
Relational Algebra
CSE462 Database Concepts

Demian Lessa/Jan Chomicki

Department of Computer Science and Engineering
State University of New York, Buffalo

Fall 2013



Introduction

Relational Algebra (RA) is an algebra of relations that provides simple yet
powerful ways to construct new relations from existing ones. It is related
both to first-order logic and set algebra.

RA is fundamentally an abstract query language.

Hence, modern database systems do not use RA.

Instead, they use a concrete language such as SQL.

It is important to note, however, that RA is at the core of SQL.

DBMSs translate queries into RA (or variant) during query processing.



Introduction

Why RA?
I can do anything with <your favorite PL>!

Yes, but only in principle. In practice. . .
How do you represent tuples in <your favorite PL>?
How do multiple users share, query, and updated their data?
How do you achieve this while keeping, e.g., physical data independence?

Practical importance.
RA is striclty less powerful than <your favorite PL>.
Easy to use, e.g., fewer and simpler syntactic constructs.
This allows the DBMS to search for efficient query evaluation plans.
RA is still expressible enough to be practically useful.

Limitations.
Finite relations only (this is usually not a problem).
Set semantics (i.e., tuple duplication not allowed).
No aggregate functions (e.g., MIN, MAX, AVG);
No recursion (e.g., transitive closure);
No ordering (i.e., tuples returned in non-deterministic order).



Introduction

An algebra consists of one or more sets closed under one or more
operations, satisfying some axioms.

RA deals with sets of relations closed under certain operations.

A relation is a set of k -tuples where tuple components are named.

Relations are finite: their arity and extension are both finite.
RA introduces six primitive operations.

Set union and set difference.
Selection, projection, cartesian product, and renaming.

Additional operations may be included, for convenience.
However, they do not add expressive power to RA.
That is, they can be defined in terms of the primitive operations.



Relational Algebra Constituents

Operands.
Variables, that stand for relations.
Constants, that stand for fixed, finite relations.

Primitive operations.
Set union (∪), set difference (−).
Selection (σ), projection (π), cartesian (×).
Rename (ρ).

Derived operations (not extensive).
Set intersection (∩).
Natural join (1), theta join (1θ).
Quotient (÷).



Relational Algebra Operations

Removing parts of a relation.
Selection eliminates rows, projection eliminates columns.

Combining tuples.
Cartesian product pairs tuples of two relations in all possible ways.
Join pairs tuples of two relations selectively.

Schema-preserving.
All set operations and the selection operation.
Rename modifies a relation schema without affecting its tuples.
Cartesian and joins output a relation with a “merged” schema.

Operator Arity.
Unary: selection, projection, rename.
Binary: cartesian, all join operations, all set operations.

Monotonicity.
All primitive operations, except set difference.



Set Operations (∪,∩,−)

Schema compatibility requirement.
R op S, R and S relations with the same arity, op ∈ {∪,∩,−}.
Attribute names and types must match based on presentation order.

Set union (∪).
R∪S is the set of tuples that are in R or S or both.
Is R∪S = S∪R?

Set intersection (∩).
R∩S is the set of tuples that are in both R and S.
Is R∩S = S∩R?

Set difference (−).
R−S is the set of tuples that are in R but not in S.
Is R−S = S−R?

In all set operations, a tuple may only appear once in the result.

Hint: use renaming to achieve schema-compatibility.



Set Operations: Example

name address gender birthday
Carrie Fisher 123 Maple St., Holywood F 9/9/99
Mark Hamill 456 Oak Rd., Brentwood M 8/8/88

Relation : Contacts owned by George Lucas (R).

name address gender birthday
Carrie Fisher 123 Maple St., Holywood F 9/9/99
Harrison Ford 789 Palm Dr., Beverly Hills M 7/7/77

Relation : Contacts owned by Steven Spielberg (S).

Answer:
What are the schemas of R and S?
What are the results of: R∪S, R∩S, R−S, and S−R?



Projection (π)

Projection takes a relation R, removes some of its attributes and/or
rearranges its (remaining) attributes. It implicitly performs duplicate
elimination as necessary.

The projection of R(A1, . . . ,Am) onto components Ai1 , . . . ,Aik , where
every ij is an integer in the range 1 to m, is denoted πAi1 ,...,Aik

(R).

Semantics: for every tuple (b1, . . . ,bk) in πAi1 ,...,Aik
(R), there exists a

tuple (a1, . . . ,am) in R for which bj = aij for all 1≤ j ≤ k .

Projection may also specify attributes by position. Note: do not
combine names and positions when specifying a projection!



Projection: Conceptual Examples

Compute πC,A,E(R) for R(A,B,C,D,E) using the definition.
From the definition, (C,A,E) = (Ai1 ,Ai2 ,Ai3) = (A3,A1,A5).
Assume (b1,b2,b3) ∈ πC,A,E(R).
Then, (a1, . . . ,am) ∈ R such that (b1,b2,b3) = (ai1 ,ai2 ,ai3).
Using the values of the indexed subscripts, (b1,b2,b3) = (a3,a1,a5).
But we know that (A3,A1,A5) = (C,A,E).
Thus, (b1,b2,b3) are precisely the (C,A,E) components of (a1, . . . ,am).

Equivalent projections for R(A,B,C,D,E) using names and indexes.
Relations πB,C,D(R) and π2,3,4(R) are equivalent.
Relations πC,A,E(R) and π3,1,5(R) are equivalent.



Projection: Example

title year length genre
Star Wars 1977 124 scifi
Galaxy Quest 1999 104 comedy
Wayne’s World 1992 95 comedy

Table : Movies.

Compute : πtitle,year,length(Movies)

title year length
Star Wars 1977 124
Galaxy Quest 1999 104
Wayne’s World 1992 95

Compute : πgenre(Movies)

genre
scifi
comedy



Selection (σ)

Selection takes a relation R and a formula ϕ and removes all tuples
from R that do not satisfy ϕ. The formula ϕ consists of:

Operands: constants and attribute names.
Comparison: <, =, >, ≤, 6=, ≥.
Logical: AND (∧), OR (∨), NOT (¬) and the usual precedence: ¬ > ∧ > ∨.

The selection of R(A1, . . . ,Am) with formula ϕ is denoted σϕ(R).

The output schema of σϕ(R) is identical to the schema of R.

Semantics: a tuple (a1, . . . ,am) in R is also in σϕ(R) if, for all
1≤ i ≤m, when we substitute every occurrence of Ai in ϕ for ai , ϕ

becomes true.



Selection: Example

title year length genre
Star Wars 1977 124 scifi
Galaxy Quest 1999 104 comedy
Wayne’s World 1992 95 comedy

Table : Movies.

Compute : σlength ≥ 100(Movies)

title year length genre
Star Wars 1977 124 scifi
Galaxy Quest 1999 104 comedy



Selection: Example

title year length genre
Star Wars 1977 124 scifi
Galaxy Quest 1999 104 comedy
Wayne’s World 1992 95 comedy

Table : Movies.

Compute : σlength ≥ 100 AND genre = ‘comedy’(Movies)

title year length genre
Galaxy Quest 1999 104 comedy



Selection: Example

title year length genre
Star Wars 1977 124 scifi
Galaxy Quest 1999 104 comedy
Wayne’s World 1992 95 comedy

Table : Movies.

Compute : σtitle = ‘E.T.’(Movies)

title year length genre



Cartesian Product (×)

Cartesian product (also cross product) takes relations R and S and
computes the set of all possible tuples obtained from pairing every
tuple in R with every tuple in S.

The Cartesian product of R and S is denoted R×S.
The output schema of R×S contains all attributes from both R and S.

If R and S have common attributes, new names are assigned to at least
one (but usually both) of each pair of identical attributes.
By convention, we disambiguate by qualifying the attribute names with their
relation names. E.g., for a common attribute A, we use R.A and S.A.

Semantics: Let R and S have arities k1 and k2, respectively. R×S is
the set of all (k1 + k2)-tuples whose first k1 components come from a
tuple in R and whose last k2 components come from a tuple in S. If R
and S have, respectively, n1 and n2 tuples, then R×S is a set of n1 ·n2

tuples.



Cartesian Product: Example

Relation : R

A B
1 2
3 4

Relation : S

B C D
2 5 6
4 7 8
9 10 11

Compute : R×S

A R.B S.B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11



Cartesian Product: Example

Relation : R

A B
1 2
3 4

Relation : S

B C D

Compute : R×S

A R.B S.B C D



Theta Join (1θ)

Theta join is a derived operation that takes relations R and S, a formula
θ consisting of arithmetic comparisons between R and S attributes,
and returns all tuples in R×S satisfying the formula θ. References to
common attributes in R and S must be qualified in θ.

The theta join of R and S with formula θ is denoted R 1θ S.

The output schema of R 1θ S is the same as the schema of R×S.

Semantics: R 1θ S is the result of σθ(R×S).

If θ only involves equalities, it is called an equijoin.



Theta Join: Example

Relation : U

A B C
1 2 3
6 7 8
9 7 8

Relation : V

B C D
2 3 4
2 3 5
7 8 10

Compute : U 1A<D V

A U.B U.C V.B V.C D
1 2 3 2 3 4
1 2 3 2 3 5
1 2 3 7 8 10
6 7 8 7 8 10
9 7 8 7 8 10



Rename (ρ)

The rename operations takes a relation R and returns a relation with
the same set of tuples but a different schema. Rename can modify the
name of the input relation as well as any of its attributes.
To rename relation R(A1, . . . ,Ak) to S(B1, . . . ,Bk), use ρS(B1,...,Bk )(R).

Semantics: The result of ρS(B1,...,Bk )(R) is a relation named S, attributes
named B1, . . . ,Bk , and the same set of tuples as R.

To rename relation R(A1, . . . ,Ak) to S(A1, . . . ,Ak), use ρS(R).
Semantics: The result of ρS(R) is a relation named S, attributes named
A1, . . . ,Ak , and the same set of tuples as R.

To rename relation R(A1, . . . ,Ak) to R(B1, . . . ,Bk), use R(B1, . . . ,Bk).
Semantics: The result of R(B1, . . . ,Bk ) is a relation named R, attributes
named B1, . . . ,Bk , and the same set of tuples as R.



Rename: Example

Relation : U

A B C
1 2 3
6 7 8
9 7 8

Relation : V

B C D
2 3 4
2 3 5
7 8 10

Compute : U 1A<D ρT (C,D,E)(V )

A B U.C T.C D E
1 2 3 2 3 4
1 2 3 2 3 5
1 2 3 7 8 10
6 7 8 7 8 10



Natural Join (1)

Natural join is an equijoin that takes relations R and S and returns all
tuples in R×S that agree on the values of their common attributes.

The natural join of R and S is denoted R 1 S.

The schema of R 1 S is the union of the schemas of R and S: identical
attributes are unqualified and included only once.

Semantics:

Given R(A1, . . . ,Ak ,B1, . . . ,Bm) and S(A1, . . . ,Ak ,C1, . . . ,Cn), the
result of R 1 S is:

πA1,...,Ak ,B1,...,Bm,C1,...,Cn(R 1A1=D1∧···∧Ak=Dk ρS(D1,...,Dk ,C1,...,Cn)(S))

Note: if R and S have no common attributes, the natural join reduces to
a cartesian product.



Natural Join: Example

Relation : U

A B C
1 2 3
6 7 8
9 7 8

Relation : V

B C D
2 3 4
2 3 5
7 8 10

Compute : U 1 V

A B C D
1 2 3 4
1 2 3 5
6 7 8 10
9 7 8 10



Other kinds of joins

Semijoin:

Rnθ S = πR(R 1θ S).

Anti-semijoin: R− (Rnθ S).



Quotient (÷)

Quotients are useful for expressing universal quantification.

The quotient takes relations R and S and returns the largest relation T
satisfying T ×S ⊆ R. The attribute sets of S and T must form a
partition of the attribute set of R.

The quotient of R and S is denoted R÷S.

The output schema of R÷S consists of the attributes in R but not in S.

Semantics: Given R(A1, . . . ,An,B1, . . . ,Bm) and S(B1, . . . ,Bm), R÷S
returns a set of tuples over the attributes A1, . . . ,An such that, for every
tuple (a1, . . . ,an) in R÷S and every tuple (b1, . . . ,bm) in S, the tuple
(a1, . . . ,an,b1, . . . ,bm) is in R.
Quotient is a derived operation:
πA1,...,An(R)×S possible
πA1,...,An(R)×S−R possible - actual
πA1,...,An(πA1,...,An(R)×S−R) π(possible - actual)
πA1,...,An(R)−πA1,...,An(πA1,...,An(R)×S−R) π(actual) - π(possible - actual)



Quotient: Example

Relation : Account

Customer BranchName
Hewitt Buffalo
Blake Amherst
Blake Buffalo
Blake Depew
Fox Amherst
Fox Buffalo
Smith Lockport

Relation : Branch

BranchName
Amherst
Buffalo

Compute : Account ÷ Branch

Customer
Blake
Fox



Beyond Basic Operations

RA allows us to create expressions by composing operations.
This property holds because RA is closed under the defined operations.
Arbitrarily complex relations can be created by composing subexpressions.
Parenthesis are used to group subexpressions, for clarity.

RA expressions may be represented as trees.
Leaf nodes are stored relations.
Internal nodes are operators.
Subtrees are subexpressions.

RA expressions can also be represented using a linear notation.
List A1, . . . ,Ak of assignments.
Each Ai has the form R(v1, . . . ,vn) := expr

lhs is a new relation name and a list of attributes.
rhs is a RA expression referencing stored relations or any Aj , j < i .



Linear Notation: Example

Schema: Movies(title, year, length, genre, studioName).
List the title and year of Fox movies that run for at least 100 minutes.

R(t,y , l,g,s) := σlength≥100(Movies)
S(t,y , l,g,s) := σstudioName=‘Fox ’(Movies)
T (t,y , l,g,s) := R∩S
Answer(title,year) := πt,y (T )

There are many ways to do it. . .
R(t,y , l,g,s) := σlength≥100(Movies)
S(t,y , l,g,s) := σs=‘Fox ’(R)
Answer(title,year) := πt,y (S)



Expression Equivalence

Different RA expressions may perform the same computation.
These are called equivalent expressions.

E1 ≡ E2⇔ E1(D) = E2(D) for every database instance D.
Remember, E1(D) = E2(D)⇔ E1(D)⊆ E2(D)∧E2(D)⊆ E1(D).

This fact is often explored by query optimizers in DBMSs.
A user query may have many equivalent expressions.
Some (sub)expressions are much faster to evaluate.
The DBMS may replace one (sub)expression for an equivalent one that is
more efficiently evaluated.

For instance, let R and S be schema-compatible.
R∩S ≡ R− (R−S)≡ S− (S−R)



Set vs Bag Semantics

Queries may produce (intermediate) duplicate tuples that need to be
eliminated under set semantics, e.g., union and projection.

Most bag operations are more efficient than their set counterparts.

Real applications need both set and bag semantics.
Under bag semantics,

projection may create duplicate tuples;
selection is applied to each tuple independently;
cartesian is applied to each pair of tuples independently;
join matches pairs of tuples independently.

Let tuple t occur n times in R and m times in S, respectively.
t appears n+m times in R∪S
t appears min(n,m) times in R∩S
t appears max(0,n−m) times in R−S

Let tuples r and s occur n times in R and m times in S, respectively.
rs appears n ·m times in R×S



Required

Read sections 2.4 of chapter #2 and 5.1 of chapter #5.


	Relatonal Algebra

