
Multiprocessors and
Coherent Memory

Erik Hagersten
Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 2

AVDARK
2013

Goal for this course
 Understand how and why modern computer systems are designed the way the are:

 pipelines
 memory organization
 virtual/physical memory ...

 Understand how and why multiprocessors are built
 Cache coherence
 Memory models
 Synchronization…

 Understand how and why parallelism is created
 Instruction-level parallelism
√ Memory-level parallelism
 Thread-level parallelism…

 Understand how and why multiprocessors of combined SIMD/MIMD type are built
 GPU
 Vector processing…

 Understand how computer systems are adopted to different usage areas
 General-purpose processors
 Embedded/network processors…

 Understand the physical limitation of modern computers
 Bandwidth
 Energy
 Cooling…

This batch of lectures

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 3

AVDARK
2013

The era of the ”Rocket Science
Supercomputers” 1980-1995

 The one with the most blinking lights wins
 The one with the niftiest language wins
 The more different the better!

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 4

AVDARK
2013

The server market 1995

Server
Size

High-Perf.
Computing

Commercial
Computing

<$10k 1% 19%

<$50k 5% 25%
<$250k 5% 24%

<$1M 2% 9%
>$1M 3% 8%

The target of the rocket science supercomputers

UNIX
shared-
mem

servers

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 5

AVDARK
2013

Multicore: Who has not got one?

C

¢

C

¢

C

¢

C

¢

€ I/F

Mem

$ $ $ $

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 6

AVDARK
2013

MP Taxonomy
(more later…)

SIMD MIMD

Message-
passing

Shared
Memory

UMA NUMA COMAFine-
grained

Coarse-
grained

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 7

AVDARK
2013

Models of parallelism
 Processes (fork or & in UNIX)

 A parallel execution, where each process has its
own process state, e.g., its own VAPA mapping

 Threads (thread_create in POSIX)

 Parallel threads of control inside a process
 There are some thread-shared state, e.g., VAPA

mapping.
 More: OpenMP, OpenACC, OpenCL, SILC, …
 Common property: Each thread has its own

PC (i.e. executes its own code independently)
 More during lab lecture…

What is:
Coherent Shared Memory?

Erik Hagersten
Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 9

AVDARK
2013

Programming Model:
Coherent shared memory

Shared Memory

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 10

AVDARK
2013

Adding Caches. Gives the illusion of:
- Shorter Memory Latency
- Higher Memory Bandwidth

Shared Memory

Thread
pc

$

Thread
pc

$

Thread
pc

$

Thread
pc

$

Thread
pc

$

Thread
pc

$

Thread
pc

$

Thread
pc

$

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 11

AVDARK
2013

Our Generic Shared Memory Arch.

Shared Memory

Thread
PC

$

Thread
PC

$

Thread
PC

$

Read A
Read A
…
…
Read A

A:

...
Read A
…

B:

Read B
…
Read A

L2 $
256kB

D1 ¢
64kB

I1 ¢
64kB

Cachelines
in memory

Many levels
of caches:

Instructions executed
in some global order
by the threads

Cacheline
in cache:

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 12

AVDARK
2013

Automatic Replication of Data

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…

B:

Read B
…
Read A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 13

AVDARK
2013

The Cache Coherent Memory System
Coherent Write (Here: Write invalidate)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

INV INV

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 14

AVDARK
2013

The Cache Coherent Memory System
Coherent Read & Write-back
(Here: Cache to Cache Transfer)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A

B:

Read B
…
Read A
…
Replace B

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 15

AVDARK
2013

The Cache Coherent Memory System
Coherent Read & Write-back
(Here: Write Back)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A
...

Replace A

B:

Read B
…
Read A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 16

AVDARK
2013

The Cache Coherent Memory System
Coherent Read & Write-back
(Here: Cache-to-Cache Transfer and Write Back)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A
...

Replace A

B:

Read B
…
Read A
…
Replace B

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 17

AVDARK
2013

Summing up Coherence

There can be many copies of a
datum, but only one value
There is a single global order of
value changes to each datum

Thread1={1,2,3,4,5,6,7…} Thread2={1,4,7…} Thread3={1,8,7…}

After the computer stops, all
copies should have the same value

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 18

AVDARK
2013

Where does coherence matter?

CPU, 2 thr

D$
64kB

I$
64kB

L2 $
256kB

CPU, 2 thr.

D$
64kB

I$
64kB

L2 $
256kB

CPU, 2 thr.

D$
64kB

I$
64kB

L2 $
256kB

CPU, 2 thr.

D$
64kB

I$
64kB

L2 $
256B

X-bar

L3 $ 24MB

QuickPath Interconnect 4 x DDR-3

CPU

D$
64kB

I$
64kB

L2 $
256kB

...

8 cores x 2 threads

Coherence
On chip

Coherence
Between
chips

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 19

AVDARK
2013

Summary Coherence

 Coherent shared-memory programming
model requires coherence

 (There is also non-coherent shared
memory, e.g. single-sided MPI, PGAS)

 All threads can read and write shared
data.

 Coherent view of the value of a datum
 Often: Coherence is kept per cache line.

Snooping Coherence
Erik Hagersten

Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 21

AVDARK
2013

Implementation options for coherence

 Two coherence options
Snoop-based (”broadcast protocol”)
Directory-based (”point to point protocol”)

 Different scalability
 Different latency

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 22

AVDARK
2013

”Upgrade” in snoop-based

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

BusINV

Have to
INV

Have to
INV

My
INV

How can we implement
coherence on a write?
 Invalidate A in mem.
 Invalidate A in left $
 Invalidate A in right $
 Invalidate A in both left

and right $

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 23

AVDARK
2013

”Upgrade” in dir-based

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

INV INV

Who has
a copy

Who has
a copy

INV

ACK ACK

ACK

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 24

AVDARK
2013

Shared Memory

Snoop-based Protocol Implementation

A-tag S Data

CPU access

BUS snoop

CPU

BUS

Cache
Bus
transaction

Per-cache-line ”state” info

”State machines”

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 25

AVDARK
2013

Cache implementation

Generic Cache:

Addr [63..0]
MSB LSB

AT S Data = 64B

=

Cacheline, here 64B:

...

=======

mux
Hit

Sel way ”6”

Data = 64B

index

SRAM:

State!

Which statement is true about
this cache?
 Coherence needs to be

implemented on a cache line
granularity

 Coherence with a word granularity
can be implemented

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 26

AVDARK
2013

Shared Memory

Snoop-based Protocol Implementation

A-tag State Data

CPU access

BUS snoop

CPU

”BUS”

Cache

Bus
transaction

BUS snoop

A-tag State

CPU access

BUS snoop

CPU

BUS snoop

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 27

AVDARK
2013

BUS TRANSACTIONS FROM OTHERS:

BUSrts ReadtoShare. Reading the data

BUSrtw: ReadToWrite. Reading the data
with the intention to modify it right away

BUSinv: Invalidating other caches copies

BUSwb: Writing data back to memory

Example: MOSI Bus Snoop

I

M O

S

BUSrtw BUSinv

BUSrtw/Data
BUSinv

BUSrts/Data

BUSrtw/Data

BUSrts
BUSwb

BUSrts/Data

BUSrts
BUSrtw
BUSinv
BUSwb

STATES:
M – Modified: My dirty* copy is
the only cached copy
S – Shared: I have a clean copy,
others may also have a copy
O – Owner: I have a dirty copy,
others may also have a copy
I – Invalid: I have no valid copy in
my cache (including cache miss)

Input-signal/Reply-signal
Meaning: If you are in state M
and see BUSrts, goto state O
and reply with Data

*Dirty: my value differs from the old
value in mem

Why is there no BUSinv arrow from M?
 No other can have a cached copy
 BUSinv is only used for writes

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 28

AVDARK
2013

CPU access

Shared Memory

Snoop-based Protocol Implementation

A-tag State Data

CPU access

BUS snoop

CPU

BUS

Cache

Bus
transaction

CPU access

A-tag State D

CPU access

BUS snoop

CPU

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 29

AVDARK
2013

Example: CPU access MOSI

I

M O

S CPUread/BUSrts

CPUrepl/-

CPUrepl/BUSwb

CPUwrite/BUSinv

CPUwrite/BUSinv
CPUrepl/
BUSwb

CPUwrite/
BUSrtw

CPUread/-

CPUread/-
CPUread/-
CPUwrite/

FROM MY CPU:

CPUread Caused by a Load instruction

CPUwrite: Caused by a Store or Atomic instruction

CPUrepl: Caused by a replacement of this cachline (caused by murphy )

STATES:
M – Modified: My dirty* copy is
the only cached copy
S – Shared: I have a clean copy,
others may also have a copy
O – Owner: I have a dirty copy,
others may also have a copy
I – Invalid: I have no valid copy in
my cache (may be a cache miss)

Input-signal/Reply-signal
Meaning: If you are in state I
and see CPUread, send a
BUSrts and goto S

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 30

AVDARK
2013

”Upgrade” in snoop-based

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

BUSinv

Have to
INV

Have to
INV

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 31

AVDARK
2013

Summary
 Snooping was first suggested by Jim

Goodman in ISCA, Stockholm 1984
 Effectively implements coherence

through broadcast of ”read and write
misses”

 Best suited for on-chip coherence
between a small number of caches

MOSI Snooping Coherence
Protocol Implementation

Erik Hagersten
Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 33

AVDARK
2013

Shared Memory

Snoop-based Protocol Implementation

A-tag State Data

CPU access

BUS snoop

CPU

”BUS”

Cache

Bus
transaction

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 34

AVDARK
2013

Upgrade: Readable Writable

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

INV INV

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 35

AVDARK
2013

Upgrade – the requesting CPU
Defines action to CPU events:

CPUwrite: Caused by a store miss

CPUread Caused by a load miss

CPUrepl: Caused by a replacement

A-tagState Data

access

snoop

CPU

Cache

I

M O

SCPUread/BUSrts

CPUrepl/-

CPUrepl/BUSwb

CPUwrite/BUSinv

CPUwrite/BUSinv
CPUrepl/
BUSwb

CPUwrite/
BUSrtw

CPUread/-

CPUread/-
CPUread/-
CPUwrite/
-

SSM

BUSinv

Write

BUSinv

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 36

AVDARK
2013

Defines action to Bus snoops:

BUSrts: ReadtoShare (reading
the cacheline)

BUSrtw, ReadToWrite (reading
the cacheline with the intention
to modify it right away)

BUSwb: Writing a cacheline
back to memory

BUSinv: Invalidating other
caches copies of the cacheline

Upgrade – the other CPUs

I

M O

S
BUSrtw BUSinv

BUSrtw/Data
BUSinv

BUSrts/Data

BUSrtw

BUSrts
BUSwb

BUSrts/Data

BUSrts
BUSrtw
BUSinv
BUSwb

A-tagState Data

access

snoop

CPU

Cache

BUSinv

SSI

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 37

AVDARK
2013

More Cache Lingo
 Capacity miss – too small cache
 Conflict miss – limited associativity
 Compulsory miss – accessing data the first time
 Coherence miss – The cache would have had the

data unless it had been invalidated by someone else
 Upgrade miss: (only for writes) – The cache would

have had a writable copy, but answered a read
request and “downgraded” itself to read-only state

 False sharing: Coherence/downgrade is caused by a
shared cacheline and not by shared data:

Read A
…
Write A
…
Read A

...
Read D
…
Write D

A, B, C, D
cacheline:False sharing

example:

Implementing Snooping.
One example

(Sun E6000, ≈Intel P6,)
Erik Hagersten

Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 39

AVDARK
2013

Shared Memory

Snoop-based architecture: Dual tags

BUS snoop

CPU

BUS

A-tag State Data

Cache

Bus
transaction

A-tag State Snoop Tag (Obligation state)
(possibly time-sliced access

to cache tags)

C
ache access

Access Tag (Permission sate)
(possibly time-sliced access

to cache tags)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 40

AVDARK
2013

The Cache Coherent Memory System
Coherent Write (Here: Write invalidate)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

INV INV

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 41

AVDARK
2013

C
ache access

Shared Memory

BUS snoop

CPU: Store
”middle CPU”

A-tagState Data

A-tag State

”BusINV”

”Upgrade” in snooped-based

BUS snoop A-tag State

A-tagState Dat

S S

S S

”INV””ACK”

M I

M

From
earlier
trans-
actions

”right or
left CPU”

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 42

AVDARK
2013

The Cache Coherent Cache-to-cache

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A

B:

Read B
…
Read A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 43

AVDARK
2013

Cache2cache – the requesting CPU

I

M O

SCPUread/BUSrts

CPUrepl/-

CPUrepl/BUSwb

CPUwrite/BUSinv

CPUwrite/BUSinv
CPUrepl/
BUSwb

CPUwrite/
BUSrtw

CPUread/-

CPUread/-
CPUread/-
CPUwrite/

CPUwrite: Caused by a store miss

CPUread Caused by a loadmiss

CPUrepl: Caused by a replacement

A-tagState Data

access

snoop

CPU

Cache

Load

IIS

BUSrts

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 44

AVDARK
2013

BUSrts: ReadToShare (reading
the data with the intention to
read it)

BUSrtw, ReadToWrite (reading
the data with the intention to
modify it)

BUSwb: Writing data back to
memory

BUSinv: Invalidating other
caches copies

Cache-to-cache –
the other CPU

I

M O

S

BUSrtw BUSinv

BUSrtw/Data
BUSinv

BUSrts/Data

BUSrtw/Data

BUSrts
BUSwb

BUSrts/Data

BUSrts
BUSrtw
BUSinv
BUSwb

A-tagState Data

access

snoop

CPU

Cache

BUSrts

MMO
Data

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 45

AVDARK
2013

C
ache access

Shared Memory

BUS snoop

CPU: load
A-tagState Data

A-tag State

BusRTS

Cache-to-cache in snoope-based

BUS snoop A-tag State

A-tagState

I M

I M

BusRTSMyRTS

S O

S O

Gotta’ wait
here for data

”Left $” ”Middle $”

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 46

AVDARK
2013

BUSrts: ReadtoShare (reading
the data with the intention to
read it)

BUSrtw, ReadToWrite (reading
the data with the intention to
modify it)

BUSwb: Writing data back to
memory

BUSinv: Invalidating other
caches copies

Yet Another Cache-to-cache

I

M O

S

BUSrtw BUSinv

BUSrtw/Data
BUSinv

BUSrts/Data

BUSrtw/Data

BUSrts
BUSwb

BUSrts/Data

BUSrts
BUSrtw
BUSinv
BUSwb

A-tagState Data

access

snoop

CPU

Cache

BUSrts

O
Data

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 47

AVDARK
2013

Summary
 Dual tags enable bus snoops and CPU

lookups in parallel
 A datum may actually have several

values ”at the same wall-clock time”
 … but not in ”logic time”: No software

can detect that there are different
values

 The value-change order maintained

Other Coherence
Alternatives

Erik Hagersten
Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 49

AVDARK
2013

Common Cache States
 M – Modified

My dirty (i.e. modified) copy is the only cached copy
 E – Exclusive

My clean copy is the only cached copy
 O – Owner

I have a dirty copy, others may also have a copy
 S – Shared

I have a clean copy, others may also have a copy
 I – Invalid

I have no valid copy in my cache

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 50

AVDARK
2013

Some Coherence Alternatives

 MOSI
 Leave one dirty copy in a cache on a

cache2cache transfer
 MSI

Writeback to memory on a cache2cache.
 MOESI

The first reader will go to E and can later
become a writer cheaply

Our first target

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 51

AVDARK
2013

Example A = A + 1
Initially A is only in mem

MOSI:
CPU BUS State
LD A… RTS(A) S
ADD 1… -
ST A… INV(A) M
LD B RTS(B) S
ADD 1 -
ST B INV(B) M
…

MOESI:
CPU BUS State
LD A RTS(A) E
ADD 1 -
ST A - M
LD B RTS(B) E
ADD 1 -
ST B - M
…

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 52

AVDARK
2013

Update-based MOSI protocol

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A

B:

Read B
…
Read A

BusUpdate

Have to
Update

Have to
Update

My
Update

 HIT

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 53

AVDARK
2013

Update-based MOSI protocol:
Next write

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A
Write A

B:

Read B
…
Read A

BusUpdate

Have to
Update

Have to
Update

My
Update

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 54

AVDARK
2013

Update-based Coherence

 Write the new value to the other caches
holding a shared copy (instead of invalidating…)

 Can avoid coherence misses
 May consume a large amount of snoop

bandwidth
 Hard to implement some ”memory models”
 Few commercial implementations:

SPARCCenter2000, Xerox Dragon

Preparing for IRL

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 56

AVDARK
2013

All the three RISC CPUs in a MOSI shared-memory (sequentially consistent) multiprocessor
executes the following code almost at the same time:

while(A != my_id){}; /* this is a primitive kind of lock */
B = B + A;
A = A + 1; /* this is a primitive kind of unlock */
while (A != 4) {}; /* this is a primitive kind of barrier sync */
<after a long time>
<some other execution replaces A and B from the caches, if still
present>

Initially, CPU1 has its local variable my_id=1, CPU has my_id=2 and CPU3 has my_id=3 and the globally
shared variables A is equal to 1 and B is equal to 0.
Assume that CPU3, 2 and 1 first make one memory reference (i.e, a load or a store) each and then repeats that interleaving.

The following four bus transaction types can be seen on the snooping bus connecting the CPUs:
• RTS: ReadtoShare (reading the data with the intention to read it)
• RTW, ReadToWrite (reading the data with the intention to modify it)
• WB: Writing data back to memory
• INV: Invalidating other caches copies

Show every state change and/or value change of A and B in each CPU’s cache according to one possible interleaving of the
memory accesses. After the parallel execution is done for all of the CPUs, the cache lines still in the caches will be
replaced. These actions should also be shown. For each line, also state what bus transaction occurs on the bus (if any) as
well as which device is providing the corresponding data (if any).

Example during next IRL Class:

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 57

AVDARK
2013

CPU action
Bus
Transactio
n (if any)

State/value after the CPU action Data is provided by
[Cache 1, 2, 3 or
Mem]
(if any)

CPU1
A B

CPU2
A B

CPU3
A B

Initially I I I I I I

CPU3: LD A RTS(A) Mem

CPU2: LD A

CPU1: LD A RTS(A)

RTS(A) Mem

.

Example of a state transition sheet:

S/1

S/1

S/1

CPU3: LDA __

Mem

__

What are Memory Models?

Erik Hagersten
Uppsala University

Sweden

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 59

AVDARK
2013

Where Memory Models Matter
 Flag synchronization

(initially flag = 0 and A = 0)

... ...
A = 1; while (flag != 1) {};
flag = 1; X = A;

print(X);

 Causality (Causal correctness)

…
A = 1;
…

…
...
while (A==0) {};
B = 1;

Read A
…
…
…
while (B==0) {};
X = A;
print (X);

(Initially A = 0 and B = 0)

Trick question
What value will be printed?
 0
 1
 Undefined (either 0 or 1)

Trick question
What value will be printed?
 0
 1
 Undefined (either 0 or 1)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 60

AVDARK
2013

Dekker’s Algorithm (mutual exclusion)

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0) print(“B won”)

Initially A = B = 0

“fork”

Trick question
Is it possible that both threads ”win”?
 Yes
 No
 Undefined

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 61

AVDARK
2013

Memory Ordering

 Coherence defines a per-datum
valuechange order

 Memory model defines the valuechange
order for all the data.

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 62

AVDARK
2013

Memory Ordering
 Defines the guaranteed memory

ordering
 Is a ”contract” between the HW and SW

guys
 Without it, you may not be able to say

much about the result of a parallel
execution

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 63

AVDARK
2013

Observing order in SW
In which order did A and B change value?

Value order
LD newA; LD oldB  newA before newB
ST newA; LD oldB newA before newB
ST newA; ST newB  newA before newB

Program order
The order of program statements of each
thread

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 64

AVDARK
2013

In which global order were these
statements executed?

Thread 1

LD A
ST B’
LD C
ST D’
LD E
…
…

Thread 2

LD B’
ST C’
LD D
ST E’
…
…

ST A’
(LD A happend before ST A’)

(A’ denotes a modified value to the data at addr A)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 65

AVDARK
2013

One possible
observed order

Thread 1

LD A
ST B’
LD C

ST D’
LD E
…
…

Thread 2

LD B’
ST C’
LD D

ST E’
…
…

ST A’

Thread 1

LD A
ST B’
LD C

ST D’
LD E
…
…

Thread 2

LD B’
ST C’
LD D

ST E’
…
…

ST A’

Another possible
observed order

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 66

AVDARK
2013

“The intuitive memory order”
Sequential Consistency (Lamport)

 Global order achieved by interleaving all memory
accesses from different threads

 SW should not be able to detect contradictive orders
 “Programmer’s intuition is maintained”
 Unnecessarily restrictive ==> performance penalty

ThreadThreadThreadThreadThreadThreadT Thread

Shared Memory

loads, stores
Shared Memory

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 67

AVDARK
2013

Where Memory Models Matters
 Flag synchronization

(initially flag = 0 and A = 0)

... ...
A = 1; while (flag != 1) {};
flag = 1; X = A;

print(X);

 Causality (Causal correctness)

…
A = 1;
…

…
...
while (A==0) {};
B = 1;

Read A
…
…
…
while (B==0) {};
X = A;
print (X);

(Initially A = 0 and B = 0)

Given Sequential Consistecy:
What value will be printed?
 0
 1
 Undefined (either 0 or 1)

Given Sequential Consistecy:
What value will be printed?
 0
 1
 Undefined (either 0 or 1)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 68

AVDARK
2013

Dekker’s Algorithm (mutual exclusion)

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0) print(“B won”)

Initially A = B = 0

“fork”

Given Sequential Consistecy:
Is it possible that both threads ”win”?
 Yes
 No
 Undefined

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 69

AVDARK
2013

Proving Dekker’s Algorithm under SC

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0) print(“B won”)

Initially A = B = 0

“fork”

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 70

AVDARK
2013

Can the case “both win” happen under SC?

A := B := 0

A:= 1

If (B == 0)
print “Left wins”

B:= 1

If (A == 0)
print “Right wins”

A := B := 0

ST A, 1

LD B  0

ST B, 1

LD A  0

Cyclic access graph  Not SC
(there is no global order)

= PO: Program
order: a < b

(the order specified
by the program)

= VO: Value
order: c < d

(i.e., c happened before
d in the global order)

a

b

c

d

Acess graph

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 71

AVDARK
2013

One thread wins under SC

A := B := 0

A:= 1

If (B == 0)
print “Left wins”

B:= 1

If (A == 0)
print “Right wins”

Only Right wins  SC is OK

A := B := 0

ST A, 1

LD B  1

ST B, 1

LD A  0

Not cyclic graph  SC

One global order:
STB < LDA < STA <LDB

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 72

AVDARK
2013

No thread wins under SC

A := B := 0

A:= 1

If (B == 0)
print “Left wins”

B:= 1

If (A == 0)
print “Right wins”

No thread wins  SC is OK

A := B := 0

ST A, 1

LD B  1

ST B, 1

LD A  1

Not cyclic graph  SC

Four Partial Orders, still SC
STB < LDA ; STA < LDA; STB < LDB ; STA < LDA

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 73

AVDARK
2013

Summary
 Gives the ”illusion” of one global

order between all memory accesses
 If two threads can observe two

contratictive [partial] orders, SC is
broken.

 Maintains human intuition
 … at the cost of performance (or

complexity)

Other Memory Models
Erik Hagersten

Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 75

AVDARK
2013

“Almost intuitive memory model”
Total Store Ordering [TSO] (P. Sindhu)

 Global interleaving [order] for all stores from different
threads (own stores excepted)

 “Programmer’s intuition is almost maintained”
 Flag synchronization? Yes
 Store causality? Yes
 Does Dekker work? No

 Unnecessarily restrictive ==> performance penalty

ThreadThreadThreadThreadThreadThreadT Thread

Shared MemoryShared Memory

stores loads

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 76

AVDARK
2013

TSO HW Model

CPU

Store
Buffer

Stores loads

=
=
=
=
=

CPU

Store
Buffer

Stores loads

=
=
=
=
=

inv

Stores are moved off the critical path
Coherence implementation can be the same as for SC

Shared Memory

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 77

AVDARK
2013

Where Memory Models Matters
 Flag synchronization

(initially flag = 0 and A = 0)

... ...
A = 1; while (flag != 1) {};
flag = 1; X = A;

print(X);

 Causality (Causal correctness)

…
A = 1;
…

…
...
while (A==0) {};
B = 1;

Read A
…
…
…
while (B==0) {};
X = A;
print (X);

(Initially A = 0 and B = 0)

Given Total Store Order:
What value will be printed?
 0
 1
 Undefined (either 0 or 1)

Given Total Store Order:
What value will be printed?
 0
 1
 Undefined (either 0 or 1)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 78

AVDARK
2013

Dekker’s Algorithm (mutual exclusion)

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0) print(“B won”)

Initially A = B = 0

“fork”

Given Total Store Order:
Is it possible that both threads ”win”?
 Yes
 No
 Undefined

Does the write
become globally
visible
before
the read is
performed?

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 79

AVDARK
2013

Dekker’s Algorithm for TSO

A := 1
Memory barrier
if (B== 0) print(“A won”)

B := 1
Memory barrier
if (A == 0) print(“B won”)

Initially A = B = 0

“fork”

It depends on the memory model ed!
Memory barrier: Tells the HW to not start the LD until all previous stores have
been ”globaly ordered”
behaves like SC
 Dekker’s algorithm works!

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 80

AVDARK
2013

Weak/release Consistency
(M. Dubois, K. Gharachorloo)

 Most accesses are unordered
 “Programmer’s intuition is not maintained”

 Flag synchronization? No
 Causal correctness? No
 Dekker? No

 Global order only established when the
programmer explicitly inserts memory barrier
instructions

++ Better performance!!
-- Interesting bugs!!

ThreadThreadThreadThread

Shared Memory

loads
stores

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 81

AVDARK
2013

Weak/Release consistency
 New flag synchronization needed

A := data; while (flag != 1) {};
membarrier; membarrier;
flag := 1; X := A;

 Dekker’s: same as TSO
 Causal correctness provided for this code

…
A:=1
…

…
...
While (A==0) {}
membarrier
B := 1

Read A
…
…
…
While (B==0) {}
membarrier
Print A

Initially A = B = 0

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 82

AVDARK
2013

Processor Consistency [PC] (J. Goodman)

 PC: The stores from a processor appears to others in program
order.
 Flag synchronization? Yes
 Causal correctness? Not clearly defined by Goodman. (yes, for

PC “with causal correctness”)
 Dekker? No

ThreadThreadThreadThreadThreadThreadT Thread

Shared MemoryShared Memory

stores

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 83

AVDARK
2013

Learning more about memory
models

Shared Memory Consistency Models: A Tutorial
by Sarita Adve, Kouroush Gharachorloo
in IEEE Computer 1996 (in the ”Papers” directory)

RTFM: Read the F*****n Manual of the system you are
working on!
(Different microprocessors and systems supports
different memory models.)

Issue to think about:
What code reordering may compilers really do?
What does ”volatile” declarations in C mean?

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 84

AVDARK
2013

X86’s new memory model
 Processor consistency with causual correctness

for non-atomic memory ops
 TSO for atomic memory ops
 (Academia says the x86 mem model is TSO

 Link to the Intel manual (Section 8.2)
http://download.intel.com/products/processor/manual/325462.pdf

 Video presentation:
http://www.youtube.com/watch?v=WUfvvFD5tAA&hl=sv

Synchronization

Erik Hagersten
Uppsala University

Sweden

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 86

AVDARK
2013

while (sum < N)

sum := sum + 1while (sum < N)

sum := sum + 1while (sum < N)

sum := sum + 1while (sum < N)

sum := sum + 1

sum := 0

printf (sum)

”thread_create”

”join”

Execution on a sequentially
consistent shared-memory
machine:

PSEUDO ASM CODE
LD R1, #N

LOOP: LD R2, (sum)
SUB R1, R1, R2
BGZ R3, CONT:
LD R2, (sum)
ADD R2, R2, #1
ST R2, (sum)
BR LOOP:

CONT:

What value will get printed?
 N
 N+1
 Any value between N and N + 3

How many additions will be executed?
 N
 Any value between N and N + 3
 Any value between N and N * 4

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 87

AVDARK
2013

Need to introduce synchronization

 Locking primitives are needed to ensure that only
one process can be in the critical section:

Critical Section

LOCK(lock_variable) /* wait for your turn */

if (sum > threshold) {
sum := my_sum + sum

}
UNLOCK(lock_variable) /* release the lock*/

if (sum > threshold) {
LOCK(lock_variable) /* wait for your turn */

sum := my_sum + sum
UNLOCK(lock_variable) /* release the lock*/

}

Critical Section

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 88

AVDARK
2013

Components of a Synchronization Event

 Acquire method
 Acquire right to the synchronization (enter critical

section, go past sync event)
 Waiting algorithm

 Wait for synch to become available when it isn’t
 Release method

 Enable other processors to acquire right to the synch

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 89

AVDARK
2013

Atomic Instruction to Acquire
 Atomic example: test&set “TAS R1, (location)”

The value at Mem(location) is loaded into R1, and
the constant “1” atomically stored into Mem(location)
(Other constant could be implemented, e.g., SPARC: ”FF”)

 Looks like a “store” to the coherence protocol
Implementation:

1. Get a writable exclusive copy of the cache line (state M in MOSI)
2. Make the atomic modification to that cached copy

 Examples of other atomic primitives:
SWAP R1, (location): atomically swap the values of R1 with Mem(location)
CAS R1, R2, (location): (Compare&Swap) SWAP if Mem(location)=REG2

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 90

AVDARK
2013

Waiting Algorithms
 Blocking

 Waiting processes/threads are de-scheduled
 High overhead
 Allows processor to do “other things”

 Busy-waiting
 Waiting processes repeatedly test a lock_variable until it changes

value
 Lower overhead, but consumes processor resources
 Can cause coherence network traffic

 Hybrid methods: busy-wait a while, then block

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 91

AVDARK
2013

Release Algorithm
 Typically just a store ”0”
 More complicated locks may require a

conditional store or a ”wake-up”.

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 92

AVDARK
2013

A Bad Example: ”POUNDING”

proc lock(lock_variable) {
while (TAS[lock_variable]==1) {} /* pound on the lock until free */

}

proc unlock(lock_variable) {
lock_variable := 0

}

Assume: The function TAS[addr] returns the current memory value at
addr and atomically writes the busy pattern “1” to the memory

Spinning threads produce traffic!

How is TAS treated by the coherence protocol?
 Like a CPU read operation
 Like a CPU write opreration
 By performing the ”SWAP” atomically in DRAM

If two threads are waiting for the lock
 They will both spin locally in their cache
 They will create coherence traffic by

invalidating each other
 They will both block and need to be

woken up by the OS


Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 93

AVDARK
2013

Optimistic Test&Set Lock ”spinlock”

proc lock(lock_variable) {
while true {

if (TAS[lock_variable] ==0) break; /* pound on the lock once, done if TAS==0 */
while(lock_variable != 0) {} /* spin locally in your cache until ”0” observed*/

}
}

proc unlock(lock_variable) {
lock_variable := 0

}

Much less coherence traffic!!
-- still lots of traffic at lock handover!

More on this during Scalable Synchronization

If two threads are waiting for the lock
 They will mostly spin locally in their cache
 They will create coherence traffic all the time

by invalidating each other
 They will both block and need to be woken

up by the OS

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 94

AVDARK
2013

Pesimistic Test&Set Lock ”spinlock”

proc lock(lock_variable) {
while true {

while(lock_variable != 0) {} /* spin locally in your cache until ”0” observed*/
if (TAS[lock_variable] ==0) break; /* pound on the lock once, done if TAS==0

}
}

proc unlock(lock_variable) {
lock_variable := 0

}

Slightly less traffic than Optimistic for contended locks
-- still lots of traffic at lock handover!

More solutions during Scalable Shared Memory

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 95

AVDARK
2013

It could still get messy!

CS

Interconnect
...L==1

L:=0

Interconnect
...L:=0

L=0 L=0 L=0 L=0 L=0 L=0

Interconnect
...

N reads
L==0

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 96

AVDARK
2013

...messy (part 2)

CS L:=0 L:=0 L:=0

Interconnect
...L== 1

potentially: ~N*N/2 reads :-(

T&S T&S T&S T&S T&S T&S

Interconnect
...

N-1 Test&Set
(i.e., N writes)

Problem1: Contention on the interconnect slows down the CS execution
Problem2: The lock hand-over time is N*read_throughput
Fix1: Some back-off strategy, bad news for hand-over latency
Fix2: Queue-based locks

Barrier Synchronization
Erik Hagersten

Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 98

AVDARK
2013

Barrier Synchronization

C
R …C

R
C
R

C
R

C
R

Barrier() /*wait for the others */

”New phase” of computation.
Need all threds to be done with the previous phase

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 99

AVDARK
2013

Barriers: Make the first threads wait for the
last thread to reach a point in the program

1. Software algorithms implemented using locks,
flags, counters

2. Hardware barriers
 “Wired-AND” line separate from address/data bus
 Set input high when arrive, wait for output to be high to

leave
 (In practice, multiple wires to allow reuse)
 Difficult to support arbitrary subset of processors

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 100

AVDARK
2013

A Naiive Centralized Barrier

BARRIER (bar_name, p) {

LOCK(bar_name.lock) {
if (bar_name.counter == p) bar_name.counter = 0; /* init count*/
bar_name.counter++; /* globally increment the barrier count */

}
UNLOCK(bar_name.lock)

while (bar_name.counter < p) {}; /* wait for the last thread */

}

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 101

AVDARK
2013

A More Complicated Centralized Barrier

BARRIER (bar_name, p) {
int loops;
loops = 0;

local_sense = !(local_sense) ; /* toggle private sense variable
each time the barrier is used */

LOCK(bar_name.lock);
bar_name.counter++; /* globally increment the barrier count */
if (bar_name.counter == p) { /* everybody here yet ? */

bar_name.flag = local_sense; /* release waiters*/
UNLOCK(bar_name.lock)

}
else

{ UNLOCK(bar_name.lock);
while (bar_name.flag != local_sense) { /* wait for the last guy */

if (loops++ > UNREASONABLE) report_warning(pid)}
}

