Exercise 3.3.1

- i) Indicate all the BCNF violations. Don't forget FD's that follow from the set of given FD's.
- ii) Decompose the relations into collections of relations that are in BCNF.

a) R(A,B,C,D) with FD's AB->C, C->D, and D->A

Following algorithm 3.20

1. Check whether R is in BCNF.

Definition: Relation R is in BCNF iff whenever there is a non trivial FD $A_1 A_2 \dots A_n \rightarrow B_1 B_2 \dots B_n$ for $R \{ A_1 A_2 \dots A_n \}$ is a superkey.

AB->C: The set closure of AB^+ is { A, B, C, D } therefore the left hand side of this FD is a superkey.

 $C{\mbox{->}} D{\mbox{:}}$ The set closure of $C^{\mbox{+}}$ is { C, D, A } therefore the left hand side is not a superkey. BCNF Violation

D-> A: The set closure of D^+ is { D, A } therefore the left hand side is not a superkey. **BCNF Violation**

2. If there are BCNF violations, let one be X->Y. Use Algorithm 3.7 to compute X^+ . Choose $R_1 = X^+$ as one relation schema and let R_2 have attributes X and those attributes of R that are not in X^+ .

The BCNF violation we will use is C->D. C⁺ is { C, D, A } $R_1 = \{ C, D, A \}$ and $R_2 = \{ C, B \}$

3. Use Algorithm 3.12 to compute the sets of FD's for R₁ and R₂; let these be S₁ and S₂, respectively.

 $S_1 = \{ C \rightarrow D, C \rightarrow A, D \rightarrow A \}$ and $S_2 = \{ empty \}$

Recursively decompose R₁ and R₂ using this algorithm. Return the union of the results of these decompositions.
 R₂ is in BCNF because <u>B,C</u> is the key R₂={<u>C,B</u>}.

Now check R_1 : C->D, C->A: The set closure of C⁺ is { C, D, A } D->A: The set closure of D⁺ is { D, A } therefore the left hand side is not a superkey. **BCNF Violation**

Step 2:

 $R_{1.1} = \{ D, A \}$ and $R_{2.1} = \{ D, C \}$

Recursion ends because each of these sets now contains only two attributes. Return the union of all R sets.

Answer: R_{1.1} = { D, A } R_{2.1} = { D, C } R₂ = { C, B }

b) R(A,B,C,D) with FD's B->C and B->D

Following algorithm 3.20

1. Check whether R is in BCNF. Relation R is in BCNF iff whenever there is a non trivial FD $A_1 A_2 \dots A_n \rightarrow B_1 B_2 \dots B_n$ for R { $A_1 A_2 \dots A_n$ } is a superkey.

B->C and B->D: The set closure of B^+ is { B, C, D } therefore neither of the left side of these FD's are superkeys. **BCNF Violations**

2. If there are BCNF violations, let one be X->Y. Use Algorithm 3.7 to compute X^+ . Choose $R_1 = X^+$ as one relation schema and let R_2 have attributes X and those attributes of R that are not in X^+ .

The BCNF violation we will use is B->C. B⁺ is $\{B, C, D\}$ R₁= $\{B, C, D\}$ and R₂ = $\{B, A\}$

3. Use Algorithm 3.12 to compute the sets of FD's for R_1 and R_2 ; let these be S_1 and S_2 , respectively.

 $S_1 = \{ B \rightarrow C, B \rightarrow D \}$ and $S_2 = \{ empty \}$

4. Recursively decomposes R_1 and R_2 using this algorithm. Return the union of the results of these decompositions.

 R_2 is in BCNF because it only has two attributes and is the key. Now check R_1 : B->C, B->D: The set closure of B⁺ is { B, C, D } therefore the left hand sides of these FD's are superkeys.

Answer: R₁ = { B, C, D } R₂ = { B, A }

Exercise 3.5.1

- i) Indicate all the 3NF violations.
- ii) Decompose the relations, as necessary, into collections of relations that are in 3NF.

Relation R is in 3NF if whenever there is a non trivial FD $A_1 A_2 \dots A_n \rightarrow B_1 B_2 \dots$ B_n for R either { $A_1 A_2 \dots A_n$ } is a superkey, or B is a member of some key.

a) R(A,B,C,D) with FD's AB->C, C->D, and D->A

Find all the keys in this relation by finding the set closures of the combinations of attributes.

 $\begin{array}{ll} A^{+} = \{ \ A \ \} & \underline{AB^{+} = \{ \ A,B,C,D \ \}} & \underline{BC^{+} = \{ \ B,C,D,A \ \}} & CD^{+} = \{ \ C,D,A \ \} \\ B^{+} = \{ \ B \ \} & AC^{+} = \{ \ A,C,D \ \} & \underline{BD^{+} = \{ \ B,D,A,C \ \}} \\ C^{+} = \{ \ C,D,A \ \} & AD^{+} = \{ \ A,D \ \} & D^{+} = \{ \ D,A \ \} \end{array}$

Check all the FD's for a violation of the 3NF condition.

AB->C: AB is a superkey, C is prime because it is a member of key BC. C->D: D is prime because it is a member of key BD. D->A: A is prime because it is a member of key AB.

Answer: No 3NF violations. No decomposition needed.

b) R(A,B,C,D) with FD's B->C and B->D

Find all the keys in this relation by finding the set closures of the combinations of attributes.

 $\begin{array}{ll} A^{+} = \{ \ A \ \} & \underline{AB^{+} = \{ \ A,B,C,D \ \}} & BC^{+} = \{ \ B,C,D \ \} & CD^{+} = \{ \ C,D \ \} \\ B^{+} = \{ \ B,C,D \ \} & AC^{+} = \{ \ A,C \ \} & BD^{+} = \{ \ B,D \ \} \\ C^{+} = \{ \ C \ \} & AD^{+} = \{ \ A,D \ \} \\ D^{+} = \{ \ D \ \} & \end{array}$

Check all the FD's for a violation of the 3NF condition.

B->C: B is not a superkey, C is not prime. **3NF Violation** B->D: B is not a superkey. D is not prime. **3NF Violation**

Decompose on violation B->C.

 $R_1 = \{ B, C \}$ and $R_2 = \{ B, A, D \}$

Now recursively check for 3NF violations on R₂

Find all the keys in R_2 by find the set of closures of the combinations of attributes that exist in R_2 . The only FD that exists for R_2 is B->D.

 $B^{+} = \{ B,D \} \qquad \underline{BA^{+} = \{ B,A,D \}} \\ A^{+} = \{ A \} \qquad BD^{+} = \{ B,D \} \\ D^{+} = \{ D \} \qquad AD^{+} = \{ A,D \}$

Again check all FD's for a violation of the 3NF condition. In this case only one FD exists.

B->D: B is not a superkey and D is not prime. **3NF Violation**

Decompose into two relations: $R_{2,1} = \{ B,D \}$ and $R_{2,2} = \{ B,A \}$

Answer: $R_1 = \{ B,C \}$ $R_{2.1} = \{ B,D \}$ $R_{2.2} = \{ B,A \}$

Now your turn!

C) R(A,B,C,D) with FD's AB->C, BC-> D, CD->A, and AD->B
D) R(A,B,C,D) with FD's A->B,B->C,C->D, and D->A.
E) R(A,B,C,D,E) with FD's AB->C, DE->C and B->D
F) R(A,B,C,D,E) with FD's AB->C,C->D,D->B, and D->E.