
HOW TO SORT 

How should you sort a sequence of records into or- 
der? T h e  answcr is usually easy: 

U s e  a sort c o m m a n d  provided by the system. 

Unfortunately, this plan doesn't always work. Some 
systems don't have a sort command, and  existing sorts 
may not be general enough or efficient enough to solve 
a particular problem.' In such cases, a programmer has 
no choice but to write a sort routine. 

Sort  routines are old hat-they have been standard 
fare in Conlrnur~ications of the ACM for a quarter of a 
century and can he found in many textbooks. Why 
have I chosen to review this subject o n e  more time? 

Too many programmers don't consult the literature. 
Instead, they use a "sort logic" passed on  from buddy 
to buddy, each one adding an efficiency bell or whis- 
tle t o  an inefficient algorithm. If you know such a 
programmer, please copy these pages and pass them 
on. 
Books and papers on sorting algorithms ofien de- 
scr ibe super-duper algorithms that a r e  difficult to im- 
plement. This column is a first-aid kit for sorting that 
describes a few algorithms that are simple to under- 
s tand and to implement. 

I n  addition to being useful, the development of these 
routines is good clean programming fun. 

Insertion Sort-An O(NZ) Algorithm 
Insertion Sort is the method most card players use to 

sort the i r  cards. They keep the cards dealt so  far in 
sorted order, and as each new card arrives they insert it 
into i t s  proper relative position. To sort the- array 
X[l..N] into increasing order we'll start with the sorted 
subarray X[l..l] and then insert the elements X[2], . . . , 
'The August 1983 column described how a system sort couldn't be used 
because the routine was needed in the middle of a large system. As an 
example of a performance problem, consider a hypo~hetical programmer 
who cal l s  a system sort in the innermost loopof his program to sort a 
few integers. Unfortunately. some sorts would do the job by writing the 
integers to a file, swapping the user program out to disk. reading in the 
sort program. sorting the file on disk. swapping back in the user pro- 
gram, and reading in the sorted file. Replacing such a system sort with a 
simple procedure could easily increase the speed of the program by a 
factor of a million. 
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X [N], as in the following pseudocode. 

f o r  I :=  2 t o  N d o  
/ *  I n v a r i a n t :  X [ l . . I - I ]  i s  

s o r t e d  * /  
/ *  G o a l :  s i f t  X [ I ]  down t o  i t s  

p r o p e r  p l a c e  i n  X [ l . . T - 1 ]  * /  

The following four lines show the progress of the 
algorithm on a four-element array. The "." represents 
the variable I ;  elements to its left are sorted, while 
elements to its right are in their original order. 

The sifting down is accomplished by a right-to-left 
loop that uses the variable 1 to keep track of the ele- 
ment being sifted. The loop swaps the element with its 
predecessor in the array a s  long as there is a predeces- 
sor (that is, 1 > 1) and the element hasn't reached its 
final position (that is, it is out of order with its prede- 
cessor). Thus the entire sort is 

f o r  I := 2 t o  N d o  
/ *  I n v a r i a n t :  X [ l . . I - I ]  i s  

s o r t e d  * /  
J := I 
w h i l e  J > 1  a n d  X [ J - I ] > x [ J ]  d o  

s w a p ( X [ J ]  ,X[J-11) 
J :=J-I 

When I need a sort and efficiency isrt't an issue, that's 
the routine I use: it's just five lines of easy code. (There 
are  a few zealously protective systems on which this 
code may generate a run-time error: see Problem 2.) 

If you don't have a swap routine handy, the following 
assignments use the variable T to exchange X[]] and 
X [ l  - 11. 

This code opens the door for a simple optimization. 
Because the variable T is assigned the same value over 
and over (the value originally in X[I]), we can move the 
assignments to and from T out of the loop, and change 
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the comparison as follows. 

for I := 2 t o  N d o  
/ *  Invariant: X[l..I-11 is 

s ~ r t e d  * /  
J :=I 
T:=x[J] 

while J>1 and x[J-I]>T do 
X[J] :=x[J-11 
J :=J-1 

X[J] :=T 

This code shifts elements right into the hole vacated by 
X[I], and finally moves T into the hole once it is in its 
final position. It is seven lines long and a little more 
subtle than the simple Insertion Sort, but on my system 
it takes just one third the time of the first program. 

This routine is easy to translate, even into primitive 
languages. In BASIC, it becomes the subroutine 

1000 ' SORT X(l..N) 
1010 FOR I=2 TO N 
1015 ' INVARIANT: X(l..I-1) I S  SORTED 
1020 J=I 
1030 T=X(J) 
1040 IF J<=l OR X(J-l)<=T THEN 1080 
1050 X(J)=X(J-1) 
1060 J=J- 1 
1070 GOT0 1040 
1080 X(J)=T 
1090 NEXT I 
1100 RETURN 

When I compared the running time of this program 
with an "efficient" sort from a 1982 BASIC text (which 
used twice as many lines of code), I found that this 
simple routine required less than half the run time of 
its more complex cousin. 

On random data as well as in the worst case, the time 
of Insertion Sort on an N-element array is proportional 
to N2.  Fortunately, if the data in the array is already in 
almost sorted order, the program is much faster because 
each element sifts down just a short distance. 

Quicksort-An O(N log N) Algorithm 
The Quicksort algorithm was invented by C.A.R. 

Hoare in the early 1960s. It uses divide-and-conquer: to 
sort 'an array we divide it into two smaller pieces and 
sort those recursively. For instance, to sort the eight- 
element array 

we partition it around the first element (55) so that all 
elements less than 55 are to the left of it, while all 
greater elements are to its right: 

We can then recursively sort the subarray from 1 to 3 
and the subarray from 5 to 8, independently, and wind 
up with the entire array being sorted. 

The average run time of this algorithm is much less 
than the 0 ( N 2 )  time of Insertion Sort because a parti- 
tioning operation goes a long way towards sorting the 
sequence. After a typical partitioning of N  elements, 
there are about N / 2  elements above the partition value 
and N / 2  elements below it. In a similar amount of run 
time, the sift operation of Insertion Sort manages to get 
just one more element into the right place. 

It's not hard to turn the above idea into a sketch of a 
recursive subroutine. We'll represent the portion of the 
array we're dealing with by the two indices L and U, 
for the lower and upper limits. The recursion stops 
when we come to an array with fewer than two ele- 
ments. So the code is 

procedure QSort(L,U) 
if L>=U then 

/ *  array contains at most 
one element, do nothing * /  

else 
/ *  partition array around 

a given value, which is 
eventually placed in 
position M * /  

QSort(L, M-1) 
QSort(M+l, U )  

To partition the array around the value T we'll use a 
simple scheme that I learned from Nico Lomuto of Al- 
sys, Inc. There are faster programs for this job2, but this 
routine is so easy to understand that it is hard to get 
wrong, and it is by no means slow. Given the value T, 
we are to rearrange X[A..B] and compute an index 
(which we'll call LastLow for reasons to become clear 
soon) such that all elements less than T are to one side 
of LastLow, while all other elements are on the other 
side. We'll accomplish the job with a simple for loop 
that scans the array from left to right, using the varia- 
bles I and LastLow to maintain the following invariant 
in array X: 

When the code inspects the I"' element there are two 
cases to consider. If X[I] r: T then all is fine; the invar- 
iant is still true. On the other hand, when ~ [ f ]  < T we 
regain the invariant by incrementing LastLow to index 
the new home of the little guy, and then swapping him 

Most discussions of Quicksort use a partitioning scheme based on two 
approaching indices like the one described in Problem 3. Although the 
basic idea of that scheme is straightforward. I have always found the 
details tricky-I once spent the better part of two days chasing down a 
bug hiding in a short partitioning loop. A reader of a preliminary draft 
complained that the standard two-index method is in fact simpler than 
~o&uto's. and sketched some code to make his point; I stopped looking 
after 1 found two bugs. 
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with the big guy already there. The code is 

LastLow:=A-1 
for I :=  A to B do 

if X[I]<T then 
LastLow:=LastLow+l 
swap(~[~astLow] ,X[I]) 

In Quicksort wc'll partition the array X[L..U] around 
the value T = X[L], so A will be L + 1 and B will be U. 
Thus the invariant of the partitioning loop is depicted 
as 

When the loop terminates we have 

We then swap X[L] with X[LastLow] to giveg 

We can now recursively call the routine with the 
parameters (L ,  LastLow - 1) and (LastLow + 1, U). 

The above algorithm always partitions around the 
first element in the array. While I won't give the analy- 
sis here, it is easy to show that this choice can require 
excessive time and space for some very common inputs 
(for instance, arrays that are already sorted). We do far 
better to choose a partitioning element at random; we 
accomplish this by swapping X[L] with a random entry 
in  X[L..U]. Thus the complete Quicksort is 

procedure QSort(L,U) 
if LcU then 

s w a p ( ~ [ ~ ] , ~ [ ~ a n d ~ n t ( ~ , U ) ] )  
T:=x[L] 
LastLow:= L 
for I := L+l to U do 

/ *  Invariant: 
X[L+I..LastLow] < T and 
X[LastLow+l..I-1] >= T * /  

if X[I]<T then 
LastLow:=LastLow+l 
swap(X[Last~ow],X[I]) 

s w a p ( X [ ~ ] , ~ [ ~ a s t ~ o w ] )  
QSort(L,LastLow-I) 
QSort(LastLow+l,U) 

If you don't have a Randlnt function, you can make one 
using a function Rand that returns a random real dis- 
tributed uniformly in [0, 1) by the expression 
L + trunc(Rand x (U + 1 - L))? TO sort the array X[l..N] 
we call the procedure 

Most of the proof of correctness of this program was 
given in its derivation (which is, of course, its proper 
place). The proof itself proceeds by induction: the outer 
if statement correctly handles empty and single-ele- 
ment arrays, and the partitioning code correctly sets up 
larger arrays for the recursive calls. The program can't 
make an infinite sequence of recursive calls because at 
least one element is excluded at each invocation 
(X[LastLow]); this is almost exactly the same argument 
we used in the December 1983 column to show that 
binary search terminates. I won't give the details here, 
but it is pretty easy to show that this program runs in 
O(N log N) average time and O(1og N) average stack 
space for any input array with distinct elements. That is, 
the random performance is a result of calling the ran- 
dom number generator, rather than an assumption 
about the distribution of inputs. (The running time can 
be longer if the array has duplicated elements; see 
Problem 3.) 

There are many ways to tune the Quicksort code to 
make it faster. Perhaps the simplest is to expand the 
code for the swap pro-cedure in the  inner loop (because 
the other two calls to swap aren't in the inner loop, 
writing them in line would have a negligible impact on 
the speed). On my system this reduced the run time to 
two-thirds of what it was previously. We might also 
observe that a great deal of time is spent sorting very 
small subarrays. It would be faster to sort those using a 
simple method (such as Insertion Sort) rather than 
spending the time to fire up all the machinery of 
Quicksort. Bob Sedgewick developed a particularly 
clever im~lementation of this idea. If Quicksort is 
called on; small subarray (that is, if U and L are near), 
we do nothing. We implement this by changing the first 
if statement in the Quicksort procedure to 

if U-L>CutOff then 

where CutOff is a small integer. When the program fin- 
ishes the array will not be sorted, but it will be grouped 
into small clumps of randomly ordered values such that 
the elements in one clump are less than elements in 
any clump to its right. We must clean up within the 
clumps by another sort method; because the array is 
almost sorted, Insertion Sort is just right for the job. 
Thus we sort the entire array by the code 

It is tempting to ignore this step and to recur with parameters (L. LastLow) 
and (LastLow + 1, U). Doing so leads to an infinite loop if T happens to be On my system the best choice for Cutoff was 15; this 
the  strictly greatest element in the array. The astute reader can guess reduced the time of the program to half of what it was 
h o w  I discovered this. originally (or another twenty-five percent reduction ' Whether you use a system routine or make your own, be careful that 
Randlnt returns a value in the range L..U-a value out of range can be after writing the swap procedure in line). 
an insidious bug to track down. Cutoff between 8 and 30 gave savings to within a few 
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percent of that; the best value for your system can 1 e 
found by experiment. 

Principles 
The programs we've studied are summarized in the 

following table. They were written in the C language 
on a VAX-11/750, they were timed on random 32-bit 
integers, and all logarithms are base two. Insertion Sort 
1 is the first sort given; Insertion Sort 2 wrote the swap 
code in line and moved assignments to and from Tout 
of the loop. Quicksort 1 was the first Quicksort; Quick- 
sort 2 wrote the swap code in line and sorted small 
subarrays by calling Insertion Sort 2 after the recursive 
call on (1,N). The System Sort is the UNIX5 routine 
qsort, The run-time functions are the result of fitting 
the known form of the functions to the observed times 
in the table. 

Time in Seconds Lines of Run Time in for Size Program C Code Microseconds 1000 10000 

Insertion Sort 1 5 17NZ 0.17 17.3 1730 
Insertion Sort 2 7 6N2 0.06 5.7 570 
Quicksort 1 11 63N log N 0.05 0.63 7.8 
Quicksort 2 20 32N log N 0.03 0.32 4.3 
System Sort 1 97N log N 0.06 1.0 13.6 

The table underscores the following points. 
The system sort is easy and fast.' If a system com- 
mand is available that meets your needs, don't even 
consider writing your own routine. 

Insertion Sort is simple to code, and may be fast 
enough for small sorting jobs (sorting 10,000 integers 
with Insertion Sort 2 requires about ten minutes on 
my system). 

For large N, the O(N log N) running time of Quick- 
sort becomes crucial. The techniques of algorithm 
design gave us the basic idea for this divide-and- 
conquer algorithm, and the techniques of program 
verification helped us implement the idea in straight- 
forward, succinct and efficient code. 
Even though the big speedups of sorting are achieved 
by changing algorithms, the code tuning techniques 
discussed in the February 1983 column are also use- 
ful. They speed up Insertion Sort by a factor of 3 and 
Quicksort by a factor of 2. 

Problems 
1. Like any other powerful tool, sorting is often used 

when it shouldn't be and often not used when it 
should be. Explain how sorting could be either over- 
used or underused when calculating the following 
statistics of an array of N floating point numbers: 
minimum, maximum, mean, median and mode. 

UNlX is a Trademark of AT&T Bell Laboratories. 
'The system Quicksort is slower than the hand-made Quicksorts be- 
cause its [general and flexible) interface uses a procedure call to make 
each comparison. 

2. Suppose that X[1..10] and T are declared to be inte- 
gers; what happens when the following code is exe- 
cuted? 

I := 1 1  

if Ii=lO and X[I]CT then I:=I+l 

On many systems the code will execute gracefully 
without altering I. On some systems, though, the 
code might abort because the array index I is out of 
bounds. What would your system do on this code? 
Why is this an issue in the various Insertion Sorts? 
How can the problem be fixed in those sorts? 

3. The Quicksort program in the text runs in time pro- 
portional to NZ if X[1] = X[2] = . . . = X[N]; explain 
why. That problem is avoided in the following 
Quicksort, which is adapted from Sedgewick's paper 
cited under further reading. 

procedure QSort(L,U) 
if U>L then 

 swap(^[^], ~ [ ~ a n d ~ n t ( ~ , U ) ] )  
I:=L; J:=U+l; T:=X[L] 
loop 

repeat I:=I+l 
until x[I]>=T; 

repeat J :=J-1 
until x[J]c=T; 

if J<I then break 

~ ~ ~ P ( X [ I I , X [ J I )  
endloop 

swap(X[LI, X[Jl) 
QSort(L,J-1) 
QSort(1,U) 

This code assumes that no key in X is greater than 
X[N + 11; it uses that position as a sentinel element 
to increase the speed of the inner loop. Because of 
that and the fact that this code makes fewer swaps, 
this program is almost twice as fast as Quicksort 1, 
even on arrays of distinct elements. Use invariants 
to prove that this program is correct. How does it 
solve the problem of duplicate keys? 

4. [R. Sedgewick] Modify Lomuto's partitioning scheme 
to remove the swap after the loop and to increase the 
speed by using a sentinel. (Hint: let the loop indices 
move from right to left, so that they approach the 
known value T in X [L].) 

5. Implement several sorting programs and summarize 
them in a table like that in the text. In addition to 
Insertion Sort and Quicksort, you may want to con- 
sider Shell Sort (fair speed with simple code) and 
Heap Sort (good speed in the worst case). Does your 
table support the same conclusions? 

6. Sketch a one-page procedure to show a user of your 
system how to select a sorting routine. Make sure 
that your method considers the importance of run 
time, space, programmer time (development and 
maintenance), generality (what if I want to sort char- 
acter strings that represent Roman numerals?], sta- 
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bility ( i t e m  with equal keys should retain their rela- 
tive order), special properties of tho input data, ctc. 
To test ytmr procedure, try feeding it the sorting 
problem described in the August 1983 column. 

7. I'd like to includc in a future column a collection of 
sorting programs that are small and lucid, perhaps 
even at a slight cost in performance. W.D. Maurer 
has a 19-line FOII'I'KAN implementation of Heap 
Sort that is quite efficient, and M.D. Mcllroy has a 
12-line program to sort variable-length strings in 
time proportional to the sum of their lengths. Do you 
know other programs along these lines, or cleaner 
versions of the insertion Sort and Quicksort in the 
text? 
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:COMPUTER HUMOR 
. My only incentive not to celebrate April Fool's day in 
!his column is the fact that most computer humor isn't 
&any. As you will observe shortly, that wasn't enough. 
with apologies, 

1: Have you heard how the new {your choice) mmputer 
8 -Implements a branch in.struction? it holds the pro- 
@em. counter constant and moves memory. 

Further Reading 
What to read about sorting depends on why you're 

reading. If you want to learn more about the subject in 
general, you should refer to the algorithms texts men- 
tioned in previous columns. In keeping with the how- 
to-theme of this column, I'll list some references partic- 
ularly helpful for programmers who find themselves 
writing sort routines. 

If you want to write the ultimate primary-memory 
sort routine, Sedgewick's "lmplernenting Quicksort 
Programs" is the ideal reference (it appeared in 
CACM 21, 10, October 1978, pp. 847-857). 
If your job is to write a simple disk-based sorting 
package, you should certainly see how Kernighan 
and Plauger wrote theirs in Software Tools and Soft- 
ware Tools in Pascal (published in 1976 and 1981, re- 
spectively, by Addison-Wesley). 
Programmers who are about to spend several months 
(or more) writing a quality system sort should study 
Knuth's Art of Computer Programming, volume 3: Sort- 
ing and Searching. 

a patchwork, because it grew one ad hoc step at a 
time, rather than being planned. Planning is a lot of 
work, but it's easy to ads just-one extra fittb feature 
to help sameone. . * .  And then another. . . and an- 
other.. . . Usually this term is used to describe com- 
puter programs, but it could also be applied to the 
federal government, the XRS 6040 form, and new oars. 


