
Structured Query Language (SQL)
CSE462 Database Concepts

Demian Lessa/Jan Chomicki

Department of Computer Science and Engineering
State University of New York, Buffalo

Fall 2013

Introduction

What is Structured Query Language (SQL)?

SQL is the most common DML/DDL for relational databases.
Virtually all RDBMS vendors implement SQL based on standards.

SQL-86, SQL-92 (SQL2), SQL-99 (SQL3), SQL:2003, SQL:2008,
SQL:2011.
They also provide proprietary extensions (eg, PL/SQL, T-SQL).

SQL’s DML is conceptually very similar to RA.

SQL standardizes commands beyond DML/DDL (cf, chapters 7 and 9).

Introduction

How do SQL and RA compare?

RA is a conceptual query language, SQL is implemented by RDBMSs.

RA’s semantics is defined on sets, SQL’s on bags.

RA does not support NULLs, SQL does.
Neither RA nor SQL can specify order within sets of tuples.

However, top-level SQL results can be ordered (not subqueries).

SQL is relationally complete.
All RA queries are expressible in SQL.
Not all SQL queries are expressible in RA.
RA cannot express aggregation or recursion.
RA cannot handle duplicates or NULLs.

Select-Project (SP) Queries

SELECT selectList
FROM fromList
[WHERE condition]
[ORDER BY orderList];

Syntax:
SELECT: lists attributes/expressions to project.

Aliasing: “studioName AS SName” renames attribute studioName to SName.
Wildcard: “*” returns all attributes from all relations, “R.*” all attributes in R.

FROM: lists relation expressions to which the query refers.
Tuple variables: “relexpr AS T” assigns tuple variable T to relexpr.

WHERE: defines a boolean expression that tuples must satisfy.
SQL and RA: operands, comparison operators, boolean connectives.
SQL only: ||, LIKE, COALESCE, NULLIF, CASE, etc.

ORDER BY: lists attributes/expressions on which tuples are sorted.
ASC (DESC): attribute values sorted lowest (highest) first. Default is ASC.
Ties on the 1st attribute are broken using the 2nd attribute, etc.

Select-Project (SP) Queries

SELECT selectList
FROM fromList
[WHERE condition]
[ORDER BY orderList];

Semantics:
1 Compute the Cartesian product of the relations in fromList.
2 Discard all tuples obtained in (1) that do not satisfy condition.
3 For each tuple obtained in (2), return one tuple for the selectList.

Evaluate all projected expressions, eg, “Price * Qty AS Total”.
4 Sort tuples obtained in (3) based on orderList.

Sorting is a blocking operation!

Note: practical query evaluation is quite efficient!

Example: SP Queries

Find all Disney movies produced in 1990.

Movies(title, year, length, genre, studioName, producerC#)

SQL Query

SELECT *
FROM Movies
WHERE studioName = ‘Disney’ AND year = 1990;

Sample Output

title year length genre studioName producerC#
Pretty Woman 1990 119 comedy Disney 999

Example: SP Queries

Find the title and length of all Disney movies produced in 1990.

Movies(title, year, length, genre, studioName, producerC#)

SQL Query

SELECT
title,
length

FROM
Movies

WHERE
studioName = ‘Disney’ AND
year = 1990;

Sample Output

title length
Pretty Woman 119

Example: SP Queries

Find the name and duration of all Disney movies produced in 1990.

Movies(title, year, length, genre, studioName, producerC#)

SQL Query

SELECT
title AS name,
length AS duration

FROM
Movies

WHERE
studioName = ‘Disney’ AND
year = 1990;

Sample Output

name duration
Pretty Woman 119

Example: SP Queries

Find the title and length, in minutes and hours, of all Disney movies
produced in 1990.

Movies(title, year, length, genre, studioName, producerC#)

SQL Query

SELECT
title,
length AS minutes,
length/60.0 AS hours

FROM
Movies

WHERE
studioName = ‘Disney’ AND
year = 1990;

Sample Output

name minutes hours
Pretty Woman 119 1.98334

Example: SP Queries

Find the title of all MGM movies produced after 1970 or that run for less
than 90 minutes.

Movies(title, year, length, genre, studioName, producerC#)

SQL Query

SELECT
title

FROM
Movies

WHERE
studioName = ‘MGM’ AND
(year > 1970 OR length < 90);

Sample Output

title
Shaft
Shaft’s Big Score
The Champ

Expressions Involving Strings

Comparisons observe lexicographic order.
Concatenation of two or more strings is provided by the || operator.

Syntax: str1 || str2 [|| str3 [...]]
Semantics: returns the concatenated string if all strings are non-NULL, or
NULL otherwise.

The SQL standard defines other string functions.
Computing/searching/replacing substrings, trimming, padding, etc.

Pattern matching is supported via the LIKE operator.
Syntax: operand [NOT] LIKE pattern, where

pattern is a string possibly containing wildcards _ and %.

Semantics:
_ matches any single character.
% matches zero or more characters.
Any other character matches itself exactly once.

Example: SP Queries

We remember a movie “Star something” in which something has four
letters. What movies could it be?

Movies(title, year, length, genre, studioName, producerC#)

SQL Query

SELECT
title

FROM
Movies

WHERE
title LIKE ‘Star ____’;

Sample Output

title
Star Wars
Star Trek

Example: SP Queries

What are the titles of the movies with a possessive (’s) in their titles?

Movies(title, year, length, genre, studioName, producerC#)

SQL Query

SELECT
title

FROM
Movies

WHERE
title LIKE ‘%’’s%’;

Sample Output

title
Logan’s Run
Alice’s Restaurant

Expressions Involving NULL

What is NULL?

SQL allows attributes to be assigned NULL.
NULL may be interpreted to represent values that:

are unknown or missing;
are inapplicable;
should not be displayed.

Semantics:
NULL cannot be used explicitly as an arithmetic/boolean operand.
value op NULL evaluates to NULL, op ∈ {+,−,∗,/, ||}.
value cop NULL evaluates to UNKNOWN,
cop ∈ {<,<=,=,>=,>,<>,LIKE}.
value IS NULL evaluates to TRUE when value is assigned NULL.
value IS NOT NULL evaluates to TRUE when value is not assigned NULL.

What is the result of “value = NULL”? and “value <> NULL”?

Expressions Involving NULL

Three-Valued Logic: Truth Values

X Y X AND Y X OR Y NOT X
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE FALSE
FALSE FALSE FALSE FALSE TRUE
TRUE UNKNOWN UNKNOWN TRUE FALSE
FALSE UNKNOWN FALSE UNKNOWN TRUE
UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

NULL Handling Functions

The COALESCE function returns the first non-NULL value from a list.

Syntax: COALESCE(val1, ..., valn)

If all values in the list are NULL, returns NULL.

The NULLIF function returns NULL if two values are equal.

Syntax: NULLIF(val1, val2)

CASE Expressions

-- Simple
CASE s_expr
WHEN t_expr1 THEN s_expr1;
...
WHEN t_exprM THEN s_exprM;
[ELSE s_exprN;]

END

Semantics:

s_expr* and t_expr* are scalar expressions.
Tests s_expr for equality against each t_expr1, ..., t_exprM, in order.
Returns s_exprk for the first k such that s_expr = t_exprk.
If no such k exists, returns s_exprN if avaliable, or NULL otherwise.

CASE Expressions

-- Searched
CASE
WHEN b_expr1 THEN s_expr1;
...
WHEN b_exprM THEN s_exprM;
[ELSE s_exprN;]

END

Semantics:

s_expr* are scalar expressions, b_expr* are boolean expressions.
Tests each b_expr1, ..., b_exprM, in order.
Returns s_exprk for the first k such that b_exprk is TRUE.
If no such k exists, returns s_exprN if avaliable, or NULL otherwise.

Example: SP Queries

What does the query below return?

Movies(title, year, length, genre, studioName, producerC#)

SQL Query

SELECT
title

FROM
Movies

WHERE
length <= 120 OR
length > 120;

Answer

All tuples with non-NULL lengths, therefore, the
query does not output the entire relation for all
database instances.

Example: SP Queries

What does the query below return?

Movies(title, year, length, genre, studioName, producerC#)

SQL Query

SELECT
title

FROM
Movies

WHERE
length <= 120 OR
length > 120 OR
length IS NULL;

Answer

All Movies tuples, for all database instances.

Select-Project-Join (SPJ) Queries

SELECT selectList
FROM fromItem [, fromItem [, ...]]
[WHERE condition]
[ORDER BY orderList];

Syntax:
fromItem is a table (tabExpr) or join expression (joinExpr).
tabExpr is a table name with an optional tuple variable.
joinExpr has the form:
fromItem joinType JOIN fromItem [ON joinCond].
joinType identifies the type of the join operation:

Cartesian product: CROSS.
Inner join (default): [NATURAL] [INNER].
Outer join: [NATURAL] (LEFT | RIGHT | FULL) [OUTER].

joinCond is a boolean expression specifying the match criteria.
Must be omitted (‘ON’ keyword as well) for CROSS and NATURAL joins.

Select-Project-Join (SPJ) Queries

Outer Joins.
Retain dangling tuples that fail to match the join condition.

Dangling tuples are padded with NULLs for their missing components.

Variants and their dangling tuple retention behavior:
LEFT JOIN: dangling tuples from the left operand of the join.
RIGHT JOIN: dangling tuples from the right operand of the join.
FULL JOIN: dangling tuples from both left and right operands of the join.

All joins above are theta joins and require a join condition.
Their natural join variants do not require the join condition.

Example: SPJ Queries

Find the name of the producer of ‘Star Wars’.

Movies(title, year, length, genre, studioName, producerC#)

MovieExec(name, address, cert#, netWorth)

SQL Query

SELECT
name

FROM
Movies, MovieExec

WHERE
producerC# = cert# AND
title = ‘Star Wars’;

Example: SPJ Queries

Find the name of the producer of ‘Star Wars’.

Movies(title, year, length, genre, studioName, producerC#)

MovieExec(name, address, cert#, netWorth)

SQL Query (join syntax)

SELECT
name

FROM
Movies
JOIN MovieExec ON (producerC# = cert#)

WHERE
title = ‘Star Wars’;

Example: SPJ Queries

List the unique pairs of movie stars sharing an address.

MovieStar(name, address, gender, birthDate)

SQL Query (join syntax)

SELECT
S1.name, S2.name

FROM
MovieStar AS S1
INNER JOIN MovieStar AS S2 ON (S1.address = S2.address

AND S1.name < S2.name);

Observation
The second part of the join condition guarantees the uniqueness of pairs. In particular,
a star is not paired with itself, and every pair of matching stars appears only once in
the result, namely, in alphabetical order.

Example: SPJ Queries

For each movie, display its title and the name of its producer. Include all
movies, even those in which the producer is missing.

Movies(title, year, length, genre, studioName, producerC#)

MovieExec(name, address, cert#, netWorth)

SQL Query

SELECT
title, name AS producer

FROM
Movies, MovieExec

WHERE
producerC# = cert# OR
producerC# IS NULL;

Observation

What is the user’s intention in this query?
Is the test for NULL in the producerC#
component an independent selection con-
dition or part of the join criteria?

Example: SPJ Queries

For each movie, display its title and the name of its producer. Include all
movies, even those in which the producer is missing.

Movies(title, year, length, genre, studioName, producerC#)

MovieExec(name, address, cert#, netWorth)

SQL Query (join syntax)

SELECT
title, name AS producer

FROM
Movies
LEFT JOIN MovieExec ON (producerC# = cert#);

Example: SPJ Queries

Compute the three natural outer joins of the given relation instances.

MovieStar(name, address, gender, birthDate)

name address gender birthdate
Mary Tyler Moore Maple St. F 9/9/99
Tom Hanks Cherry Ln. M 8/8/88

MovieExec(name, address, cert#, netWorth)

name address cert# networth
Mary Tyler Moore Maple St. 12345 $100M
George Lucas Oak Rd. 23456 $200M

Example: SPJ Queries

Natural Left Outer Join

name address gender birthdate cert# networth
Mary Tyler Moore Maple St. F 9/9/99 12345 $100M
Tom Hanks Cherry Ln. M 8/8/88 NULL NULL

MovieStar(name, address, gender, birthDate)

name address gender birthdate
Mary Tyler Moore Maple St. F 9/9/99
Tom Hanks Cherry Ln. M 8/8/88

MovieExec(name, address, cert#, netWorth)

name address cert# networth
Mary Tyler Moore Maple St. 12345 $100M
George Lucas Oak Rd. 23456 $200M

Example: SPJ Queries

Natural Right Outer Join

name address gender birthdate cert# networth
Mary Tyler Moore Maple St. F 9/9/99 12345 $100M
George Lucas Oak Rd. NULL NULL 23456 $200M

MovieStar(name, address, gender, birthDate)

name address gender birthdate
Mary Tyler Moore Maple St. F 9/9/99
Tom Hanks Cherry Ln. M 8/8/88

MovieExec(name, address, cert#, netWorth)

name address cert# networth
Mary Tyler Moore Maple St. 12345 $100M
George Lucas Oak Rd. 23456 $200M

Example: SPJ Queries

Natural Full Outer Join

name address gender birthdate cert# networth
Mary Tyler Moore Maple St. F 9/9/99 12345 $100M
Tom Hanks Cherry Ln. M 8/8/88 NULL NULL
George Lucas Oak Rd. NULL NULL 23456 $200M

MovieStar(name, address, gender, birthDate)

name address gender birthdate
Mary Tyler Moore Maple St. F 9/9/99
Tom Hanks Cherry Ln. M 8/8/88

MovieExec(name, address, cert#, netWorth)

name address cert# networth
Mary Tyler Moore Maple St. 12345 $100M
George Lucas Oak Rd. 23456 $200M

SPJ Queries

Full Outer

InnerLeft Outer Right Outer

Select-Project-Join (SPJ) Queries

Advanced Joins.
Semijoin.

Join between relations that returns tuples only from one of them.
Left semijoin returns tuple from the tuple on the left of the join.
Right semijoin returns tuple from the tuple on the left of the join.
Typically implemented using correlated subqueries (more later).

Anti-joins (including anti-semijoins).
Join between relations that returns tuples if the join condition is not
satisfied.
For instance, a left anti-semijoin of R and S on condition ϕ returns tuples of
R (left/semi) that do not join with any tuples of S on ϕ (anti).
Typically implemented as a combination of an outer join with one or more
NULL checks in the body.

Set and Bag Operations

queryExpr
setOp [ALL] queryExpr
[setOp [ALL] queryExpr [setOp [ALL] ...]]
[ORDER BY orderList];

Syntax:

queryExpr is a simple SQL query.
setOp is one of the following operators:
UNION, for set union.
INTERSECT, for set intersection.
EXCEPT, for set difference.
Use ALL for the respective bag operation.

The operations do not distinguish NULLs from different tuples.

Example: Set and Bag Operations

What does the query below compute?

MovieStar(name, address, gender, birthDate)

MovieExec(name, address, cert#, netWorth)

SQL Query

SELECT name, address
FROM MovieStar
WHERE gender = ‘F’
INTERSECT
SELECT name, address
FROM MovieExec
WHERE netWorth > 10,000,000;

Answer

The set of female movie stars that are
also movie executives and whose net
worth is above 10M.

Example: Set and Bag Operations

What does the query below compute?

MovieStar(name, address, gender, birthDate)

MovieExec(name, address, cert#, netWorth)

SQL Query

SELECT name, address
FROM MovieStar
EXCEPT
SELECT name, address
FROM MovieExec;

Answer

The set of movie stars that are not movie
executives.

Example: Set and Bag Operations

What does the query below compute?

MovieStar(name, address, gender, birthDate)

MovieExec(name, address, cert#, netWorth)

SQL Query

SELECT name, address
FROM MovieStar
WHERE gender = ‘F’
UNION
SELECT name, address
FROM MovieExec
WHERE netWorth > 10,000,000;

Answer

The set of movie industry persons that
are either female stars or executives
whose net worth is above 10M or both.

Set and Bag Operations

R S

R – S R ∩ S S – R

Subqueries

A subquery is a query that appears within another query.

As an operand of a set or bag operation.
As a derived relation, nested within the FROM clause:

Must be within parenthesis and be assigned a tuple variable.
Cannot access attributes of other relations in the FROM clause.

As a scalar subquery, wherever a single scalar is required:
Must return exactly one tuple.

As a relation operand, wherever a relation is required:
Testing for set (non-)emptyness: [NOT] EXISTS.
Testing for set (non-)membership: [NOT] IN.
Comparisons using ANY

Correlated subqueries.
Nested in clauses other than FROM.
May access attributes values from outer queries.

If used as operands, schemas must be compatible with operations.

Subqueries

Set operations involving subqueries.
EXISTS R
TRUE if the subquery R is not empty.

value IN R
TRUE if value belongs to R.
value is a tuple with the same number of components as R.
Typically, value is a scalar and R a unary relation.

value cop ALL R, cop ∈ {<,≤,=,>,≥,<>,LIKE}.
TRUE if for every tuple t ∈ R, value cop t holds.

value cop ANY R, cop ∈ {<,≤,=,>,≥,<>,LIKE}.
TRUE if for some tuple t ∈ R, value cop t holds.

Negated forms.
NOT EXISTS R
NOT value cop (ALL | | ANY) R
value NOT IN R

Example: Subqueries

Consider relations R(A) and S(A) and explain the queries below.

SQL Query

-- Q1
SELECT A
FROM R
WHERE A <> ALL(SELECT A FROM S);

-- Q2
SELECT A
FROM R
WHERE A >= ALL(SELECT A FROM R);

-- Q3
SELECT A
FROM R
WHERE A >= ALL(SELECT A FROM S);

Answer

Q1: left anti-semijoin

Q2: maximal value

Q3: dominating subset

Example: Subqueries

Consider relations R(A) and S(A) and explain the queries below.

SQL Query

-- Q1
SELECT A
FROM R
WHERE A = ANY(SELECT A FROM S);

-- Q2
SELECT A
FROM R
WHERE A <> ANY(SELECT A FROM R);

-- Q3
SELECT A
FROM R
WHERE A >= ANY(SELECT A FROM S);

Answer

Q1: left semijoin

Q2: non-singleton

Q3: non-minimal value

Example: Subqueries

Consider relations R(A) and S(A) and explain the queries below.

SQL Query

-- Q1
SELECT A
FROM R
WHERE A IN

(SELECT A FROM S);

-- Q2
SELECT A
FROM R
WHERE A NOT IN

(SELECT A FROM S);

Answer

Q1: left semijoin

Q2: left anti-semijoin

Example: Subqueries

Consider relations R(A) and S(A) and explain the queries below.

SQL Query

-- Q1
SELECT A
FROM R
WHERE
EXISTS(SELECT A FROM S

WHERE S.A=R.A);

-- Q2
SELECT A
FROM R
WHERE
NOT EXISTS(SELECT A FROM S

WHERE S.A=R.A);

Answer

Q1: left semijoin

Q2: left anti-semijoin

Example: Subqueries

Find all producers of Harrison Ford’s movies.

Movies(title, year, length, genre, studioName, producerC#)

MovieExec(name, address, cert#, netWorth)

StarsIn(movieTitle, movieYear, starName)

Answer

SELECT name
FROM MovieExec
WHERE cert# IN

(SELECT producerC#
FROM Movies
WHERE (title, year) IN

(SELECT movieTitle, movieYear
FROM StarsIn
WHERE starName = ‘Harrison Ford’));

Subqueries

Observations
Analize queries starting from the innermost subqueries.
Most queries can be rewritten without subqueries. (How?)
Simple subqueries are evaluated just once.
Correlated subqueries are evaluated once per assignment to some term in
the subquery coming from a tuple variable outside the subquery.
You may define a constant subquery using the following syntax:
(VALUES (V11, ..., V1k), ..., (Vn1, ..., Vnk)) AS S

Example: Subqueries

Find the title and year of any movie that has a remake. If a movie has one
remake, list only the original. If it has n > 1 remakes, list all but the latest.

Movies(title, year, length, genre, studioName, producerC#)

Answer

SELECT title, year
FROM Movies AS Old
WHERE year < ANY

(SELECT year FROM Movies
WHERE title = Old.title);

Required

Read sections 6.1 to 6.3 from chapter #6.

Go over exercises 6.3.1, 6.3.3, 6.3.7, 6.3.8 from chapter #6.

Duplicate Elimination

SELECT [DISTINCT] selectList
FROM fromItem [, fromItem [, ...]]
[WHERE condition]
[ORDER BY orderList];

Semantics:
1 Compute the Cartesian product of the relations in fromList.
2 Discard all tuples obtained in (1) that do not satisfy condition.
3 For each tuple obtained in (2), return one tuple for the selectList.
4 If DISTINCT is specified, eliminate duplicate tuples obtained in (3).
5 Sort tuples obtained in (4) based on orderList.

Grouping and Aggregation

Grouping and Aggregation.

Sometimes it is useful to partition tuples of a relation based on the
values of one or more of their attributes.

Any number of computations may then be carried out over the
collection of tuples in each partition.

Each computation is an aggregate of the values of the individual tuples
in the partition, such as a sum, maximum, minimum, average, etc.

Grouping and Aggregation

SELECT [DISTINCT] selectList
FROM fromItem [, fromItem [, ...]]
[WHERE condition]
[GROUP BY groupList]
[HAVING aggCondition]
[ORDER BY orderList];

Syntax:
selectList must only contain:

grouped attributes/expressions, and
aggregate functions/expressions.

GROUP BY: lists attributes/expressions on which tuples are partitioned.
All non-aggregate expressions in selectList must be in groupList.

HAVING: boolean expression which aggregate tuples must satisfy.
Consists of literals, grouped attributes, and aggregate expressions.

Grouping and Aggregation

SELECT [DISTINCT] selectList
FROM fromItem [, fromItem [, ...]]
[WHERE condition]
[GROUP BY groupList]
[HAVING aggCondition]
[ORDER BY orderList];

Semantics:
1 Compute the Cartesian product of the relations in fromList.
2 Discard all tuples obtained in (1) that do not satisfy condition.
3 Partition tuples in (2) on attributes in groupList.
4 For each partition obtained in (3),

compute aggregates in selectList and aggCondition,
generate one aggregate tuple for each partition, and
discard aggregate tuples that do not satisfy aggCondition.

5 For each tuple obtained in (4), return one tuple for the selectList.
6 If DISTINCT is specified, eliminate duplicate tuples obtained in (5).
7 Sort tuples obtained in (6) based on orderList.

Grouping and Aggregation

Grouping.

Independent from aggregate computation.

However, aggregate computation requires grouping.

If GROUP BY is omitted, the relation is treated as a single partition.

Aggregate expressions.

May appear in selectList, aggCondition, and orderList.
Syntax.
AGG([DISTINCT] expr).
AGG is one of SUM, COUNT, MIN, MAX, AVG, STDEV, etc.
Many RDBMSs support user-defined aggregate functions.

Semantics.
Aggregate expressions in the query are computed for each partition.
AGG accumulates expr over all (distinct) tuples in each partition.

Grouping and Aggregation

Dealing with NULLs:
NULL is treated as an ordinary value when grouping.

A group may have one or more attributes assigned NULL.

All aggregate computations ignore NULLs.
NULL components do not contribute towards SUM, AVG, STDEV, or COUNT.
However, all aggregates except COUNT return NULL for an empty bag.

Counting tuples.
COUNT returns zero for an empty bag.
COUNT(*) counts all tuples, even if all components are NULL.
COUNT(A) counts all non-NULL values in column A.
COUNT(DISTINCT A) counts all distinct, non-NULL values in column A.

Aggregates cannot be composed directly.
AGG2(AGG1([DISTINCT] expr)) is not allowed!
To achieve this behavior, you must compose queries that compute the
respective aggregates.

Example: Grouping and Aggregation

Explain what each query below computes.

StarsIn(movieTitle, movieYear, starName)

SQL Queries: Counting

-- Q1
SELECT COUNT(*)
FROM StarsIn;

-- Q2
SELECT COUNT(starName)
FROM StarsIn;

-- Q3
SELECT
COUNT(DISTINCT starName)

FROM StarsIn;

SQL Queries: Duplicates

-- Q4
SELECT starName
FROM StarsIn;

-- Q5
SELECT DISTINCT starName
FROM StarsIn;

-- Q6
SELECT starName
FROM StarsIn
GROUP BY starName;

Example: Grouping and Aggregation

Explain what the query below computes.

Movies(title, year, length, genre, studioName, producerC#)

MovieExec(name, address, cert#, netWorth)

SQL Queries: Counting

SELECT name, SUM(length)
FROM MovieExec
JOIN Movies ON (producerC# = cert#)
GROUP BY name;

Answer

For each executive, compute the
total number of movie minutes
produced.

Example: Grouping and Aggregation

Explain what the query below computes.

Movies(title, year, length, genre, studioName, producerC#)

MovieExec(name, address, cert#, netWorth)

SQL Queries: Counting

SELECT name, SUM(length)
FROM MovieExec
JOIN Movies ON (producerC# = cert#)
WHERE netWorth > 10,000,000
GROUP BY name
HAVING MIN(year) >= 1950
ORDER BY name;

Answer

For each executive whose net
worth is above 10M and whose
earliest movie was not produced
before 1950, compute the total
number of movie minutes pro-
duced.

Example: Grouping and Aggregation

Given the relation instance below, what do the given queries compute?

SQL Queries: NULLs

-- Q1
SELECT COUNT(*) FROM R;

-- Q2
SELECT A, COUNT(*)
FROM R GROUP BY A;

-- Q3
SELECT A, COUNT(B)
FROM R GROUP BY A;

-- Q4
SELECT A, SUM(B)
FROM R GROUP BY A;

Relation R(A,B)

A B
NULL NULL

Answer

Q1:

Q2:

Q3:

Q4:

Required

Read section 6.4 from chapter #6.

Go over exercises 6.4.1, 6.4.4, 6.4.5, 6.4.8 from chapter #6.

Views

A view is a virtual relation defined as a named query expression.

Definitions are stored but results are not.

Definitions may contain references to other views.
Views may be read-only or updatable.

Views names may appear anywhere stored relation names may appear.
But only updatable views may appear as targets of update operations.
A view definition determines whether a view is updatable.
From the user’s perspective, updatable views behave exactly like tables.

Views

CREATE VIEW viewName[(attrList)] AS
queryExpr;

Syntax:
viewName: view name, unique across tables and views.
(attrList): optional list of attribute names for the view’s schema.

If omitted, names are computed from queryExpr.

(queryExpr): valid query without an ORDER BY clause.

Views

Advantages.
Views provide an effective abstraction/decoupling mechanism.

When table schemas change (data/constraints), applications may break.
Views may keep the same schema and update their definition as necessary.
Low-level changes to the database become transparent to applications.

Views may provide precomputed, high-level views of the data.
Instead of having users perform joins among several tables. . .
Provide views that perform common joins.

Views can provide computed values, including aggregates.
Views take little space to store.

The database maintains only the definition of a view, not a copy of it result.

Views may provide extra security.

Views may limit the degree of exposure of sensitive data.

Example: Views

Create a view named DisneyMovies that returns all Movies produced by
Disney. Do not include the studioName attribute in the output. Using the
view, write a query that returns all Disney movies produced in 1990.

Movies(title, year, length, genre, studioName, producerC#)

Answer

CREATE VIEW DisneyMovies AS
SELECT title, year, length, genre, producerC#
FROM Movies
WHERE studioName = ‘Disney’;

SELECT *
FROM DisneyMovies
WHERE year = 1990;

Common Table Expressions (CTE)

A common table expression (CTE) is a temporary named relation obtained
from a query expression and defined within a DML statement, usually a
complex query.

Available only during the execution of the statement.
May contain references to CTEs defined earlier within the statement.

Analogous to linear notation of RA.

Evaluated once per execution of the statement.
Even if referenced multiple times by the statement or sibling CTEs.

Addresses several important use cases:
Breaking complex queries into smaller parts.
Factoring out common and/or expensive expressions.

Conceptually, can be thought of as a temporary view.
But no need to request the DBA to create a view for you.

Would be nothing more than syntactic convenience. However,
Provides syntax for defining recursive queries!

Common Table Expressions

WITH [RECURSIVE]
cteName1[(attrList1)] AS (queryExpr1)[,
...
cteNameN[(attrListN)] AS (queryExprN)]

queryExpr;

Syntax:
cteNameK: unique name across all tables, views, and earlier CTEs.
(attrListK): optional list of attribute names for the CTE’s schema.

If omitted, names are computed from queryExprK.

(queryExprK): query referencing tables, views, and earlier CTEs.
Using RECURSIVE, CTEs may reference their own name as follows:

Query expression: nrQuery UNION [ALL] rQuery.
nrQuery: arbitrary query, but must not reference the CTE.
rQuery: SPJ query, may reference the CTE once in the FROM clause.
In practice, multiple non-recursive CTEs are allowed.
Mutual recursion is (usually) not supported.

Example: Common Table Expressions

Create a CTE DisneyMovies that returns all Movies produced by Disney.
Do not include the studioName attribute in the output. Using the CTE,
write a query that returns all Disney movies produced in 1990.

Movies(title, year, length, genre, studioName, producerC#)

Answer

WITH DisneyMovies AS
(SELECT title, year, length, genre, producerC#
FROM Movies
WHERE studioName = ‘Disney’)

SELECT *
FROM DisneyMovies
WHERE year = 1990;

Example: Common Table Expressions

Create a recursive CTE BossChain that returns all pairs of employees such that the first
one is the boss of the second, either directly or indirectly. Assume that the boss of your
boss is also your boss and that the Boss relation contains only each employee’s immediate
boss. Using the CTE, write a query that returns all pairs working in the same department.

Employee(empId, firstName, lastName, SSN, deptId)

Boss(bossId, empId)

Answer

WITH RECURSIVE BossChain AS
(SELECT bossId, empId FROM Boss -- base case
UNION
SELECT BC.bossId, B.empId -- B’s boss’ boss is also B’s boss
FROM BossChain BC JOIN Boss AS B ON (B.bossId = BC.empId))

SELECT BC.*
FROM BossChain BC
JOIN Employee B ON (B.empId = BC.bossId)
JOIN Employee E ON (E.empId = BC.empId AND E.deptId = B.deptId);

Required

Read section 8.1 from chapter #8 and 10.2 in chapter #10.

Go over exercises 8.1.1 and 8.1.2 from chapter #8.

Data Modification

SQL provides three basic data modification commands:

INSERT: inserts new tuples.

UPDATE: modifies existing tuples.

DELETE: excludes existing tuples.

Insertion

INSERT INTO R[(A1, . . . ,Ak)]
VALUES (val11, . . . ,val

1
k) [, (val21, . . . ,val

2
k) [, ...]];

Semantics:
1 Each list of values in the VALUES clause must provide values for:

all attributes in (A1, . . . ,Ak), in that order, or
all attributes of R (in standard order), if the list of attributes for R is omitted.
Each list of values must be compatible with the corresponding attribute list of R.

2 If some tuple in the VALUES clause violates a constraint in R, the insert
fails.

3 Otherwise, inserts each (v i
1, . . . ,v

i
k) into R with value v i

j for attribute Aj .
4 Default values are used for missing attributes of R in (A1, . . . ,Ak).

Insertion

INSERT INTO R[(A1, . . . ,Ak)]
queryExpr;

Semantics:
1 The schema of queryExpr must be compatible with:

the list of attributes (A1, . . . ,Ak), if provided, or
R, if the list of attributes for R is omitted.

2 Computes the result of the queryExpr.
3 If some tuple obtained in (2) violates a constraint in R, the insert fails.
4 Otherwise all tuples obtained in (2) are inserted into R.
5 Default values are used for missing attributes of R in (A1, . . . ,Ak).

Example: Insertion

Explain what the statement below accomplishes.

StarsIn(movieTitle, movieYear, starName)

SQL: Insertion

INSERT INTO StarsIn(movieTitle, movieYear, starName)
VALUES (‘The Maltese Falcon’, 1942, ‘Sydney Greenstreet’);

Example: Insertion

Explain what the statement below accomplishes.

Studio(name)

SQL: Insertion

INSERT INTO Studio(name)
SELECT DISTINCT studioName
FROM Movies
WHERE studioName NOT IN

(SELECT name FROM Studio);

Deletion

DELETE FROM R
[WHERE delete_cond];

Semantics:
1 If the removal of a tuple obtained in (1) violates a constraint in the

database, the deletion fails.
2 Otherwise, deletes all tuples satisfying the (optional) condition.

Example: Deletion

Explain what the statement below accomplishes.

StarsIn(movieTitle, movieYear, starName)

SQL: Deletion

DELETE FROM StarsIn
WHERE

movieTitle = ‘The Maltese Falcon’ AND
movieYear = 1942 AND starName = ‘Sydney Greenstreet’;

Example: Deletion

Explain what the statement below accomplishes.

MovieExec(name, address, cert#, netWorth)

SQL: Deletion

DELETE FROM MovieExec
WHERE netWorth < 10,000,000;

Update

UPDATE R SET
Ai1 = expri1 [,
Ai2 = expri2 [,
...]]

[WHERE updateCond];

Semantics:
1 Computes the set of tuples from R satisfing updateCond.
2 If the update of a tuple obtained in (1) violates a constraint in the database,

the update fails.
3 Otherwise, assigns every attribute Ai1 , . . . ,Ain the specified values.

Example: Update

Explain what the statement below accomplishes.

MovieExec(name, address, cert#, netWorth)

Studio(name, presC#)

SQL: Update

UPDATE MovieExec SET
name = ‘Pres. ’ || name

WHERE cert# IN (SELECT presC# FROM Studio);

Required

Read section 6.5 from chapter #6.

Go over exercise 6.5.1 from chapter #6.

Data Definition Language

CREATE TABLE tableName (
attName1 attType1 [DEFAULT def1] [constraint1a [...]],
...
attNameN attTypeN [DEFAULT defN] [constraintNa [...]] [,
tableConstraint1 [, tableConstraint2 [...]]
]

);

Syntax:
tableName: unique table name.
attName: unique name of attribute.
attType: data type of the attribute.
def: default value of the attribute.

When inserting a new tuple, if no value is specified, the default is used.

constraint: column-level constraint, applies to that attribute only.
tableConstraint: table-level constraint, applies to the entire table.

Data Definition Language

CREATE TABLE tableName (
attName1 attType1 [DEFAULT def1] [constraint1a [...]],
...
attNameN attTypeN [DEFAULT defN] [constraintNa [...]] [,
tableConstraint1 [, tableConstraint2 [...]]
]

);

Constraints:
1 Column constraints.

NULL
NOT NULL
UNIQUE
PRIMARY KEY
CHECK (expression)
REFERENCES refTable (attList)

Data Definition Language

CREATE TABLE tableName (
attName1 attType1 [DEFAULT def1] [constraint1a [...]],
...
attNameN attTypeN [DEFAULT defN] [constraintNa [...]] [,
tableConstraint1 [, tableConstraint2 [...]]
]

);

Constraints:
Table constraint: [CONSTRAINT constraintName] constraint
PRIMARY KEY (attList)
UNIQUE (attList)
CHECK (expression)
FOREIGN KEY (attList) REFERENCES refTable (attList)

Data Definition Language

Primary Key

At most one per table.

Fields in the key cannot be NULL.

Duplicate combinations of fields not allowed.

Data Definition Language

Unique Key

Any number per table.

Fields in may be NULL.

NULL values considered equal for comparison purposes.

Data Definition Language

Foreign Key

Fields in may be NULL.

Number and type of constrained fields must match the number and
type of referenced field.

Foreign key field values in each tuple must match the values of the
referenced fields in some tuple of the referenced table.

Data Definition Language

Check

Fields in may be NULL.

The check expression is a boolean expression involving one or more
fields.

The check is satisfied if the expression evaluates to TRUE or
UNKNOWN.

Data Definition Language

DROP TABLE tableName;

Syntax:
tableName: existing table name.

	SQL
	Select-Project
	Select-Project-Join
	Set and Bag Operations
	Subqueries
	Duplicates, Grouping, Aggregation
	Views and Common Table Expressions
	Data Modification
	Data Definition

