
Advanced Computer Architecture

Lab 2 — Multiprocessors and Memory Ordering 
Andreas Sembrant <andreas.sembrant@it.uu.se>

1 Introduction
The purpose of this lab assignment is to show the need for synchronization and the
effects of consistency in multiprocessors. To demonstrate this, we will use a very
simple algorithm, Algorithm 1, where two threads increment and decrement a shared
variable in parallel.

A working implementation of Algorithm 1 needs to perform the increment and
decrement of the shared data atomically, without interference from the other thread.
You will experiment with different ways to achieve this.

In this assignment we will use some x86 assembler code. You will not write any of
the actual assembler instructions yourself, but you might still find the Intel Architecture
Manuals1 handy as a reference. All of the assembler instructions used in the assignment
should already have been introduced in the lab lecture.

You are highly encouraged to solve this assignment in groups of two students. Talk
to the teaching assistant if you, for some reason, want to work in some other configu-
ration. This lab assignment is examined in the computer lab. During the examination,
you will be asked to demonstrate and explain your solutions.

1.1 Atomic instructions
For simple tasks, such as incrementing or decrementing a counter, atomic instructions
are the right tools for the job. The x86 ISA specifies a lock prefix that can be used
with some instructions to force them to execute atomically. Some other architectures

1http://www.intel.com/products/processor/manuals/

Algorithm 1 Test code for two threads sharing data. n is the number of iterations to
execute and thr ead is the thread number. We would intuitively expect shar ed_d at a
to be 0 after both threads have executed, which is only the case if the implementation
is properly synchronized.
Require: shar ed_d at a = 0

for i = 1 to n do
if thr ead = 0 then

shar ed_d at a ⇐ shar ed_d at a +1
else

shar ed_d at a ⇐ shar ed_d at a −1
end if

end for

1

http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/


take a different approach. For example, the Alpha and PPC use a special load and
a conditional store instruction that does not modify memory if the data the store de-
pends on has changed. Such conditional stores can be used to implement other atomic
instructions, such as compare and swap.

Atomic instructions are usually used to implement concurrent algorithms, such as
hash maps and linked lists. They are also used to implement various mutual exclusion
algorithms and barriers.

1.2 Memory ordering

The x86, like all modern processors, aggressively optimizes memory accesses using
various caching and buffering mechanisms. These optimizations affect the order of
memory accesses on the memory bus. The hardware is designed so that single-threaded
user space applications can not detect such reordering.

Things get more complicated when multiple threads are involved. In this case some
of the reordering can be detected. For example, a thread executes a store followed by
a load, due to buffering of the store, the load may complete before the store is globally
visible. To force memory accesses to be ordered the x86 architecture provides a set of
fence instructions. We will only use the mfence instruction that prevents both loads
and stores from being reordered over the fence. In addition to this instruction, the x86
ISA specifies separate load and store fences that only prevent reordering of one of the
access types.

For simplicity and compatibility reasons, Intel requires that memory accesses are
never reordered past atomic instructions. This allows most synchronization algorithms
that use atomic instructions to work correctly without memory fences.

. Note: The x86 architecture manuals specify guarantees for memory ordering,
there is nothing that prevents an implementation from being stricter than the

specification. In fact, you might see stricter behavior on some machines, e.g. some
multithreaded Atom CPUs. Obviously, such undocumented behavior can not be relied
on in applications.

1.3 What are critical sections, and who is this Dekker guy?

The simplest way to update shared data structures is to define critical sections, where
only one thread is allowed to execute at a time. A mutual exclusion, mutex, algorithm
ensures that only one thread can execute in the critical section at any given time. In
addition to ensuring mutual exclusion, mutex implementations also ensure that memory
accesses can not be reordered to happen outside the critical section.

Several algorithms have been developed to solve the critical section problem, we
will use one called Dekker’s algorithm. Dekker’s algorithm was attributed to the Dutch
mathematician Theodorus J. Dekker in a manuscript from 1965 by Edsger W. Dijkstra.
See Algorithm 2 for a pseudo-code description of the algorithm.

1.4 The lab assignment

All the files related to this part of the assignment can be downloaded from the course
homepage. Download them and extract them in a suitable working directory in your
home directory. The provided skeleton code consists of a handful files described below.

2



Algorithm 2 Code for thread i to run a critical section, thread j is the second thread
that competes for the critical section. The tur n variable should be initialized to 0 and
both f l ag variables should be initialized to F al se prior to executing the algorithm.

f l agi ⇐ Tr ue
while f l ag j do

if tur n 6= i then
f l agi ⇐ F al se
while tur n 6= i do

Do nothing or sleep
end while
f l agi ⇐ Tr ue

end if
end while

Do critical work

tur n ⇐ j
f l agi ⇐ F al se

Makefile Automates the compilation. You can simply type make to compile both
the pthreads version and the version using your own synchronization primitives.
You may use make clean to remove automatically generated files from the
working directory.

lab2.c Common code for running the experiments. You do not need to make any
changes in this file.

lab2.h Common data structures and declarations. No need to edit this file.

lab2_asm.h Inline-assembler implementations for all of the atomic instructions used
in this assignment. No need to edit this file, but it is a good idea to read through
this file to see what the atomic instructions look like.

cs_pthread.c Reference implementation of the synchronization code. You do not need
to edit this file.

cs_dekker.c Implement Dekker’s algorithm here.

test_critical.c Implement Algorithm 1 using using critical sections here.

test_incdec.c Implement Algorithm 1 using atomic increments and decrements here.

test_cmpxchg.c Implement Algorithm 1 using atomic compare and exchange instruc-
tions here.

You don’t have to modify the Makefile, but it might be useful to have a look
inside. The file contains rules to build the lab2 binary. You compile the application
by executing the make command in the source directory. There are multiple targets in
the Makefile, e.g. the clean target. To execute the clean target, which cleans up the
working directory, you simply run make clean.

The test type and critical section implementation can be selected using command
line options. Run ./lab2 -h for information about available options. The idea is that
you should be able to test whether your have placed your critical sections correctly by

3



using the pthreads critical sections implementations. Once the critical section has been
placed correctly, you may start working on your implementation of Dekker’s algorithm.

1.5 Tasks
Perform the following tasks on a multicore x86 machine. You may use any of the
Uppmax clusters or the department’s UNIX machines. If you use your own laptop,
make sure it has a high-end, i.e. not Atom based, multicore processor.

1. Run the critical section tests with the pthreads critical sections implementation
(./lab2 -t critical -c pthreads). Does the counter return to its
initial value? Why?/Why not?

2. Insert calls to enter_critical and exit_critical into test_critical.
c to enter and exit critical sections to allow for correct parallel execution of the
test. Use the pthreads version to test this. Does the counter return to the initial
value now?

3. Implement Dekker’s algorithm for synchronization in cs_dekker.c.

(a) Why do the flag and turn variables have to be volatile?

(b) Why doesn’t the straightforward implementation work?

4. Add suitable memory barriers to the code to make the synchronization work
correctly. Use the MFENCE macro.

5. Implement Algorithm 1 in test_incdec.c using atomic and non-atomic inc
and dec instructions. You may (read: should) use the functions defined in lab2_
asm.h. What happens when you use the non-atomic instructions? Why? What
happens when you use atomic instructions?

6. Implement Algorithm 1 in test_cmpxchg.c using both atomic and non-
atomic compare and exchange instructions. You may use the functions defined
in lab2_asm.h. What happens when you use the non-atomic instructions?
Why? What happens when you use atomic instructions?

7. Compare the runtime performance when using critical sections and atomic in-
crements/decrements. Which one is faster and why?

8. Compare the runtime performance when using atomic and non-atomic incre-
ments/decrements. Is there any difference in performance? Why?

9. Bonus: Implement queue locks in cs_queue.c using atomic instructions. See
the lecture notes for details about the algorithm. Show your solution to the course
assistant.

4


	Introduction
	Atomic instructions
	Memory ordering
	What are critical sections, and who is this Dekker guy?
	The lab assignment
	Tasks


