
HOW TO SORT

How should you sort a sequence of records into or-
der? T h e answcr is usually easy:

U s e a sort c o m m a n d provided by the system.

Unfortunately, this plan doesn't always work. Some
systems don't have a sort command, and existing sorts
may not be general enough or efficient enough to solve
a particular problem.' In such cases, a programmer has
no choice but to write a sort routine.

Sort routines are old hat-they have been standard
fare in Conlrnur~ications of the ACM for a quarter of a
century and can he found in many textbooks. Why
have I chosen to review this subject o n e more time?

Too many programmers don't consult the literature.
Instead, they use a "sort logic" passed on from buddy
to buddy, each one adding an efficiency bell or whis-
tle t o an inefficient algorithm. If you know such a
programmer, please copy these pages and pass them
on.
Books and papers on sorting algorithms ofien de-
scr ibe super-duper algorithms that a r e difficult to im-
plement. This column is a first-aid kit for sorting that
describes a few algorithms that are simple to under-
s tand and to implement.

I n addition to being useful, the development of these
routines is good clean programming fun.

Insertion Sort-An O(NZ) Algorithm
Insertion Sort is the method most card players use to

sort the i r cards. They keep the cards dealt so far in
sorted order, and as each new card arrives they insert it
into i t s proper relative position. To sort the- array
X[l..N] into increasing order we'll start with the sorted
subarray X[l..l] and then insert the elements X[2], . . . ,
'The August 1983 column described how a system sort couldn't be used
because the routine was needed in the middle of a large system. As an
example of a performance problem, consider a hypo~hetical programmer
who cal l s a system sort in the innermost loopof his program to sort a
few integers. Unfortunately. some sorts would do the job by writing the
integers to a file, swapping the user program out to disk. reading in the
sort program. sorting the file on disk. swapping back in the user pro-
gram, and reading in the sorted file. Replacing such a system sort with a
simple procedure could easily increase the speed of the program by a
factor of a million.

c 1984 AC:M oom -117nz/n4/1~0~-0287 75c

X [N], as in the following pseudocode.

f o r I := 2 t o N d o
/ * I n v a r i a n t : X [l . . I - I] i s

s o r t e d * /
/ * G o a l : s i f t X [I] down t o i t s

p r o p e r p l a c e i n X [l . . T - 1] * /

The following four lines show the progress of the
algorithm on a four-element array. The "." represents
the variable I ; elements to its left are sorted, while
elements to its right are in their original order.

The sifting down is accomplished by a right-to-left
loop that uses the variable 1 to keep track of the ele-
ment being sifted. The loop swaps the element with its
predecessor in the array a s long as there is a predeces-
sor (that is, 1 > 1) and the element hasn't reached its
final position (that is, it is out of order with its prede-
cessor). Thus the entire sort is

f o r I := 2 t o N d o
/ * I n v a r i a n t : X [l . . I - I] i s

s o r t e d * /
J := I
w h i l e J > 1 a n d X [J - I] > x [J] d o

s w a p (X [J] ,X[J-11)
J :=J-I

When I need a sort and efficiency isrt't an issue, that's
the routine I use: it's just five lines of easy code. (There
are a few zealously protective systems on which this
code may generate a run-time error: see Problem 2.)

If you don't have a swap routine handy, the following
assignments use the variable T to exchange X[]] and
X [l - 11.

This code opens the door for a simple optimization.
Because the variable T is assigned the same value over
and over (the value originally in X[I]), we can move the
assignments to and from T out of the loop, and change

April 1984 Volunre 27 Number 4 Coninrunicatiorrs of the ACM 287

Programming Pearls

the comparison as follows.

for I := 2 t o N d o
/ * Invariant: X[l..I-11 is

s ~ r t e d * /
J :=I
T:=x[J]

while J>1 and x[J-I]>T do
X[J] :=x[J-11
J :=J-1

X[J] :=T

This code shifts elements right into the hole vacated by
X[I], and finally moves T into the hole once it is in its
final position. It is seven lines long and a little more
subtle than the simple Insertion Sort, but on my system
it takes just one third the time of the first program.

This routine is easy to translate, even into primitive
languages. In BASIC, it becomes the subroutine

1000 ' SORT X(l..N)
1010 FOR I=2 TO N
1015 ' INVARIANT: X(l..I-1) I S SORTED
1020 J=I
1030 T=X(J)
1040 IF J<=l OR X(J-l)<=T THEN 1080
1050 X(J)=X(J-1)
1060 J=J- 1
1070 GOT0 1040
1080 X(J)=T
1090 NEXT I
1100 RETURN

When I compared the running time of this program
with an "efficient" sort from a 1982 BASIC text (which
used twice as many lines of code), I found that this
simple routine required less than half the run time of
its more complex cousin.

On random data as well as in the worst case, the time
of Insertion Sort on an N-element array is proportional
to N2. Fortunately, if the data in the array is already in
almost sorted order, the program is much faster because
each element sifts down just a short distance.

Quicksort-An O(N log N) Algorithm
The Quicksort algorithm was invented by C.A.R.

Hoare in the early 1960s. It uses divide-and-conquer: to
sort 'an array we divide it into two smaller pieces and
sort those recursively. For instance, to sort the eight-
element array

we partition it around the first element (55) so that all
elements less than 55 are to the left of it, while all
greater elements are to its right:

We can then recursively sort the subarray from 1 to 3
and the subarray from 5 to 8, independently, and wind
up with the entire array being sorted.

The average run time of this algorithm is much less
than the 0 (N 2) time of Insertion Sort because a parti-
tioning operation goes a long way towards sorting the
sequence. After a typical partitioning of N elements,
there are about N / 2 elements above the partition value
and N / 2 elements below it. In a similar amount of run
time, the sift operation of Insertion Sort manages to get
just one more element into the right place.

It's not hard to turn the above idea into a sketch of a
recursive subroutine. We'll represent the portion of the
array we're dealing with by the two indices L and U,
for the lower and upper limits. The recursion stops
when we come to an array with fewer than two ele-
ments. So the code is

procedure QSort(L,U)
if L>=U then

/ * array contains at most
one element, do nothing * /

else
/ * partition array around

a given value, which is
eventually placed in
position M * /

QSort(L, M-1)
QSort(M+l, U)

To partition the array around the value T we'll use a
simple scheme that I learned from Nico Lomuto of Al-
sys, Inc. There are faster programs for this job2, but this
routine is so easy to understand that it is hard to get
wrong, and it is by no means slow. Given the value T,
we are to rearrange X[A..B] and compute an index
(which we'll call LastLow for reasons to become clear
soon) such that all elements less than T are to one side
of LastLow, while all other elements are on the other
side. We'll accomplish the job with a simple for loop
that scans the array from left to right, using the varia-
bles I and LastLow to maintain the following invariant
in array X:

When the code inspects the I"' element there are two
cases to consider. If X[I] r: T then all is fine; the invar-
iant is still true. On the other hand, when ~ [f] < T we
regain the invariant by incrementing LastLow to index
the new home of the little guy, and then swapping him

Most discussions of Quicksort use a partitioning scheme based on two
approaching indices like the one described in Problem 3. Although the
basic idea of that scheme is straightforward. I have always found the
details tricky-I once spent the better part of two days chasing down a
bug hiding in a short partitioning loop. A reader of a preliminary draft
complained that the standard two-index method is in fact simpler than
~o&uto's. and sketched some code to make his point; I stopped looking
after 1 found two bugs.

288 Commul~ications of the ACM April 1984 Volunrc 27 Number 4

Programming Pearls

with the big guy already there. The code is

LastLow:=A-1
for I := A to B do

if X[I]<T then
LastLow:=LastLow+l
swap(~[~astLow] ,X[I])

In Quicksort wc'll partition the array X[L..U] around
the value T = X[L], so A will be L + 1 and B will be U.
Thus the invariant of the partitioning loop is depicted
as

When the loop terminates we have

We then swap X[L] with X[LastLow] to giveg

We can now recursively call the routine with the
parameters (L , LastLow - 1) and (LastLow + 1, U).

The above algorithm always partitions around the
first element in the array. While I won't give the analy-
sis here, it is easy to show that this choice can require
excessive time and space for some very common inputs
(for instance, arrays that are already sorted). We do far
better to choose a partitioning element at random; we
accomplish this by swapping X[L] with a random entry
in X[L..U]. Thus the complete Quicksort is

procedure QSort(L,U)
if LcU then

s w a p (~ [~] , ~ [~ a n d ~ n t (~ , U)])
T:=x[L]
LastLow:= L
for I := L+l to U do

/ * Invariant:
X[L+I..LastLow] < T and
X[LastLow+l..I-1] >= T * /

if X[I]<T then
LastLow:=LastLow+l
swap(X[Last~ow],X[I])

s w a p (X [~] , ~ [~ a s t ~ o w])
QSort(L,LastLow-I)
QSort(LastLow+l,U)

If you don't have a Randlnt function, you can make one
using a function Rand that returns a random real dis-
tributed uniformly in [0, 1) by the expression
L + trunc(Rand x (U + 1 - L))? TO sort the array X[l..N]
we call the procedure

Most of the proof of correctness of this program was
given in its derivation (which is, of course, its proper
place). The proof itself proceeds by induction: the outer
if statement correctly handles empty and single-ele-
ment arrays, and the partitioning code correctly sets up
larger arrays for the recursive calls. The program can't
make an infinite sequence of recursive calls because at
least one element is excluded at each invocation
(X[LastLow]); this is almost exactly the same argument
we used in the December 1983 column to show that
binary search terminates. I won't give the details here,
but it is pretty easy to show that this program runs in
O(N log N) average time and O(1og N) average stack
space for any input array with distinct elements. That is,
the random performance is a result of calling the ran-
dom number generator, rather than an assumption
about the distribution of inputs. (The running time can
be longer if the array has duplicated elements; see
Problem 3.)

There are many ways to tune the Quicksort code to
make it faster. Perhaps the simplest is to expand the
code for the swap pro-cedure in the inner loop (because
the other two calls to swap aren't in the inner loop,
writing them in line would have a negligible impact on
the speed). On my system this reduced the run time to
two-thirds of what it was previously. We might also
observe that a great deal of time is spent sorting very
small subarrays. It would be faster to sort those using a
simple method (such as Insertion Sort) rather than
spending the time to fire up all the machinery of
Quicksort. Bob Sedgewick developed a particularly
clever im~lementation of this idea. If Quicksort is
called on; small subarray (that is, if U and L are near),
we do nothing. We implement this by changing the first
if statement in the Quicksort procedure to

if U-L>CutOff then

where CutOff is a small integer. When the program fin-
ishes the array will not be sorted, but it will be grouped
into small clumps of randomly ordered values such that
the elements in one clump are less than elements in
any clump to its right. We must clean up within the
clumps by another sort method; because the array is
almost sorted, Insertion Sort is just right for the job.
Thus we sort the entire array by the code

It is tempting to ignore this step and to recur with parameters (L. LastLow)
and (LastLow + 1, U). Doing so leads to an infinite loop if T happens to be On my system the best choice for Cutoff was 15; this
the strictly greatest element in the array. The astute reader can guess reduced the time of the program to half of what it was
h o w I discovered this. originally (or another twenty-five percent reduction ' Whether you use a system routine or make your own, be careful that
Randlnt returns a value in the range L..U-a value out of range can be after writing the swap procedure in line).
an insidious bug to track down. Cutoff between 8 and 30 gave savings to within a few

Apr i l 1984 Volume 27 Number 4 Communications of the ACM 289

Programming Pearls

percent of that; the best value for your system can 1 e
found by experiment.

Principles
The programs we've studied are summarized in the

following table. They were written in the C language
on a VAX-11/750, they were timed on random 32-bit
integers, and all logarithms are base two. Insertion Sort
1 is the first sort given; Insertion Sort 2 wrote the swap
code in line and moved assignments to and from Tout
of the loop. Quicksort 1 was the first Quicksort; Quick-
sort 2 wrote the swap code in line and sorted small
subarrays by calling Insertion Sort 2 after the recursive
call on (1,N). The System Sort is the UNIX5 routine
qsort, The run-time functions are the result of fitting
the known form of the functions to the observed times
in the table.

Time in Seconds Lines of Run Time in for Size Program C Code Microseconds 1000 10000

Insertion Sort 1 5 17NZ 0.17 17.3 1730
Insertion Sort 2 7 6N2 0.06 5.7 570
Quicksort 1 11 63N log N 0.05 0.63 7.8
Quicksort 2 20 32N log N 0.03 0.32 4.3
System Sort 1 97N log N 0.06 1.0 13.6

The table underscores the following points.
The system sort is easy and fast.' If a system com-
mand is available that meets your needs, don't even
consider writing your own routine.

Insertion Sort is simple to code, and may be fast
enough for small sorting jobs (sorting 10,000 integers
with Insertion Sort 2 requires about ten minutes on
my system).

For large N, the O(N log N) running time of Quick-
sort becomes crucial. The techniques of algorithm
design gave us the basic idea for this divide-and-
conquer algorithm, and the techniques of program
verification helped us implement the idea in straight-
forward, succinct and efficient code.
Even though the big speedups of sorting are achieved
by changing algorithms, the code tuning techniques
discussed in the February 1983 column are also use-
ful. They speed up Insertion Sort by a factor of 3 and
Quicksort by a factor of 2.

Problems
1. Like any other powerful tool, sorting is often used

when it shouldn't be and often not used when it
should be. Explain how sorting could be either over-
used or underused when calculating the following
statistics of an array of N floating point numbers:
minimum, maximum, mean, median and mode.

UNlX is a Trademark of AT&T Bell Laboratories.
'The system Quicksort is slower than the hand-made Quicksorts be-
cause its [general and flexible) interface uses a procedure call to make
each comparison.

2. Suppose that X[1..10] and T are declared to be inte-
gers; what happens when the following code is exe-
cuted?

I := 1 1

if Ii=lO and X[I]CT then I:=I+l

On many systems the code will execute gracefully
without altering I. On some systems, though, the
code might abort because the array index I is out of
bounds. What would your system do on this code?
Why is this an issue in the various Insertion Sorts?
How can the problem be fixed in those sorts?

3. The Quicksort program in the text runs in time pro-
portional to NZ if X[1] = X[2] = . . . = X[N]; explain
why. That problem is avoided in the following
Quicksort, which is adapted from Sedgewick's paper
cited under further reading.

procedure QSort(L,U)
if U>L then

 swap(^[^], ~ [~ a n d ~ n t (~ , U)])
I:=L; J:=U+l; T:=X[L]
loop

repeat I:=I+l
until x[I]>=T;

repeat J :=J-1
until x[J]c=T;

if J<I then break

~ ~ ~ P (X [I I , X [J I)
endloop

swap(X[LI, X[Jl)
QSort(L,J-1)
QSort(1,U)

This code assumes that no key in X is greater than
X[N + 11; it uses that position as a sentinel element
to increase the speed of the inner loop. Because of
that and the fact that this code makes fewer swaps,
this program is almost twice as fast as Quicksort 1,
even on arrays of distinct elements. Use invariants
to prove that this program is correct. How does it
solve the problem of duplicate keys?

4. [R. Sedgewick] Modify Lomuto's partitioning scheme
to remove the swap after the loop and to increase the
speed by using a sentinel. (Hint: let the loop indices
move from right to left, so that they approach the
known value T in X [L].)

5. Implement several sorting programs and summarize
them in a table like that in the text. In addition to
Insertion Sort and Quicksort, you may want to con-
sider Shell Sort (fair speed with simple code) and
Heap Sort (good speed in the worst case). Does your
table support the same conclusions?

6. Sketch a one-page procedure to show a user of your
system how to select a sorting routine. Make sure
that your method considers the importance of run
time, space, programmer time (development and
maintenance), generality (what if I want to sort char-
acter strings that represent Roman numerals?], sta-

290 Communications of the ACM April 1984 Volume 27 N u m b d

Programming Pearls

bility (i t e m with equal keys should retain their rela-
tive order), special properties of tho input data, ctc.
To test ytmr procedure, try feeding it the sorting
problem described in the August 1983 column.

7. I'd like to includc in a future column a collection of
sorting programs that are small and lucid, perhaps
even at a slight cost in performance. W.D. Maurer
has a 19-line FOII'I'KAN implementation of Heap
Sort that is quite efficient, and M.D. Mcllroy has a
12-line program to sort variable-length strings in
time proportional to the sum of their lengths. Do you
know other programs along these lines, or cleaner
versions of the insertion Sort and Quicksort in the
text?

For Correspondence: Ion I.. Bentley. AT&T Bell Laboratories, Room 2C-
317.600 Mountain Avenue. Murray Hill. Nj 07974

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for C:ompuling Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

:COMPUTER HUMOR
. My only incentive not to celebrate April Fool's day in
!his column is the fact that most computer humor isn't
&any. As you will observe shortly, that wasn't enough.
with apologies,

1: Have you heard how the new {your choice) mmputer
8 -Implements a branch in.struction? it holds the pro-
@em. counter constant and moves memory.

Further Reading
What to read about sorting depends on why you're

reading. If you want to learn more about the subject in
general, you should refer to the algorithms texts men-
tioned in previous columns. In keeping with the how-
to-theme of this column, I'll list some references partic-
ularly helpful for programmers who find themselves
writing sort routines.

If you want to write the ultimate primary-memory
sort routine, Sedgewick's "lmplernenting Quicksort
Programs" is the ideal reference (it appeared in
CACM 21, 10, October 1978, pp. 847-857).
If your job is to write a simple disk-based sorting
package, you should certainly see how Kernighan
and Plauger wrote theirs in Software Tools and Soft-
ware Tools in Pascal (published in 1976 and 1981, re-
spectively, by Addison-Wesley).
Programmers who are about to spend several months
(or more) writing a quality system sort should study
Knuth's Art of Computer Programming, volume 3: Sort-
ing and Searching.

a patchwork, because it grew one ad hoc step at a
time, rather than being planned. Planning is a lot of
work, but it's easy to ads just-one extra fittb feature
to help sameone. . * . And then another. . . and an-
other.. . . Usually this term is used to describe com-
puter programs, but it could also be applied to the
federal government, the XRS 6040 form, and new oars.

