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Goal for this course
 Understand how and why modern computer systems are designed the way the are:

 pipelines
 memory organization
 virtual/physical memory ...

 Understand how and why multiprocessors are built
 Cache coherence
 Memory models
 Synchronization…

 Understand how and why parallelism is created
 Instruction-level parallelism
√ Memory-level parallelism
 Thread-level parallelism…

 Understand how and why multiprocessors of combined SIMD/MIMD type are built
 GPU
 Vector processing…

 Understand how computer systems are adopted to different usage areas
 General-purpose processors
 Embedded/network processors…

 Understand the physical limitation of modern computers
 Bandwidth
 Energy
 Cooling…

This batch of lectures
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The era of the ”Rocket Science 
Supercomputers” 1980-1995

 The one with the most blinking lights wins
 The one with the niftiest language wins
 The more different the better!
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The server market 1995

Server
Size

High-Perf.
Computing

Commercial
Computing

<$10k 1% 19%

<$50k 5% 25%
<$250k 5% 24%

<$1M 2% 9%
>$1M 3% 8%

The target of the rocket science supercomputers

UNIX
shared-
mem

servers
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Multicore: Who has not got one?

C

¢

C

¢

C

¢

C

¢

€ I/F

Mem

$ $ $ $
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MP Taxonomy
(more later…)

SIMD MIMD

Message-
passing

Shared
Memory

UMA NUMA COMAFine-
grained

Coarse-
grained
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Models of parallelism
 Processes (fork or & in UNIX)

 A parallel execution, where each process has its 
own process state, e.g., its own VAPA mapping

 Threads (thread_create in POSIX)

 Parallel threads of control inside a process
 There are some thread-shared state, e.g., VAPA 

mapping.
 More: OpenMP, OpenACC, OpenCL, SILC, …
 Common property: Each thread has its own 

PC (i.e. executes its own code independently)
 More during lab lecture…



What is: 
Coherent Shared Memory?

Erik Hagersten
Uppsala University
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Programming Model:
Coherent shared memory

Shared Memory

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Thread
PC
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Adding Caches. Gives the illusion of:
- Shorter Memory Latency 
- Higher Memory Bandwidth

Shared Memory

Thread
pc

$

Thread
pc

$

Thread
pc

$

Thread
pc

$

Thread
pc

$

Thread
pc

$

Thread
pc

$

Thread
pc

$
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Our Generic Shared Memory Arch.

Shared Memory

Thread
PC

$

Thread
PC

$

Thread
PC

$

Read A
Read A
…
…
Read A

A:

...
Read A
…

B:

Read B
…
Read A

L2 $
256kB

D1 ¢
64kB

I1 ¢
64kB

Cachelines
in memory

Many levels
of caches:

Instructions executed
in some global order
by the threads

Cacheline
in cache:
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Automatic Replication of Data

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…

B:

Read B
…
Read A
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The Cache Coherent Memory System
Coherent Write (Here: Write invalidate)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

INV INV
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The Cache Coherent Memory System
Coherent Read & Write-back
(Here: Cache to Cache Transfer)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A

B:

Read B
…
Read A
…
Replace B
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The Cache Coherent Memory System
Coherent Read & Write-back
(Here: Write Back)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A
...

Replace A

B:

Read B
…
Read A
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The Cache Coherent Memory System
Coherent Read & Write-back
(Here: Cache-to-Cache Transfer and Write Back)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A
...

Replace A

B:

Read B
…
Read A
…
Replace B
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Summing up Coherence

There can be many copies of a 
datum, but only one value
There is a single global order of 
value changes to each datum

Thread1={1,2,3,4,5,6,7…} Thread2={1,4,7…} Thread3={1,8,7…}

After the computer stops, all 
copies should have the same value
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Where does coherence matter?

CPU, 2 thr

D$
64kB

I$
64kB

L2 $
256kB

CPU, 2 thr.

D$
64kB

I$
64kB

L2 $
256kB

CPU, 2 thr.

D$
64kB

I$
64kB

L2 $
256kB

CPU, 2 thr.

D$
64kB

I$
64kB

L2 $
256B

X-bar

L3 $  24MB

QuickPath Interconnect 4 x DDR-3

CPU

D$
64kB

I$
64kB

L2 $
256kB

...

8 cores x 2 threads

Coherence
On chip

Coherence
Between
chips
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Summary Coherence

 Coherent shared-memory programming
model requires coherence

 (There is also non-coherent shared
memory, e.g. single-sided MPI, PGAS)

 All threads can read and write shared
data.

 Coherent view of the value of a datum 
 Often: Coherence is kept per cache line.



Snooping Coherence
Erik Hagersten

Uppsala University
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Implementation options for coherence

 Two coherence options
Snoop-based (”broadcast protocol”)
Directory-based (”point to point protocol”)

 Different scalability
 Different latency
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”Upgrade” in snoop-based

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

BusINV

Have to 
INV

Have to 
INV

My
INV

How can we implement
coherence on a write?
 Invalidate A in mem.
 Invalidate A in left $
 Invalidate A in right $
 Invalidate A in both left

and right $
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”Upgrade” in dir-based

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

INV INV

Who has 
a copy

Who has 
a copy

INV

ACK ACK

ACK
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Shared Memory

Snoop-based Protocol Implementation

A-tag S Data

CPU access

BUS snoop

CPU

BUS

Cache
Bus
transaction

Per-cache-line ”state” info

”State machines”
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Cache implementation

Generic Cache:

Addr  [63..0]
MSB                               LSB

AT S Data = 64B

=

Cacheline, here 64B: 

...

=======

mux
Hit

Sel way ”6”

Data = 64B

index

SRAM:

State!

Which statement is true about
this cache?
 Coherence needs to be 

implemented on a cache line
granularity

 Coherence with a word granularity
can be implemented
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Shared Memory

Snoop-based Protocol Implementation

A-tag State Data

CPU access

BUS snoop

CPU

”BUS”

Cache

Bus
transaction

BUS snoop

A-tag State

CPU access

BUS snoop

CPU

BUS snoop
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BUS TRANSACTIONS FROM OTHERS:

BUSrts ReadtoShare. Reading the data

BUSrtw: ReadToWrite. Reading the data 
with the intention to modify it right away

BUSinv: Invalidating other caches copies 

BUSwb: Writing data back to memory

Example: MOSI Bus Snoop

 

I 

M O 

S 

BUSrtw     BUSinv 

BUSrtw/Data 
BUSinv 

BUSrts/Data 

BUSrtw/Data 

BUSrts 
BUSwb 

BUSrts/Data 

BUSrts 
BUSrtw 
BUSinv 
BUSwb 

STATES:
M – Modified: My dirty* copy is 
the only cached copy
S – Shared: I have a clean copy, 
others may also have a copy
O – Owner: I have a dirty copy, 
others may also have a copy
I – Invalid: I have no valid copy in 
my cache (including cache miss)

Input-signal/Reply-signal
Meaning: If you are in state M
and  see BUSrts, goto state O
and reply with Data

*Dirty: my value differs from the old
value in mem 

Why is there no BUSinv arrow from M?
 No other can have a cached copy
 BUSinv is only used for writes
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CPU access

Shared Memory

Snoop-based Protocol Implementation

A-tag State Data

CPU access

BUS snoop

CPU

BUS

Cache

Bus
transaction

CPU access

A-tag State D

CPU access

BUS snoop

CPU
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Example: CPU access MOSI 

I 

M O 

S CPUread/BUSrts 

CPUrepl/- 

CPUrepl/BUSwb 

CPUwrite/BUSinv 

CPUwrite/BUSinv 
CPUrepl/ 
BUSwb 

CPUwrite/ 
BUSrtw 

CPUread/- 

CPUread/- 
CPUread/- 
CPUwrite/

FROM MY CPU:

CPUread Caused by a  Load instruction

CPUwrite: Caused by a Store or Atomic instruction

CPUrepl: Caused by a replacement of this cachline (caused by murphy )

STATES:
M – Modified: My dirty* copy is 
the only cached copy
S – Shared: I have a clean copy, 
others may also have a copy
O – Owner: I have a dirty copy, 
others may also have a copy
I – Invalid: I have no valid copy in 
my cache (may be a cache miss)

Input-signal/Reply-signal
Meaning: If you are in state I
and see CPUread, send a 
BUSrts and goto S
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”Upgrade” in snoop-based

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

BUSinv

Have to 
INV

Have to 
INV
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Summary
 Snooping was first suggested by Jim 

Goodman in ISCA, Stockholm 1984
 Effectively implements coherence

through broadcast of ”read and write
misses”

 Best suited for on-chip coherence
between a small number of caches



MOSI Snooping Coherence 
Protocol Implementation

Erik Hagersten
Uppsala University
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Shared Memory

Snoop-based Protocol Implementation

A-tag State Data

CPU access

BUS snoop

CPU

”BUS”

Cache

Bus
transaction
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Upgrade: Readable Writable 

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

INV INV
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Upgrade – the requesting CPU
Defines action to CPU events:

CPUwrite: Caused by a store miss

CPUread Caused by a load miss

CPUrepl: Caused by a replacement

A-tagState Data

access

snoop

CPU

Cache

I

M O

SCPUread/BUSrts

CPUrepl/-

CPUrepl/BUSwb

CPUwrite/BUSinv

CPUwrite/BUSinv
CPUrepl/
BUSwb

CPUwrite/
BUSrtw

CPUread/-

CPUread/-
CPUread/-
CPUwrite/
-

SSM

BUSinv

Write

BUSinv
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Defines action to Bus snoops:

BUSrts: ReadtoShare (reading 
the cacheline)

BUSrtw, ReadToWrite (reading 
the cacheline with the intention 
to modify it right away)

BUSwb: Writing a cacheline
back to memory

BUSinv: Invalidating other 
caches copies of the cacheline

Upgrade – the other CPUs

 

I

M O

S
BUSrtw   BUSinv 

BUSrtw/Data 
BUSinv 

BUSrts/Data 

BUSrtw 

BUSrts 
BUSwb 

BUSrts/Data 

BUSrts 
BUSrtw
BUSinv
BUSwb

A-tagState Data

access

snoop

CPU

Cache

BUSinv

SSI
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More Cache Lingo
 Capacity miss – too small cache
 Conflict miss – limited associativity
 Compulsory miss – accessing data the first time
 Coherence miss – The cache would have had the 

data unless it had been invalidated by someone else
 Upgrade miss: (only for writes) – The cache would 

have had a writable copy, but answered a read 
request and “downgraded” itself to read-only state

 False sharing: Coherence/downgrade is caused by a 
shared cacheline and not by shared data: 

Read A
…
Write A
…
Read A

...
Read D
…
Write D

A, B, C, D
cacheline:False sharing

example: 



Implementing Snooping.
One example 

(Sun E6000, ≈Intel P6,)
Erik Hagersten

Uppsala University
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Shared Memory

Snoop-based architecture: Dual tags

BUS snoop

CPU

BUS

A-tag State Data

Cache

Bus
transaction

A-tag State Snoop Tag (Obligation state)
(possibly time-sliced access 

to cache tags)

C
ache access

Access Tag (Permission sate)
(possibly time-sliced access 

to cache tags)
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The Cache Coherent Memory System
Coherent Write (Here: Write invalidate)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

INV INV
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C
ache access

Shared Memory

BUS snoop

CPU: Store
”middle CPU”

A-tagState Data

A-tag State

”BusINV”

”Upgrade” in snooped-based

BUS snoop A-tag State

A-tagState Dat

S S

S S

”INV””ACK”

M I

M

From 
earlier 
trans-
actions

”right or 
left CPU”
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The Cache Coherent Cache-to-cache

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A

B:

Read B
…
Read A
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Cache2cache – the requesting CPU

 

I

M O

SCPUread/BUSrts 

CPUrepl/- 

CPUrepl/BUSwb 

CPUwrite/BUSinv

CPUwrite/BUSinv 
CPUrepl/ 
BUSwb 

CPUwrite/
BUSrtw 

CPUread/- 

CPUread/- 
CPUread/-
CPUwrite/

CPUwrite: Caused by a store miss

CPUread Caused by a loadmiss

CPUrepl: Caused by a replacement

A-tagState Data

access

snoop

CPU

Cache

Load

IIS

BUSrts
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BUSrts: ReadToShare (reading 
the data with the intention to 
read it)

BUSrtw, ReadToWrite (reading 
the data with the intention to 
modify it)

BUSwb: Writing data back to 
memory

BUSinv: Invalidating other 
caches copies 

Cache-to-cache –
the other CPU

 

I 

M O

S

BUSrtw   BUSinv 

BUSrtw/Data 
BUSinv 

BUSrts/Data 

BUSrtw/Data
 

BUSrts 
BUSwb 

BUSrts/Data 

BUSrts 
BUSrtw
BUSinv
BUSwb

A-tagState Data

access

snoop

CPU

Cache

BUSrts

MMO
Data



Dept of  Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 45

AVDARK
2013

C
ache access

Shared Memory

BUS snoop

CPU: load
A-tagState Data

A-tag State

BusRTS 

Cache-to-cache in snoope-based

BUS snoop A-tag State

A-tagState

I M

I M

BusRTSMyRTS

S O

S O

Gotta’ wait 
here for data

”Left $” ”Middle $”
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BUSrts: ReadtoShare (reading 
the data with the intention to 
read it)

BUSrtw, ReadToWrite (reading 
the data with the intention to 
modify it)

BUSwb: Writing data back to 
memory

BUSinv: Invalidating other 
caches copies 

Yet Another Cache-to-cache

 

I 

M O

S

BUSrtw   BUSinv 

BUSrtw/Data 
BUSinv 

BUSrts/Data 

BUSrtw/Data
 

BUSrts 
BUSwb 

BUSrts/Data 

BUSrts 
BUSrtw
BUSinv
BUSwb

A-tagState Data

access

snoop

CPU

Cache

BUSrts

O
Data
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Summary
 Dual tags enable bus snoops and CPU 

lookups in parallel
 A datum may actually have several 

values ”at the same wall-clock time”
 … but not in ”logic time”: No software 

can detect that there are different 
values

 The value-change order maintained



Other Coherence 
Alternatives

Erik Hagersten
Uppsala University
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Common Cache States
 M – Modified

My dirty (i.e. modified) copy is the only cached copy
 E – Exclusive

My clean copy is the only cached copy
 O – Owner

I have a dirty copy, others may also have a copy
 S – Shared

I have a clean copy, others may also have a copy
 I – Invalid

I have no valid copy in my cache
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Some Coherence Alternatives 

 MOSI
 Leave one dirty copy in a cache on a 

cache2cache transfer
 MSI

Writeback to memory on a cache2cache.
 MOESI

The first reader will go to E and can later 
become a writer cheaply

Our first target
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Example A = A + 1
Initially A is only in mem

MOSI:
CPU BUS State
LD A… RTS(A) S
ADD 1… -
ST A… INV(A) M
LD B RTS(B) S
ADD 1 -
ST B INV(B) M
…

MOESI:
CPU BUS State
LD A RTS(A) E
ADD 1 -
ST A - M
LD B RTS(B) E
ADD 1 -
ST B - M
…
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Update-based MOSI protocol

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A

B:

Read B
…
Read A

BusUpdate

Have to
Update

Have to 
Update

My
Update

 HIT
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Update-based MOSI protocol: 
Next write

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A
Write A

B:

Read B
…
Read A

BusUpdate

Have to
Update

Have to 
Update

My
Update
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Update-based Coherence

 Write the new value to the other caches 
holding a shared copy (instead of invalidating…)

 Can avoid coherence misses
 May consume a large amount of snoop 

bandwidth
 Hard to implement some ”memory models”
 Few commercial implementations: 

SPARCCenter2000, Xerox Dragon



Preparing for IRL
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All the three RISC CPUs in a MOSI shared-memory (sequentially consistent) multiprocessor 
executes the following code almost at the same time:

while(A != my_id){};   /* this is a primitive kind of lock */
B = B + A;         
A = A + 1;         /* this is a primitive kind of unlock */
while (A != 4) {};  /* this is a primitive kind of barrier sync */
<after a long time> 
<some other execution replaces A and B from the caches, if still 
present>

Initially, CPU1 has its local variable my_id=1, CPU has my_id=2 and CPU3 has my_id=3 and the globally 
shared variables A  is equal to 1 and B is equal to 0. 
Assume that CPU3, 2 and  1 first make one memory reference (i.e, a load or a store) each  and then repeats that interleaving. 

The following four bus transaction types can be seen on the snooping bus connecting the CPUs:
• RTS: ReadtoShare (reading the data with the intention to read it)
• RTW, ReadToWrite (reading the data with the intention to modify it)
• WB: Writing data back to memory
• INV: Invalidating other caches copies

Show every state change and/or value  change of  A and B in each  CPU’s cache according to one possible interleaving of the 
memory accesses.  After the parallel execution is done for all of the  CPUs, the cache lines still in the caches will be 
replaced.  These actions should also be shown. For each line, also state what bus  transaction occurs on the bus (if any)  as
well as which device is providing the corresponding data (if any).  

Example during next IRL Class:
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CPU action
Bus 
Transactio
n (if any) 

State/value after the CPU action Data is provided by
[Cache 1, 2, 3 or 
Mem]
(if any)

CPU1
A           B

CPU2
A           B

CPU3
A           B

Initially I I I I I I

CPU3: LD A RTS(A) Mem

CPU2: LD A

CPU1: LD A RTS(A)

RTS(A) Mem

.

Example of a state transition sheet:

S/1

S/1

S/1

CPU3: LDA __

Mem

__



What are Memory Models?
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Uppsala University
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Where Memory Models Matter
 Flag synchronization

(initially flag = 0 and A = 0 )

... ...
A = 1; while (flag != 1)  {};
flag = 1; X = A;

print(X);

 Causality (Causal correctness) 

…
A = 1;
…

…
...
while (A==0) {};
B = 1;

Read A
… 
…
…
while (B==0) {};
X = A;
print (X);

(Initially A = 0 and  B = 0)

Trick question
What value will be printed?
 0
 1
 Undefined (either 0 or 1)

Trick question
What value will be printed?
 0
 1
 Undefined (either 0 or 1)
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Dekker’s Algorithm (mutual exclusion)

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0)  print(“B won”)

Initially A = B = 0

“fork”

Trick question
Is it possible that both threads ”win”?
 Yes
 No
 Undefined



Dept of  Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 61

AVDARK
2013

Memory Ordering

 Coherence defines a per-datum 
valuechange order

 Memory model defines the valuechange 
order for all the data. 
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Memory Ordering
 Defines the guaranteed memory 

ordering
 Is a ”contract” between the HW and SW 

guys
 Without it, you may not be able to say 

much about the result of a parallel 
execution
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Observing order in SW
In which order did A and B change value?

Value order
LD newA; LD oldB  newA before newB
ST newA; LD oldB newA before newB
ST newA; ST newB  newA before newB

Program order
The order of program statements of each 
thread
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In which global order were these
statements executed?

Thread 1

LD A
ST B’
LD C
ST D’
LD E
…
…

Thread 2

LD B’
ST C’
LD D
ST E’
…
…

ST A’
(LD A happend before ST A’)

( A’ denotes a modified value to  the data at addr A)
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One possible 
observed order

Thread 1

LD A
ST B’
LD C

ST D’
LD E
…
…

Thread 2

LD B’
ST C’
LD D

ST E’
…
…

ST A’

Thread 1

LD A
ST B’
LD C

ST D’
LD E
…
…

Thread 2

LD B’
ST C’
LD D

ST E’
…
…

ST A’

Another possible 
observed order
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“The intuitive memory order”
Sequential Consistency (Lamport)

 Global order achieved by interleaving all memory 
accesses from different threads

 SW should not be able to detect contradictive orders
 “Programmer’s intuition is maintained”
 Unnecessarily restrictive ==> performance penalty

ThreadThreadThreadThreadThreadThreadT Thread

Shared Memory

loads, stores
Shared Memory
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Where Memory Models Matters
 Flag synchronization

(initially flag = 0 and A = 0 )

... ...
A = 1; while (flag != 1)  {};
flag = 1; X = A;

print(X);

 Causality (Causal correctness) 

…
A = 1;
…

…
...
while (A==0) {};
B = 1;

Read A
… 
…
…
while (B==0) {};
X = A;
print (X);

(Initially A = 0 and  B = 0)

Given Sequential Consistecy:
What value will be printed?
 0
 1
 Undefined (either 0 or 1)

Given Sequential Consistecy:
What value will be printed?
 0
 1
 Undefined (either 0 or 1)
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Dekker’s Algorithm (mutual exclusion)

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0)  print(“B won”)

Initially A = B = 0

“fork”

Given Sequential Consistecy:
Is it possible that both threads ”win”?
 Yes
 No
 Undefined
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Proving Dekker’s Algorithm under SC

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0)  print(“B won”)

Initially A = B = 0

“fork”
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Can the case “both win” happen under SC?

A := B := 0

A:= 1

If (B == 0)
print “Left wins”

B:= 1

If (A == 0)
print “Right wins”

A := B := 0

ST A, 1

LD B  0

ST B, 1

LD A  0

Cyclic access graph  Not SC
(there is no global order)

= PO: Program 
order: a < b

(the order specified
by the program)

= VO: Value 
order: c < d 

(i.e., c happened before 
d in the global order)

a

b

c

d

Acess graph
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One thread wins under SC

A := B := 0

A:= 1

If (B == 0)
print “Left wins”

B:= 1

If (A == 0)
print “Right wins”

Only Right wins  SC is OK

A := B := 0

ST A, 1

LD B  1

ST B, 1

LD A  0

Not cyclic graph  SC

One global order:
STB < LDA < STA <LDB
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No thread wins under SC

A := B := 0

A:= 1

If (B == 0)
print “Left wins”

B:= 1

If (A == 0)
print “Right wins”

No thread wins  SC is OK

A := B := 0

ST A, 1

LD B  1

ST B, 1

LD A  1

Not cyclic graph  SC

Four Partial Orders, still SC
STB < LDA ;    STA < LDA;   STB < LDB ;    STA < LDA
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Summary
 Gives the ”illusion” of one global 

order between all memory accesses
 If two threads can observe two

contratictive [partial] orders, SC is 
broken. 

 Maintains human intuition
 … at the cost of performance (or 

complexity)



Other Memory Models
Erik Hagersten

Uppsala University
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“Almost intuitive memory model”
Total Store Ordering [TSO] (P. Sindhu)

 Global interleaving [order] for all stores from different 
threads (own stores excepted)

 “Programmer’s intuition is almost maintained”
 Flag synchronization? Yes
 Store causality? Yes
 Does Dekker work? No

 Unnecessarily restrictive ==> performance penalty

ThreadThreadThreadThreadThreadThreadT Thread

Shared MemoryShared Memory

stores loads
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TSO HW Model

CPU

Store
Buffer

Stores loads

=
=
=
=
=

CPU

Store
Buffer

Stores loads

=
=
=
=
=

inv

Stores are moved off the critical path
Coherence implementation can be the same as for SC

Shared Memory
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Where Memory Models Matters
 Flag synchronization

(initially flag = 0 and A = 0 )

... ...
A = 1; while (flag != 1)  {};
flag = 1; X = A;

print(X);

 Causality (Causal correctness) 

…
A = 1;
…

…
...
while (A==0) {};
B = 1;

Read A
… 
…
…
while (B==0) {};
X = A;
print (X);

(Initially A = 0 and  B = 0)

Given Total Store Order:
What value will be printed?
 0
 1
 Undefined (either 0 or 1)

Given Total Store Order:
What value will be printed?
 0
 1
 Undefined (either 0 or 1)
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Dekker’s Algorithm (mutual exclusion)

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0)  print(“B won”)

Initially A = B = 0

“fork”

Given Total Store Order:
Is it possible that both threads ”win”?
 Yes
 No
 Undefined

Does the write
become globally
visible
before 
the read is 
performed?
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Dekker’s Algorithm for TSO

A := 1
Memory barrier
if (B== 0) print(“A won”)

B := 1
Memory barrier
if (A == 0)  print(“B won”)

Initially A = B = 0

“fork”

It depends on the memory model ed!
Memory barrier: Tells the HW to not start the LD until all previous stores have 
been ”globaly ordered”
behaves like SC   
 Dekker’s algorithm works!
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Weak/release Consistency 
(M. Dubois, K. Gharachorloo)

 Most accesses are unordered
 “Programmer’s intuition is not maintained”

 Flag synchronization? No
 Causal correctness? No
 Dekker? No

 Global order only established when the 
programmer explicitly inserts memory barrier 
instructions 

++ Better performance!! 
-- Interesting bugs!!

ThreadThreadThreadThread

Shared Memory

loads
stores
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Weak/Release consistency
 New flag synchronization needed

A := data; while (flag != 1)  {};
membarrier; membarrier;
flag := 1; X := A;

 Dekker’s: same as TSO
 Causal correctness provided for this code

…
A:=1
…

…
...
While (A==0) {}
membarrier
B := 1

Read A
… 
…
…
While (B==0) {}
membarrier
Print A

Initially A = B = 0
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Processor Consistency [PC] (J. Goodman)

 PC: The stores from a processor appears to others in program 
order. 
 Flag synchronization? Yes
 Causal correctness? Not clearly defined by Goodman. (yes, for 

PC “with causal correctness”)
 Dekker? No

ThreadThreadThreadThreadThreadThreadT Thread

Shared MemoryShared Memory

stores
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Learning more about memory 
models

Shared Memory Consistency Models: A Tutorial
by Sarita Adve, Kouroush Gharachorloo
in IEEE Computer 1996 (in the ”Papers” directory)

RTFM: Read the F*****n Manual of the system you are 
working on!
(Different microprocessors and systems supports
different memory models.)

Issue to think about:
What code reordering may compilers really do?
What does  ”volatile” declarations in C mean?
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X86’s new memory model
 Processor consistency with causual correctness 

for non-atomic memory ops
 TSO for atomic memory ops
 (Academia says the x86 mem model is TSO

 Link to the Intel manual (Section 8.2)
http://download.intel.com/products/processor/manual/325462.pdf

 Video presentation:
http://www.youtube.com/watch?v=WUfvvFD5tAA&hl=sv
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while (sum < N)  

sum := sum + 1while (sum < N)  

sum := sum + 1while (sum < N)  

sum := sum + 1while (sum < N)  

sum := sum + 1

sum := 0

printf (sum)

”thread_create”

”join”      

Execution on a sequentially
consistent shared-memory
machine:

PSEUDO ASM CODE
LD R1, #N

LOOP: LD R2, (sum)
SUB R1, R1, R2
BGZ R3, CONT:
LD R2, (sum)
ADD R2, R2, #1
ST R2, (sum)
BR LOOP:

CONT: 

What value will get printed?
 N
 N+1
 Any value between N and N + 3

How many additions will be executed?
 N
 Any value between N and N + 3
 Any value between N and N * 4
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Need to introduce synchronization

 Locking primitives are needed to ensure that only 
one process can be in the critical section: 

Critical Section

LOCK(lock_variable) /* wait for your turn */

if (sum > threshold) {  
sum := my_sum + sum

}
UNLOCK(lock_variable) /* release the lock*/

if (sum > threshold) {
LOCK(lock_variable) /* wait for your turn */

sum := my_sum + sum
UNLOCK(lock_variable) /* release the lock*/

}

Critical Section
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Components of a Synchronization Event

 Acquire method
 Acquire right to the synchronization (enter critical 

section, go past sync event)
 Waiting algorithm

 Wait for synch to become available when it isn’t
 Release method

 Enable other processors to acquire right to the synch
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Atomic Instruction to Acquire
 Atomic example:  test&set “TAS R1, (location)”  

The value at Mem(location) is loaded into R1, and 
the constant “1” atomically stored into Mem(location)
(Other constant could be implemented, e.g., SPARC: ”FF”)

 Looks like a “store” to the coherence protocol
Implementation:

1. Get a writable exclusive copy of the cache line (state M in MOSI)
2. Make the atomic modification to that cached copy

 Examples of other atomic primitives: 
SWAP R1, (location): atomically swap the values of R1 with Mem(location)
CAS R1, R2, (location): (Compare&Swap) SWAP if Mem(location)=REG2 
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Waiting Algorithms
 Blocking

 Waiting processes/threads are de-scheduled
 High overhead
 Allows processor to do “other things”

 Busy-waiting
 Waiting processes repeatedly test a lock_variable until it changes 

value
 Lower overhead, but consumes processor resources
 Can cause coherence network traffic

 Hybrid methods:  busy-wait a while, then block
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Release Algorithm 
 Typically just a store ”0”
 More complicated locks may require a 

conditional store or a ”wake-up”. 
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A Bad Example: ”POUNDING”

proc lock(lock_variable) {
while (TAS[lock_variable]==1)  {}       /* pound on the lock until free */

}

proc unlock(lock_variable) {
lock_variable := 0

}

Assume: The function TAS[addr] returns the current memory value  at 
addr and atomically writes the busy pattern “1” to the memory

Spinning threads produce traffic!

How is TAS treated by the coherence protocol?
 Like a CPU read operation 
 Like a CPU write opreration
 By performing the ”SWAP” atomically in DRAM

If two threads are waiting for the lock
 They will both spin locally in their cache 
 They will create coherence traffic by 

invalidating each other
 They will both block and need to be 

woken up by the OS

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Optimistic Test&Set Lock ”spinlock”

proc lock(lock_variable) {
while true {

if (TAS[lock_variable] ==0)  break;      /* pound on the lock once, done if TAS==0 */
while(lock_variable != 0) {}        /* spin locally in your cache until ”0” observed*/

} 
}

proc unlock(lock_variable) {
lock_variable := 0

}

Much less coherence traffic!!
-- still lots of traffic at lock handover!

More on this during Scalable Synchronization

If two threads are waiting for the lock
 They will mostly spin locally in their cache 
 They will create coherence traffic all the time 

by invalidating each other
 They will both block and need to be woken 

up by the OS
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Pesimistic Test&Set Lock ”spinlock”

proc lock(lock_variable) {
while true {

while(lock_variable != 0) {}   /* spin locally in your cache until ”0” observed*/
if (TAS[lock_variable] ==0)  break; /* pound on the lock once, done if TAS==0 

} 
}

proc unlock(lock_variable) {
lock_variable := 0

}

Slightly less traffic than Optimistic for contended locks
-- still lots of traffic at lock handover!

More solutions during Scalable Shared Memory
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It could still get messy!

CS

Interconnect
...L==1

L:=0

Interconnect
...L:=0

L=0 L=0 L=0 L=0 L=0 L=0

Interconnect
...

N reads
L==0
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...messy (part 2)

CS L:=0 L:=0 L:=0

Interconnect
...L== 1

potentially: ~N*N/2 reads :-(

T&S T&S T&S T&S T&S T&S

Interconnect
...

N-1 Test&Set
(i.e., N writes)

Problem1: Contention on the interconnect slows down the CS execution
Problem2: The lock hand-over time is N*read_throughput
Fix1: Some back-off strategy, bad news for hand-over latency
Fix2: Queue-based locks
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Barrier Synchronization

C
R …C

R
C
R

C
R

C
R

Barrier()       /*wait for the others */

”New phase” of computation. 
Need all threds to be done with the previous phase
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Barriers: Make the first threads wait for the 
last thread to reach a point in the program

1. Software algorithms implemented using locks, 
flags, counters

2. Hardware barriers
 “Wired-AND” line separate from address/data bus
 Set input high when arrive, wait for output to be high to 

leave
 (In practice, multiple wires to allow reuse)
 Difficult to support arbitrary subset of processors
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A Naiive Centralized Barrier

BARRIER (bar_name, p) {

LOCK(bar_name.lock) {
if (bar_name.counter == p) bar_name.counter = 0; /* init count*/
bar_name.counter++;  /* globally increment the barrier count */

}
UNLOCK(bar_name.lock)

while (bar_name.counter < p) {}; /* wait for the last thread */

}
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A More Complicated Centralized Barrier

BARRIER (bar_name, p) {
int loops;
loops = 0;

local_sense = !(local_sense) ; /* toggle private sense variable 
each time the barrier is used */

LOCK(bar_name.lock);
bar_name.counter++; /* globally increment the barrier count */
if (bar_name.counter == p) { /* everybody here yet ? */

bar_name.flag = local_sense; /* release waiters*/
UNLOCK(bar_name.lock)

}
else 

{ UNLOCK(bar_name.lock);
while (bar_name.flag != local_sense) {      /* wait for the last guy */

if (loops++ > UNREASONABLE) report_warning(pid)}
}


