

Introduction to
Haskell

Outline

● Functional Languages – Functions vs Orders

● Haskell – A Functional Language

● The Haskell Interpreter

● Haskell Basic Operations

● Haskell Lists

● Haskell Functions

● Haskell List Comprehensions

Functional Paradigm

● Not a series of instructions!

– “Functional” means Functions

– Describe the Results

– No “Function Calling”! Function Applications!

– No Variables (as we know them)

– No Control Structures (as we know them)

Haskell

● A Purely Functional Language

– Many primitive Data Types

– High-order Functions

– Lazy Evaluation

– Pattern Matching

– List Comprehension

– Monads (But we won't be seeing them much)

The Haskell Interpreter

● http://www.haskell.org/

● Windows, Linux, MacOS

● Can execute code fragments typed into prompt

● Can compile modules from files

http://www.haskell.org/

Haskell Basic Operations

● Basic arithmetics: +, -, *, /, ^,

● Function call: my_function x y z

– Note the lack of parenthesis
● Explicit Type declaration: my_var :: Float

– Not actually necessary, but you never know!

Haskell Lists

● Powerful List Engine!

– Easy creation: [1,2,3], ['a','b','c'], [1..10]

– Add to head: 1:[3..15]

– Common List Functions:
● head L
● tail L
● length L
● take n L
● reverse L
● concat L
● L_1 ++ L_2

Haskell Functions

● Easy to declare!

my_func x y = x * y
● Across multiple lines: use {} or tabs to delimit blocks

my_func x y z = x + a

where

a = y – z
● “where” keyword separates main result from other

important operations.

List Comprehensions

● Creating lists procedurally

● [x ^ 2 | x <- [1..10]], what does this do?

● [x ^ 2 | x <- [1..100], isPrime x]

● [x + y | x <- [1..4], y <- [6..10]]

● Lazy evaluation means we can create infinite lists...

– But only those things we access will be generated

Want to know more?

● The Best Haskell book you will find:

● Learn You a Haskell for Great Good!

– http://learnyouahaskell.com/

Let's try some stuff!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

