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Overview

How does one design a relational schema?

@ From requirements, high-level notations, etc.
@ Initial schemas tend to combine too much into one relation.

e This creates redundancy in the data.
e Redundancies can be eliminated systematically.

@ Relational theory.

Provides the foundation for designing good relational schemas.
Involves the study of dependencies invoving data elements.
Permits us to distinguish good from bad schemas.

Gives us the means to fix flawed designs.




Overview

@ Certain dependencies in relation schemas may cause problems.
e Often referred to as anomalies.
@ Data dependencies.
e Functional dependencies generalize the notion of key.
e Multivalued dependencies identify sets of independent attributes.
@ Dependencies are used to define normal forms for relation schemas.
@ Normal forms are used in a process called normalization.

e Decompose relations into two or more relations to remove anomalies.
e Each decomposition targets a particular normal form.




Functional Dependencies

A functional dependency (FD) on a relation R is a statement of the form:
AiAs---Ap— B1Bo--- By,

where Ay, As, ..., Ay, By, Bs, ..., By are attributes of R. We say that
A1, Az, ..., A, functionally determines By, By, ..., Bp.

@ Let t, u be tuples in some R instance. If t and u agree on their
A1, Ao, ..., A, values, they must agree on their By, Bo, ..., By, values.

@ If some FD F is true for every instance of R, then we say R satisfies F.
You can think of F as a constraint on R.




Example: Functional Dependencies

title year length genre studioName starName
Star Wars 1977 124 SciFi Fox Carrie Fisher
Star Wars 1977 124 SciFi Fox Mark Hamill
Star Wars 1977 124 SciFi Fox Harrison Ford
Gone with the Wind 1939 231 Drama MGM Vivien Leigh
Wayne’s World 1992 95 Comedy Paramount Dana Carvey
Wayne’s World 1992 95 Comedy Paramount Mike Meyers

Table : Moviesl (title, year, length, genre, studioName, starName).

@ Intuitively, what seems to be wrong with Movies1?
@ What does the FD below mean? Does it hold?
title year — length genre studioName

@ How about this other FD?
title year — starName




Example: Functional Dependencies

Observation

Even if we had one tuple for each of the movies, the FD
title year — starName

would still be false: by definition, a FD is a property of all possible instances
of the relation, not just this particular one.




Key

A set {Ay,Aq, ..., Ay} of attributes is a key for a relation R if:

Q@ A, A,,..., A, functionally determine all other attributes of R, that is, no
two distinct tuples in R agree on all of A, As, ..., A,.

@ No proper subset of {A1, Ay, ..., A} satisfies (1).

Observations:
@ A relation may have more than one key.

e One key is normally designated as the primary key.
e In the theory of FDs, primary keys are no different than other keys.

@ A superkey is a set of attributes that contains a key.

e Every key is a superkey.
e Not every superkey is a key.




Example: Functional Dependencies

title year length genre studioName starName
Star Wars 1977 124 SciFi Fox Carrie Fisher
Star Wars 1977 124 SciFi Fox Mark Hamill
Star Wars 1977 124 SciFi Fox Harrison Ford
Gone with the Wind 1939 231 Drama MGM Vivien Leigh
Wayne’s World 1992 95 Comedy Paramount Dana Carvey
Wayne’s World 1992 95 Comedy Paramount Mike Meyers

Table : Moviesl (title, year, length, genre, studioName, starName).

@ Recall: title year — length genre studioName
@ What is the key for Movies1?

@ is {title, year} akey? assume t; # t, agree on {title, year};they
must agree on {length, genre, studioName}; butthen, t; and &, must
have distinct starName components.

@ {year, starName}? how about {title, starName}?

@ Thekeyis {title, year, starName}.




@ Read section 3.1 from chapter #3.
@ Go over problems 3.1.1 and 3.1.3.




Example: Reasoning about FDs

Assume that relation R (A, B, C) satisfies FDsA — BandB — C. Does it
satisfy A — C?

Show that if two tuples agree on A and B, they must agree on C.

Q lett; =(a,by,cq) and to = (a, b2, ¢2) agree on A;

Q@ fromA — B, it follows that #; and t, must agree on B;

Q thus, ty =(a,b,c1) and t, = (a,b, co), where b = by = by;

Q fromB — C, it follows that #; and & must agree on C;

@ thus, ty = (a,b,c) and t, = (a,b, c), where ¢ = ¢ = ¢;

Q@ therefore, if two tuples in R agree on A, they must agree on C;

@ we conclude that R satisfies 2 — C.




Reasoning About FDs

FDs may be presented in different yet equivalent ways.

@ Two sets of FDs .S and ‘7 are equivalent if the sets of relation instances
satisfying § is exactly the same as those satisfying 7.

@ A set of FDs § follows from a set of FDs 7 if every relation instance that
satisfies all FDs in ‘7 also satisfies all FDs in S.

@ S and 7 are equivalent if and only if § and 7 follow from each other.




Splitting Rule
(SpltingRUe |

Splitting Rule

We can replace an FD
A1A2"'An—> B1Bg"'Bm
by the set of FDs
AiAs--- A, — By
A1A2"'An % Bm

We may replace a FD with a set of FDs having the same 1hs and only one of
the attributes on the rhs.

v




Combining Rule
CombiningRule . |

Combining Rule

We can replace a set of FDs

A1A2"'An—> B1

A1A2"'An% Bm

by the single FD
A1A2"'An—> B1Bg"'Bm

We may replace a set of FDs having a common 1hs by one FD with the
same lhs and all rhs attributes combined into one set.




Splitting and Combining Rules

In both rules, the input and output FD sets are equivalent. But why do these
rules hold?

@ Assume two tuples agree in A1, As, ... A,
@ Single FD: “then, the tuples agree in all By, By, ...,Bpy”

@ Set of FDs: “then, the tuples agree in By and they agree in By, ..., and
they agree in By,

@ These conclusions are exactly the same thing!

Why do you suppose splitting cannot be applied to the left side?




Exmaple: Splitting and Combining Rules

The FD:
title year — length genre studioName
is equivalent to the set of FDs:

title year — length
title year — genre
title year — studioName




Exmaple: Splitting and Combining Rules

The FD:
title year — length
is not equivalent to the set of FDs:

title — length
year — length




Trivial FDs

Trivial FDs

A constraint of any kind on a relation is said to be trivial if it holds for every
instance of the relation. An FD

AiAs---A, — B1Bo--- By,

is trivial if
{B1,Bs,...,Bn} C{A,As,...,An}

That is, the attributes on the rhs form a subset of the ones on the 1hs. Every
trivial FD holds in every relation. Thus, trivial FDs may be assumed without
further justification.




Trivial-Dependency Rule

Trivial-Dependency Rule

If some (but not all) of the attributes on the rhs of an FD also appear on the
1hs, those that appear on both sides may be dropped from the rhs. That is,

A1A2"'AH%B1BQ"'Bm

is equivalent to
AAs---Ap — C1Cg...Ck
where {C1,Cg,...,Ck} = {B1,B_2,...,Bm}\{A1,A2,...,An}.

It should be clear that we can prove this rule by first splitting the FD and then
combining the resulting non-trivial FDs.




Exmaple: Trivial FDs

The FDs below are trivial:

title year — title
title year — year

However, the FD below is not trivial:

title year — title length

but may be simplified using the trivial-dependency rule:

title year — length




Closure of Attributes

Set Closure (Mathematics)

In set theory, we say that a set is closed under some operation if performing
that operation on members of the set always produces a member of the set.




Closure of Attributes

Definition: Closure of Attributes

Given a set of attributes {Aq,...,A,} and a set of FDs §, the closure of
{A+,...,An} under the FDs in § is the (maximal) set of attributes B such that
every relation that satisfies all the FDs in § also satisfies {A+,...,A,} — B.

The closure of {Aq,...,A,} is denoted {A+,...,A,} . Note that every
A; € {A1,..., Ay} is trivially a member of {A1,..., A} .
Applications:

@ Ai---A,— Bifandonly if BC {A;,..., A} T,

@ {Ai,...,A,} is a superkey for a relation if and only if {Aq,...,A,} T is the
set of all relation attributes. (Why not a key?)




Closure of Attributes

Algorithm

INPUT: Set of attributes {A,...,A,} and set of FDs .

OUTPUT: The closure {A1,..., A} .

@ Split the FDs of S so that each FD has a single attribute on their rhs.
Q Let X be the output set and initialize it to {As,...,An}.

©Q Search for some FD B; - - - B, — C where each B; € X but C ¢ X.
Add C to X and repeat until no FD is found.

@ Output X.

Note: X grows every time a new FD is found in step (3). Eventually, step (3)
does not find a new FD so the algorithm must terminate and output X.

v




@ Go over examples 3.8 and 3.9.

@ Go over the soundness and correctness proofs for the closure algorithm
in 3.2.5.




Transitivity Rule

Transitivity Rule

If AjAs---Ap— B1Bs---Bpand BiBs - - - By, — C1Cs - - - Ck hold in relation R,
then A1A>---A, — C1Cs--- Ck also holds in R.

Sketch.

@ Compute {Aj, A, ... ,A,,}+ with respect to the given FDs.

@ AjAz--- A, — ByBy--- By, implies {By,Ba,...,Bn} C {A1,Az,...,An}T.
@ Thus, we canuse BiBs---By — C1Cs - - - Ck.

@ BiBy--- By — CiCa--- C implies {Cy,Co,...,Ck} C {A1,As,...,An} ™.
@ |t follows that A1A>---A, — C1Co -+ - Ck.




Example: Transitivity Rule

title | year | length | genre | studioName | studioAddr
Star Wars 1977 124 SciFi Fox Hollywood
Eight Below 2005 120 Drama Dlsney Buena Vista
Wayne’s World 1992 95 Comedy Paramount Hollywood

Table : Movies2 (title, year, length, genre, studioName, studioAddr).

@ Assume that the following FDs hold:
title year — genre length studioName
studioName — studioAddr

@ By transitivity, the following FD is derived:
title year — studioAddr




@ Go over example 3.11.




Armstrong’s Axioms

Armstrong’s Axioms.
@ 1. Reflexivity
o If {B1,By,...,Bn} C{A1,As,...,Ap} then AjAz--- Ay — B1Bs -+ Bp,.
@ 2. Augmentation
o If AjAs---Ap — B1B>---Bpthen AjAx---ApCy--- Cx — B1Bo - - B Cy - - - Ck
for any set of attributes {Cy,..., Cx}. Some of the C’s may appear among the
A’s or B’s, so we eliminate duplicate attributes from both the 1hs and rhs.
@ 3. Transitivity
o If AjAs---Ap — B1B>---Bpand BiBy--- By — Cy - - - Ck then
AiAz---Ap — Cq--- Cx.
@ Observations.

e Sound and complete set of rules for deriving FDs.
e Thus, derives any FD that follows from a given set of FDs.
e But not systematic as the closure computation we just saw.




Projecting FDs

Let R be a relation with FDs .§ and R; = @, (R) for some attributes L from R.
@ What FDs hold in R;?
@ Compute the projection of functional dependencies S.

@ This is the set of all FDs that

e Follow from S, and
e Involve only attributes of R; .

@ In general, this computation is exponential in the size of L.




Projecting FDs

Algorithm

INPUT: Relations R and R; = 71 (R), and a set of FDs S that hold in R.

OUTPUT: Set of FDs that hold in R;.

Q Let T be the output and initialize it as the empty set.

Q For each subset X of attributes of R;, compute X™ w.r.t. S. Add to T all
nontrivial FDs X — A such that A is both in X™ and an attribute of R;.

Q T is a basis for the FDs that hold in R;. If T is not minimal:

o If some FD F in T follows from the other FDs in T, remove F from T.

o LetY — Bbean FD in T, with at least two attributes in Y, and Z a subset of Y
with one attribute removed. If Z — B follows from the FDs in T (including
Y — B), replace Y — B by Z — B.

o Repeat these steps in all possible ways until T can no longer be changed.

Q Output T.




@ Go over example 3.13.
@ Go over problems 3.2.2, 3.2.4, 3.2.5, 3.2.8.
@ Read section 3.2 from chapter #3 and go over all remaining problems.




Example: Schema Design

title year length genre studioName starName
Star Wars 1977 124 SciFi Fox Carrie Fisher
Star Wars 1977 124 SciFi Fox Mark Hamill
Star Wars 1977 124 SciFi Fox Harrison Ford
Gone with the Wind 1939 231 Drama MGM Vivien Leigh
Wayne’s World 1992 95 Comedy Paramount Dana Carvey
Wayne’s World 1992 95 Comedy Paramount Mike Meyers

Table : Moviesl (title, year, length, genre, studioName, starName).

Problems:
@ Redundancy.
e Information repeated unnecessarily in several tuples.
@ Update Anomalies.
e Update data in one tuple and leave the same data unchanged in another.
@ Deletion Anomalies.
o If a set of values becomes empty, we may lose other information as side-effect.




Relation Decomposition

Definition: Relation Decomposition

Given a relation R(A1,2,,...,A,), we may decompose R into two new
relations S(B1,B,,...,B,) and T(C1,Cs,...,Cx) such that:

@ {A;,Ay,..., A} ={B1,Bs,...,Bn} U{C1,Cq,...,Cx }.
° S :TCB17B27"'7BHI(R)'
T :ncl,CZ,...,Ck(R)'

Observations:
@ {B1,By,...,By} and {C1,C;,...,Cx} need not be disjoint.
@ Decomposition is defined independently of its effectiveness in eliminating
anomalies.




Example: Schema Design

title | year | length | genre | studioName |
Star Wars 1977 124 SciFi Fox

Gone with the Wind 1939 231 Drama MGM
Wayne’s World 1992 95 Comedy Paramount

Table : Movies2 (title, year, length, genre, studioName).

title year starName
Star Wars 1977 Carrie Fisher
Star Wars 1977 Mark Hamill
Star Wars 1977 Harrison Ford
Gone with the Wind 1939 Vivien Leigh
Wayne’s World 1992 Dana Carvey
Wayne’s World 1992 Mike Meyers

Table : Movies3 (title, year, starName).

Do any anomalies remain in this new design?




Boyce-Codd Normal Form

Definition: Boyce-Codd Normal Form (BCNF)
Consider a relation R and two sets of attributes A and B. Relation R is in
Boyce-Codd Normal Form (BCNF) if and only if:

@ Whenever there exists a non-trivial functional dependency A — Bin R, A is
a superkey of R.

If a schema conforms to BCNF, the anomalies discussed are guaranteed not
to exist.




Example: Boyce-Codd Normal Form

title year length genre studioName starName
Star Wars 1977 124 SciFi Fox Carrie Fisher
Star Wars 1977 124 SciFi Fox Mark Hamill
Star Wars 1977 124 SciFi Fox Harrison Ford
Gone with the Wind 1939 231 Drama MGM Vivien Leigh
Wayne’s World 1992 95 Comedy Paramount Dana Carvey
Wayne’s World 1992 95 Comedy Paramount Mike Meyers

Table : Moviesl (title, year, length, genre, studioName, starName).

Relation Movies1 is not in BCNF.

@ The only key of Movieslis {title, year, starName}.

@ Considerthe FD title year — length genre studioName.
@ The lhs of the FD above is not a superkey of Moviesl.




Example: Boyce-Codd Normal Form

title | year | length | genre | studioName |
Star Wars 1977 124 SciFi Fox

Gone with the Wind 1939 231 Drama MGM
Wayne’s World 1992 95 Comedy Paramount

Table : Movies2 (title, year, length, genre, studioName).

Relation Movies2 is in BCNF.

@ The only key of Movies2 is {title, year}.

@ All other non-trivial FDs have title and year on their 1hs.
@ Hence, their 1hs’s are superkeys and Movies?2 is in BCNF.




Boyce-Codd Normal Form

Decomposition of a relation R into BCNF (Sketch).
@ Chose subsets of the attributes in R such that:

e Each subset becomes the schema of decomposed relation in BCNF.
e Data in R is represented faithfully by the decomposed relations.
e That is, we are able to recompose the original relation exactly.

@ Intuition: use non-trivial FDs violating BCNF to drive the decomposition.




Example: Boyce-Codd Normal Form

title year length genre studioName starName
Star Wars 1977 124 SciFi Fox Carrie Fisher
Star Wars 1977 124 SciFi Fox Mark Hamill
Star Wars 1977 124 SciFi Fox Harrison Ford
Gone with the Wind 1939 231 Drama MGM Vivien Leigh
Wayne’s World 1992 95 Comedy Paramount Dana Carvey
Wayne’s World 1992 95 Comedy Paramount Mike Meyers

Table : Moviesl (title, year, length, genre, studioName, starName).

Decompose using the FD title year — length genre studioName.

@ Using both 1hs and rhs of the FD:
Movies?2 (title, year, length, genre, studioName).

@ The 1hs of the FD and all remaining attributes:
Movies3 (title, year, starName).

@ This is the decomposition we have seen before!




Boyce-Codd Normal Form

Algorithm

INPUT: Relation Ry with a set of FDs $.
OUTPUT: Decomposition of R into a collection of relations in BCNF.

PROCEDURE: Run the steps below recursively for any relation R and set of
FDs S that must be decomposed into BCNF. Start with R =Ry and § = Sp.

Q If R already is in BCNF, return {R}.

Q Let X — Y be a FD violating BCNF. Choose R; = X' as one schema and
let R, have attributes X and those of R not in X .

Q Compute the FDs Sy and S, for R; and R,, respectively.
Q Recursively decompose R; and R.

@ Return the union of all decompositions.




@ Go over example 3.19.
@ Go over problems 3.3.1, 3.3.2, 3.3.3, 3.3.4.
@ Read section 3.3 from chapter #3 and go over the remaining problems.




Decomposition

Decomposition: Desirable Properties

When decomposing, we strive to eliminate all anomalies from a schema.
However, decomposition may may introduce problems of its own. Thus, we
aim for decompositions having the following properties:
@ Elimination of Anomalies.
e We already know an algorithm that accomplishes this (BCNF).
@ Recoverability of Information.
e Is it possible to recover the original relation from tuples in the decomposition?
e Is there a systematic way do accomplish this?
@ Preservation of Dependencies.

o If we reconstruct the original relation by joining, will the result satisfy the
original FDs from the ones projected onto the decomposed relations?




Decomposition: Desirable Properties

Lossless Joins

A decomposition of a relation R is a lossless-join decomposition if we can join
the decomposed relations to obtain the instance of R back.

Intuition: Consider the relation R(2,B,C) and a FD B — C that is a BCNF
violation. Decomposing based on this FD yields R; (A,B) and R,(B,C). Now,
let t = (a, b, c) be atuple of R. Note that (a, b) is a (projected) tuple in R; and
(b, c) one in R,. When we perform the natural join of R; and R;, since the
tuples agree on their B components, we obtain the original tuple t.

The BCNF decomposition algorithm guarantees that we can recover the
original relation by performing a natural join on the decomposed relations.




@ Go over example 3.21.




Example: The Chase for Lossless Joins

Consider relation R(2, B, C) on which neither B — A nor B — C holds. Say we
decompose R into R;(A,B) and Ry(B,C). Then,

A|lB|C Al|B B|C

1 2 3 1 2 2 3

4 2 5 4 2 2 5
Table : Valid R instance. Table : Ttas(R). Table : 7z (R).

NI RSO REG LS
NN N NN TD
glw o1 wl O

Table : was(R) X 7ac(R) introduces spurious tuples!




The Chase for Lossless Joins

The chase test for a lossless join is a systematic way to check whether a
tuple tin ms, (R) M x5, (R) X ... X g, (R), the natural join of the decomposed
relations, is also a tuple in the original relation R. That is, the decomposition
does not produce spurious tuples.

Observation #1. The join is associative and commutative— join order does not
matter. The join above is the set of tuples t such that t projected onto the
attributes of s; is a tuple in s, (R), for each i € [1, k].

Observation #2. Any tuple t € R surely is in the join. Simply note that the
projection of t onto each S; must be in s, (R) for every i.

Observation #3. If t is in the join, there must exist tuples t;, ..., I in R such
that t is obtained by joining the projections of each t; onto the attributes S;,
for i € [1,k]. Further, t; must agree with ¢t on the attributes in S;, but has
unknown values otherwise.




The Chase for Lossless Joins

The chase test for a lossless join is a systematic way to check whether a
tuple tin s, (R) X g, (R) X ... X g, (R), the natural join of the decomposed
relations, is also a tuple in the original relation R.

Setup. Create a tableau with the same schema as R. Add one symbolic tuple
for every decomposed relation s, (R) as follows: use non-subscripted
symbols for attributes in S; and j-subscripted symbols for the unknowns.




The Chase for Lossless Joins

The chase test for a lossless join is a systematic way to check whether a
tuple tin s, (R) X g, (R) X ... X g, (R), the natural join of the decomposed
relations, is also a tuple in the original relation R.

Chasing. Apply the FDs of R to equate symbols in the tableau until some
tuple t' contains only non-subscripted symbols (i.e., t' is equal tuple t above)
or no FDs can be further applied. When equating symbols, change all
occurrences of one with the other.




Example: The Chase for Lossless Joins

Consider relation R(A,B,C,D) with FDs # = {A — B,B — C,CD — A}. Say
we decompose R into relations with sets of attributes S; = {A,D},
s, ={A,Cc},and s; = {B,C,D}.

Setup the tableau for this decomposition and apply the chase to verify if this
decomposition has the lossless join property.




Example: The Chase for Lossless Joins

Consider relation R(A,B,C,D) with FDs # = {A — B,B — C,CD — A}. Say
we decompose R into relations with sets of attributes S; = {A,D},
s, ={A,Cc},and s; = {B,C,D}.

B C D
a b1 C1 d
a bo c ab
as b c d

Step #1 : Tableau setup based on the decomposition of R.




Example: The Chase for Lossless Joins

Consider relation R(A,B,C,D) with FDs # = {A — B,B — C,CD — A}. Say
we decompose R into relations with sets of attributes S; = {A,D},
s, ={A,Cc},and s; = {B,C,D}.

a b1 Cq d

as b c d

Step #2 : Apply FD & — B.




Example: The Chase for Lossless Joins

Consider relation R(A,B,C,D) with FDs # = {A — B,B — C,CD — A}. Say
we decompose R into relations with sets of attributes S; = {A,D},
s, ={A,Cc},and s; = {B,C,D}.

B |C| D

a b1 (o d

a by (o b

as b c d

Step #3 : Apply FD B — C.




Example: The Chase for Lossless Joins

Consider relation R(A,B,C,D) with FDs # = {A — B,B — C,CD — A}. Say
we decompose R into relations with sets of attributes S; = {A,D},
s, ={A,Cc},and s; = {B,C,D}.

Al B |C | D
a | by c d
a | by c | db
a b c d

Step #4 : Apply FD CD — A.




Example: The Chase for Lossless Joins

Consider relation R(A,B,C,D) with FDs # = {A — B,B — C,CD — A}. Say
we decompose R into relations with sets of attributes S; = {A,D},
s, ={A,Cc},and s; = {B,C,D}.

Al B |C | D
a | by c d
a | by c | db
a b c d

Conclusion : Last tuple is evidence of lossless join decomposition.




Example: Dependency Preservation

Consider relation Bookings(title,theater,city) with FDs
{theater — city,title city — theater}. Decompose into BCNF.
@ Keys: {title,city} and {theater,title}.

@ BCNF Violation: theater — city.

@ Decomposition: S; = {theater,city},S, = {theater,title},

@ Problem: title city — theater.

theater | city theater | title theater | city | title
Guild NYC Guild Antz Guild NYC | Antz
Park NYC Park Antz Park NYC | Antz
Tts, (Bookings) Tts, (Bookings) Tts, (Bookings) X ms, (Bookings)

@ 75, (Bookings) and s, (Bookings) are valid instances.
@ But 15, (Bookings) M mtg, (Bookings) violates title city — theater.




Dependency Preservation

Unfortunately, it is not always possible to decompose into BCNF and
preserve functional dependencies.




@ Go over example 3.25.
@ Go over problems 3.4.1, 3.4.2.
@ Read section 3.4 from chapter #3 and go over the remaining problems.




Third Normal Form

Definition: Third Normal Form (BCNF)

Consider a relation R and two sets of attributes A and B. Relation R is in Third
Normal Form (3NF) if and only if:

@ Whenever there exists a non-trivial functional dependency A — Bin R, A is
a superkey of R, OR

@ Every attribute in B\ A is a member of some key (need not be the same).

An attribute that is a member of some key is called prime. Thus, 3NF states
that the 1hs of every non-trivial FD is a superkey, or all attributes on the rhs

are prime.




Closure of FDs

Definition: Minimal Basis

Given a set of FDs S, any set of FDs equivalent to S is a basis for S. A
minimal basis for a relation is a basis B that satisfies:

@ Every FD in B has a single attribute on the rhs.

@ If any FD is removed from 4B, it is no longer a basis.

© If for any FD in ‘B we remove one or more attributes from the 1hs of the
FD, the result is no longer a basis.

Note: a minimal basis has no trivial FD, as they are removed in step (2).




Third Normal Form

Algorithm: 3NF Synthesis

INPUT: Relation R with a set of FDs .

OUTPUT: Decomposition of R into a collection of relations in 3NF.
@ Find a minimal basis for F (call it G).

Q Foreach FD X — Ain G, use XUA as attributes of one of the relations in
the decomposition.

Q If none of the relations obtained in (2) contain a superkey of R, add
another relation whose schema is a key of R.

The 3NF synthesis algorithm gurantees that: a) all decomposed relations are
in 3NF, b) the decomposition has a lossless join, and c) the decomposition is
dependency-preserving.

o




@ Go over example 3.27.
@ Go over problems 3.5.1, 3.5.4.
@ Read section 3.5 from chapter #3 and go over the remaining problems.




Attribute Independence

In certain cases, a BCNF schema may still show some redundancy. A
common source is having two or more set-valued properties of the key into a
single relation.




Example: Attribute Independence

name | street | city
C. Fisher 123 Maple St. Hollywood

C. Fisher

C. Fisher Empire Strikes Back

C. Fisher Empire Strikes Back 1980
C. Fisher Hollywood Return of the Jedi 1983
C. Fisher Return of the Jedi 1983

Table : Sets of addresses independent from movies.

@ Stars may have multiple addresses and act in multiple movies.
@ No reason to associate one address with one movie and not the other.
@ This relation has no non-trivial FD, therefore, it is in BCNF!




Multivalued Dependency

Definition: Multivalued Dependency

A multivalued dependency (MVD) on a relation R is a statement of the form:
A1A2...An—» B1Bg...Bm

where Ay, As,...,An, By, Bs, ..., By are attributes of R. This MVD holds if, for
each pair of tuples t and u of R that agree on their Ay, A, ..., A, values, there
exists some tuple v in R that agrees:

@ with the Ay, As, ..., A, values of t and u,
Q@ with the By, Bs, ..., By, values of t, and
@ with u on the values of all attributes of R not among the A’s or B’s.

Observation: swapping t and u guarantees the existence of another tuple w.
Thus, for any fixed values of the A’s, the B’s and the other attributes appear in
all possible combinations in different tuples (hence their independence).

v




Example: Multivalued Dependency

name street city title year

C. Fisher 123 Maple St. Hollywood Return of the Jedi 1983
C. Fisher 5 Locust Ln. Malibu Return of the Jedi 1983

Table : Sets of addresses independent from movies.

@ Now we can express the following MVD: name — street city.

@ Tha is, each star name appears with their set of addresses.

@ Let t and u be the first and second blue rows. Then, v is the red row.
@ If we swap t and u, then v is the yellow row.




Multivalued Dependency

Rules involving MVDs:

@ Triviality. (analogous to FDs)

@ Transitivity. (analogous to FDs)
@ Promotion. Every FD is an MVD.

@ Complementation. If AjAs... A, — B1Bs... By is an MVD for a relation R
then R also satisfies A1A>...A, — C1Cs...Ck, Where the Cs are the
attributes of R not among the As and Bs (swapping Bs in a tuple that
agrees on the As has the same effect as swapping the Cs).

@ More Triviality. If {Ay,Az,...,An, B1,Bs,...,By} are all the attributes of R,
then A1A2 .. .An —» B1 Bg . Bm.
Observation: the combining and splitting rules do not apply to MVDs.




Fourth Normal Form

Definition: Fourth Normal Form

Consider a relation R and two sets of attributes A and B. Relation R is in
Fourth Normal Form (4NF) if and only if:
@ Whenever there exists a non-trivial multivalued dependency A2 — B in R, A
is a superkey of R.

Observation: 4NF is a generalization of BCNF, thus, every relation in 4NF is
also in BCNF and every BCNF violation is also a 4NF violation.




Fourth Normal Form

Algorithm

INPUT: Relation R with a set of FDs+MVDs $.
OUTPUT: Decomposition of Ry into a collection of relations in 4NF.

PROCEDURE: Run the steps below recursively for any relation R and set
of FDs+MVDs S that must be decomposed into 4NF. Start with R =R, and

S = So.
Q If R already is in 4NF, return {R}.

Q Let X — Y be a 4NF (true MVD or FD) violation. Let R; have schema xUY
and R, schema XU (R—X —Y).

Q Compute the FDs+MVDs Sy and S, for R; and R,, respectively.
Q Recursively decompose R; and R;.

@ Return the union of all decompositions.




@ Go over example 3.34.
@ Go over problems 3.6.2, 3.6.3.
@ Read section 3.6 from chapter #3 and go over the remaining problems.




The Chase: Checking if an FD holds

The Chase.
@ First application: checking for lossless join decomposition.
@ New application: checking if a FD holds in a relation.
@ Consider a relation R and a set of FDs ¥ that hold in R.

@ To know whether the FD X — Y follows from 7, proceed as follows:

e Create a tableau with two rows agreeing on their X values only.
e Chase the tableau using the FDs in F.
e If the final tableau agrees in all columns of Y then X — Y holds in R.




Example: The Chase for FDs

Consider relation R(A,B,C,D,E,F) with FDs

F ={AB — C,BC — AD,D — E,CF — B} and say we wish to know whether
{AB — D} holds in R.

A|B|C|D|E|F
a| b d fi
al b o)) f

Cq €1

Co (&)

Step #1 : Tableau setup based on the FD {AB — D}.




Example: The Chase for FDs

Consider relation R(A,B,C,D,E,F) with FDs
F ={AB — C,BC — AD,D — E,CF — B} and say we wish to know whether
{AB — D} holds in R.

A|lBlc|D|E|F
a | b | c d e fi
abc1 d2 (&) f2

Step #2 : Apply FD {AB — C}.




Example: The Chase for FDs

Consider relation R(A,B,C,D,E,F) with FDs
F ={AB — C,BC — AD,D — E,CF — B} and say we wish to know whether
{AB — D} holds in R.

Step #3 : Apply FD {BC — AD}.




Example: The Chase for FDs

Consider relation R(A,B,C,D,E,F) with FDs
F ={AB — C,BC — AD,D — E,CF — B} and say we wish to know whether
{AB — D} holds in R.

A|lBlc|D|E|F
al b | ¢ d; ey fi
al b | ¢ d; e >

Step #4 : Apply FD {D — E}.




Example: The Chase for FDs

Consider relation R(A,B,C,D,E,F) with FDs
F ={AB — C,BC — AD,D — E,CF — B} and say we wish to know whether
{AB — D} holds in R.

A|lBlc|D|E|F
b | c | d f,

a
a

€1

b Cq d1 €1 f2

Conclusion : The tuples agree on D thus {AB — D} holds in R.




The Chase: Checking if an MVD holds

Checking if a MVD holds in a relation.

@ Consider a relation R and a set of FDs+MVDs F for R.
@ To know whether the MVD X — Y follows from ¥, proceed as follows:

e Create a tableau with two rows agreeing on the values of X only.

e Chase the tableau using the FDs of .

e Apply each MVD of ¥ as follows: given a MVD A — B, if two tuples in the
tableau agree on A, form two new tuples by swapping all their B values.

o If we ever discover that one of the original tuples with its Y values replaced by
those of the other original tuple is in the tableau, the MVD holds in R.




Example: The Chase for MVDs

Consider relation R(A,B,C,D) with FDs # = {A — B,B — C} and say we
wish to know whether {2 — C} holds in R.

AlB|GC|D
ab1 C d1
a b Co d

Step #1 : Tableau setup based on the MVD {A — C}.




Example: The Chase for MVDs

Consider relation R(A,B,C,D) with FDs # = {A — B,B — C} and say we
wish to know whether {2 — C} holds in R.

A|lB|C|D
a |l b | c | d
a | b | o d

Step #2 : Apply FD A — B.




Example: The Chase for MVDs

Consider relation R(A,B,C,D) with FDs # = {A — B,B — C} and say we
wish to know whether {2 — C} holds in R.

A|lB|C|D
alb | c | d
al s

al b d1
@l |

Step #3 : Apply MVD B — C.




Example: The Chase for MVDs

Consider relation R(A,B,C,D) with FDs # = {A — B,B — C} and say we
wish to know whether {2 — C} holds in R.

H O o>
IO

Co d1
b | o e

Conclusion : Last tuple is evidence that {A — C} holds in R.




Projecting MVDs

Just like the projection of FDs is essential to the BCNF algorithm, the
projection of MVDs is essential to the 4NF algorithm.

To verify whether an MVD holds in a projected relation (decomposition), we
apply the chase on the full set of attributes of the original relation. The goal is
to produce two rows in the tableau that satisfy the MVD condition for the
decomposed relation.

As with FDs, there are shortcuts: do not check trivial FDs and MVDs; it
suffices to look for FDs with a single attribute on the rhs; FDs or MVDs
whose 1hs does not contain the 1hs of any MVD or FD can be ignored (the
chase cannot start).




@ Go over example 3.38 and problems 3.7.1, 3.7.4.
@ Read section 3.7 from chapter #3.
@ Go over the remaining problems of section 3.7.
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