 8      |      | 10 |
| А   | U.      |   | compute :<br>U.C | <i>U</i> ⋈ <sub><i>A</i>&lt;<i>L</i></sub><br>V.B | , V<br>∣ V. | c      |      | D  |
| 1   | _       | 2 | 3                | 2                                                 |             | 3      |      | 4  |
| 1   |         | 2 | 3                | 2                                                 |             | 3      |      | 5  |
| 1   |         | 2 | 3                | 7                                                 |             | 8      | 1    | 0  |
| 6   |         | 7 | 8                | 7                                                 |             | 8      | 1    | 0  |
| 9   |         | 7 | 8                | 7                                                 |             | 8      | 1    | 0  |
|     |         |   |                  |                                                   |             |        |      |    |
|     |         |   |                  |                                                   |             |        |      |    |
|     |         |   |                  |                                                   |             |        |      |    |

#### Rename (p)

- The rename operations takes a relation *R* and returns a relation with the same set of tuples but a different schema. Rename can modify the name of the input relation as well as any of its attributes.
- To rename relation  $R(A_1, \ldots, A_k)$  to  $S(B_1, \ldots, B_k)$ , use  $\rho_{S(B_1, \ldots, B_k)}(R)$ .
  - Semantics: The result of  $\rho_{S(B_1,...,B_k)}(R)$  is a relation named *S*, attributes named  $B_1,...,B_k$ , and the same set of tuples as *R*.
- To rename relation  $R(A_1, \ldots, A_k)$  to  $S(A_1, \ldots, A_k)$ , use  $\rho_S(R)$ .
  - Semantics: The result of  $\rho_S(R)$  is a relation named *S*, attributes named  $A_1, \ldots, A_k$ , and the same set of tuples as *R*.
- To rename relation  $R(A_1, \ldots, A_k)$  to  $R(B_1, \ldots, B_k)$ , use  $R(B_1, \ldots, B_k)$ .
  - Semantics: The result of  $R(B_1, ..., B_k)$  is a relation named R, attributes named  $B_1, ..., B_k$ , and the same set of tuples as R.

# Rename: Example

|   | Relat | i <b>on :</b> U |     |     | Relation : V |    |    |  |  |
|---|-------|-----------------|-----|-----|--------------|----|----|--|--|
| 1 | A     | в С             | 2   |     | В            | С  | D  |  |  |
|   | 1     | 2 3             | 3   |     | 2            | 3  | 4  |  |  |
| ( | 6     | 7               | 3   |     | 2            | 3  | 5  |  |  |
| ļ | 9     | 7               | 3   |     | 7            | 8  | 10 |  |  |
|   | Α     | В               | U.C | T.C | D            | E  |    |  |  |
|   | ٨     |                 |     | ТО  |              |    |    |  |  |
|   |       |                 |     |     |              |    |    |  |  |
|   | 1     | 2               | 3   | 2   | 3            | 4  |    |  |  |
|   | 1     | 2               | 3   | 2   | 3            | 5  | 5  |  |  |
|   | 1     | 2               | 3   | 7   | 8            | 10 | )  |  |  |
|   | 6     | 7               | 8   | 7   | 8            | 10 | )  |  |  |
|   |       |                 |     |     |              |    |    |  |  |
|   |       |                 |     |     |              |    |    |  |  |
|   |       |                 |     |     |              |    |    |  |  |
|   |       |                 |     |     |              |    |    |  |  |

#### Natural Join (⋈)

- Natural join is an equijoin that takes relations *R* and *S* and returns all tuples in *R* × *S* that agree on the values of their common attributes.
- The natural join of R and S is denoted  $R \bowtie S$ .
- The schema of  $R \bowtie S$  is the union of the schemas of R and S: identical attributes are unqualified and included only once.
- Semantics:

Given  $R(A_1, \ldots, A_k, B_1, \ldots, B_m)$  and  $S(A_1, \ldots, A_k, C_1, \ldots, C_n)$ , the result of  $R \bowtie S$  is:

 $\pi_{A_1,...,A_k,B_1,...,B_m,C_1,...,C_n}(R \bowtie_{A_1=D_1 \land \dots \land A_k=D_k} \rho_{S(D_1,...,D_k,C_1,...,C_n)}(S))$ 

• Note: if *R* and *S* have no common attributes, the natural join reduces to a cartesian product.

# Natural Join: Example

| Re | elation | : U |         | Relation : V |    |   |    |  |
|----|---------|-----|---------|--------------|----|---|----|--|
| А  | В       | C   |         |              | В  | С | D  |  |
| 1  | 2       | 3   | _       | -            | 2  | 3 | 4  |  |
| 6  | 7       | 8   |         |              | 2  | 3 | 5  |  |
| 9  | 7       | 8   |         |              | 7  | 8 | 10 |  |
|    | _       | А   | В       | С            | D  |   |    |  |
|    |         | (   | Compute | e:U⊠         | V  |   |    |  |
|    | -       | 1   | 2       | 3            | 4  |   |    |  |
|    |         | 1   | 2       | 3            | 5  |   |    |  |
|    |         | 6   | 7       | 8            | 10 |   |    |  |
|    |         | 9   | 7       | 8            | 10 |   |    |  |
|    |         |     | -       |              |    |   |    |  |
|    |         |     |         |              |    |   |    |  |
|    |         |     |         |              |    |   |    |  |
|    |         |     |         |              |    |   |    |  |

### Other kinds of joins

• Semijoin:

 $R\ltimes_{\theta} S = \pi_R(R\Join_{\theta} S).$ 

• Anti-semijoin:  $R - (R \ltimes_{\theta} S)$ .

### Quotient $(\div)$

- Quotients are useful for expressing universal quantification.
- The quotient takes relations *R* and *S* and returns the largest relation *T* satisfying *T* × *S* ⊆ *R*. The attribute sets of *S* and *T* must form a partition of the attribute set of *R*.
- The quotient of *R* and *S* is denoted  $R \div S$ .
- The output schema of  $R \div S$  consists of the attributes in R but not in S.
- Semantics: Given R(A<sub>1</sub>,...,A<sub>n</sub>,B<sub>1</sub>,...,B<sub>m</sub>) and S(B<sub>1</sub>,...,B<sub>m</sub>), R÷S returns a set of tuples over the attributes A<sub>1</sub>,...,A<sub>n</sub> such that, for every tuple (a<sub>1</sub>,...,a<sub>n</sub>) in R÷S and every tuple (b<sub>1</sub>,...,b<sub>m</sub>) in S, the tuple (a<sub>1</sub>,...,a<sub>n</sub>,b<sub>1</sub>,...,b<sub>m</sub>) is in R.

#### • Quotient is a derived operation:

 $\begin{array}{ll} \pi_{A_1,\ldots,A_n}(R)\times S & \text{possible} \\ \pi_{A_1,\ldots,A_n}(R)\times S-R & \text{possible - actual} \\ \pi_{A_1,\ldots,A_n}(\pi_{A_1,\ldots,A_n}(R)\times S-R) & \pi(\text{possible - actual}) \\ \pi_{A_1,\ldots,A_n}(R)-\pi_{A_1,\ldots,A_n}(\pi_{A_1,\ldots,A_n}(R)\times S-R) & \pi(\text{actual}) - \pi(\text{possible - actual}) \end{array}$ 

### **Beyond Basic Operations**

- RA allows us to create expressions by composing operations.
  - This property holds because RA is closed under the defined operations.
  - Arbitrarily complex relations can be created by composing subexpressions.
  - Parenthesis are used to group subexpressions, for clarity.
- RA expressions may be represented as trees.
  - Leaf nodes are stored relations.
  - Internal nodes are operators.
  - Subtrees are subexpressions.
- RA expressions can also be represented using a linear notation.
  - List  $A_1, \ldots, A_k$  of assignments.
  - Each  $A_i$  has the form  $R(v_1, \ldots, v_n) := expr$ 
    - lhs is a new relation name and a list of attributes.
    - rhs is a RA expression referencing stored relations or any  $A_j$ , j < i.

### Linear Notation: Example

- Schema: Movies(title, year, length, genre, studioName).
- List the title and year of Fox movies that run for at least 100 minutes.
  - $R(t, y, l, g, s) := \sigma_{length \ge 100}(Movies)$
  - S(t, y, l, g, s) := σ<sub>studioName='Fox'</sub> (Movies)
  - $T(t,y,l,g,s) := R \cap S$
  - Answer(title, year) :=  $\pi_{t,y}(T)$
- There are many ways to do it...
  - $R(t, y, l, g, s) := \sigma_{length \ge 100}(Movies)$
  - $S(t,y,l,g,s) := \sigma_{s='Fox'}(R)$
  - Answer(title, year) :=  $\pi_{t,y}(S)$

### **Expression Equivalence**

- Different RA expressions may perform the same computation.
- These are called equivalent expressions.
  - $E_1 \equiv E_2 \Leftrightarrow E_1(D) = E_2(D)$  for every database instance *D*.
  - Remember,  $E_1(D) = E_2(D) \Leftrightarrow E_1(D) \subseteq E_2(D) \land E_2(D) \subseteq E_1(D)$ .
- This fact is often explored by query optimizers in DBMSs.
  - A user query may have many equivalent expressions.
  - Some (sub)expressions are much faster to evaluate.
  - The DBMS may replace one (sub)expression for an equivalent one that is more efficiently evaluated.
- For instance, let *R* and *S* be schema-compatible.
  - $R \cap S \equiv R (R S) \equiv S (S R)$

#### Set vs Bag Semantics

- Queries may produce (intermediate) duplicate tuples that need to be eliminated under set semantics, e.g., union and projection.
- Most bag operations are more efficient than their set counterparts.
- Real applications need both set and bag semantics.
- Under bag semantics,
  - projection may create duplicate tuples;
  - selection is applied to each tuple independently;
  - cartesian is applied to each pair of tuples independently;
  - join matches pairs of tuples independently.
- Let tuple *t* occur *n* times in *R* and *m* times in *S*, respectively.
  - *t* appears n + m times in  $R \cup S$
  - *t* appears min(n, m) times in  $R \cap S$
  - t appears max(0, n-m) times in R-S
- Let tuples *r* and *s* occur *n* times in *R* and *m* times in *S*, respectively.
  - *rs* appears  $n \cdot m$  times in  $R \times S$

