
Multiprocessors and
Coherent Memory

Erik Hagersten
Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 2

AVDARK
2013

Summing up Coherence

There can be many copies of a
datum, but only one value
There is a single global order of
value changes to each datum

Thread1={1,2,3,4,5,6,7…} Thread2={1,4,7…} Thread3={1,8,7…}

After the computer stops, all
copies should have the same value

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 3

AVDARK
2013

Where does coherence matter?

CPU, 2 thr

D$
64kB

I$
64kB

L2 $
256kB

CPU, 2 thr.

D$
64kB

I$
64kB

L2 $
256kB

CPU, 2 thr.

D$
64kB

I$
64kB

L2 $
256kB

CPU, 2 thr.

D$
64kB

I$
64kB

L2 $
256B

X-bar

L3 $ 24MB

QuickPath Interconnect 4 x DDR-3

CPU

D$
64kB

I$
64kB

L2 $
256kB

...

8 cores x 2 threads

Coherence
On chip

Coherence
Between
chips

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 4

AVDARK
2013

Summary Coherence

 Coherent shared-memory programming
model requires coherence

 (There is also non-coherent shared
memory, e.g. single-sided MPI, PGAS)

 All threads can read and write shared
data.

 Coherent view of the value of a datum
 Often: Coherence is kept per cache line.

Snooping Coherence
Erik Hagersten

Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 6

AVDARK
2013

Shared Memory

Snoop-based Protocol Implementation

A-tag S Data

CPU access

BUS snoop

CPU

BUS

Cache
Bus
transaction

Per-cache-line ”state” info

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 7

AVDARK
2013

Cache implementation

Generic Cache:

Addr [63..0]
MSB LSB

AT S Data = 64B

=

Cacheline, here 64B:

...

=======

mux
Hit

Sel way ”6”

Data = 64B

index

SRAM:

State!

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 8

AVDARK
2013

Shared Memory

Snoop-based Protocol Implementation

A-tag S Data

CPU access

BUS snoop

CPU

BUS

Cache
Bus
transaction

”State machines”

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 9

AVDARK
2013

Shared Memory

Snoop-based Protocol Implementation

A-tag S Data

CPU access

BUS snoop

CPU

BUS

Bus
transaction

I

M O

S

BUSrtw BUSinv

BUSrtw/Data
BUSinv

BUSrts/Data

BUSrtw/Data

BUSrts
BUSwb

BUSrts/Data

BUSrts
BUSrtw
BUSinv
BUSwb

I

M O

S CPUread/BUSrts

CPUrepl/-

CPUrepl/BUSwb

CPUwrite/BUSinv

CPUwrite/BUSinv
CPUrepl/
BUSwb

CPUwrite/
BUSrtw

CPUread/-

CPUread/-
CPUread/-
CPUwrite/

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 10

AVDARK
2013

BUS TRANSACTIONS FROM OTHERS:

BUSrts

BUSrtw:

BUSinv:

BUSwb

Example: MOSI Bus Snoop
STATES:
M – Modified:

S – Shared:

O – Owner:

I – Invalid:

*Dirty: my value differs from the old
value in mem. It is my job to update mem.

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 11

AVDARK
2013

BUS TRANSACTIONS FROM OTHERS:

BUSrts ReadtoShare. Reading the data

BUSrtw: ReadToWrite. Reading the data
with the intention to modify it right away

BUSinv: Invalidating other caches copies

BUSwb: Writing data back dirty data to
memory

Example: MOSI Bus Snoop
STATES:
M – Modified: My dirty* copy is
the only cached copy
S – Shared: I have a clean copy,
others may also have a copy
O – Owner: I have a dirty copy,
others may also have a copy
I – Invalid: I have no valid copy in
my cache (including cache miss)

Input-signal/Reply-signal
Meaning: If you are in state M
and see BUSrts, goto state O
and reply with Data

*Dirty: my value differs from the old
value in mem. It is my job to update mem

I S

M O
BusT/Data

Same
state

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 12

AVDARK
2013

Example: CPU access MOSI
FROM MY CPU:

CPUread Caused by a Load instruction

CPUwrite: Caused by a Store or Atomic instruction

CPUrepl: Caused by a replacement of this cachline (caused by murphy )

Input-signal/Reply-signal
Meaning: If you are in state M
and see BUSrts, goto state O
and reply with Data

I S

M O
CpuT/BusT

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 13

AVDARK
2013

BUS TRANSACTIONS FROM OTHERS:

BUSrts ReadtoShare. Reading the data

BUSrtw: ReadToWrite. Reading the data
with the intention to modify it right away

BUSinv: Invalidating other caches copies

BUSwb: Writing data back to memory

The MOSI Bus Snoop

I

M O

S

BUSrtw BUSinv

BUSrtw/Data
BUSinv

BUSrts/Data

BUSrtw/Data

BUSrts
BUSwb

BUSrts/Data

BUSrts
BUSrtw
BUSinv
BUSwb

STATES:
M – Modified: My dirty* copy is
the only cached copy
S – Shared: I have a clean copy,
others may also have a copy
O – Owner: I have a dirty copy,
others may also have a copy
I – Invalid: I have no valid copy in
my cache (including cache miss)

*Dirty: my value differs from the old
value in mem

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 14

AVDARK
2013

The MOSI CPU access

I

M O

S CPUread/BUSrts

CPUrepl/-

CPUrepl/BUSwb

CPUwrite/BUSinv

CPUwrite/BUSinv
CPUrepl/
BUSwb

CPUwrite/
BUSrtw

CPUread/-

CPUread/-
CPUread/-
CPUwrite/

FROM MY CPU:

CPUread Caused by a Load instruction

CPUwrite: Caused by a Store or Atomic instruction

CPUrepl: Caused by a replacement of this cachline (caused by murphy )

Coherence exercises

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 16

AVDARK
2013

CPU action
Bus
Transactio
n (if any)

State/value after the CPU action Data is provided by
[Cache 1, 2, 3 or
Mem]
(if any)

CPU1
A B

CPU2
A B

CPU3
A B

Initially I I I I I I

CPU3: LD A RTS(A) Mem

CPU2: LD A

CPU1: LD A RTS(A)

RTS(A) Mem

.

Example of a state transition sheet:

S/1

S/1

S/1

CPU3: LDA __

Mem

__

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 17

AVDARK
2013

All the three RISC CPUs (e.g. cores in a multicore) in a MOSI shared-memory sequentially
consistent multiprocessor execute the following code almost at the same time:

CPU1:
A = 1;

CPU2:

while (A == 0) {};
B = 1;

CPU3
A = 0;
while (B == 0){};
printf (“%d”, A);

CPU3 will start slightly ahead of the others and will execute its first memory instruction (LD/ST)
before CPU2 starts its first memory instruction, while CPU1 will start last. After this, the threads
will take turns performing one memory instruction each in that order.
Initially A and B reside in memory only and both have the value 0.
After a long time, show the effects of replacement.

Example during IRL Class:

A = 1;
…

...
while (A==0) {};
B = 1;

…
…
A=0;
while (B==0) {};
print (A);

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 18

AVDARK
2013

Mem Instr Bus 1:A 1:B 2:A 2:B 3:A 3:B Data

3:ST A RTW(A) M/0 Mem

2:LD A RTS(A) S/0 O/0 $3

1:ST A RTW(A) M/1 I I $3

3:LD B RTS(B) S/0 Mem

2:LD A RTS(A) O/1 S/1 $1

3:LD B -- --

2:ST B RTW(B) M/1 I --

3:LD B RTS(B) O/1 S/1 $2

3:LD A RTS(A) S/1 $1

LONG TIME
ELAPSE

1:REPL A WB(A) I $1

2:REPL A -- --

2:REPL B WB(B) I $2

3:REPL A -- --

3:REPL B -- --

IRL Memory Models

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 20

AVDARK
2013

Dekker’s Algorithm (mutual exclusion)

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0) print(“B won”)

Initially A = B = 0

“fork”

Does the write
become globally
visible
before
the read is
performed?

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 21

AVDARK
2013

Sequential Consistency (Lamport)

Thread

Shared Memory

loads, stores

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0) print(“B won”)

Initially A = B = 0

“fork”

Thread

B=1
A=1 Shared Memory B=0
A=0

A=1
B=1

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 22

AVDARK
2013

Can the case “both win” happen under SC?

A := B := 0

A:= 1

If (B == 0)
print “Left wins”

B:= 1

If (A == 0)
print “Right wins”

A := B := 0

ST A, 1

LD B  0

ST B, 1

LD A  0

Cyclic access graph  Not SC
(there is no global order)

= PO: Program
order: a < b

(the order specified
by the program)

= VO: Value
order: c < d

(i.e., c happened before
d in the global order)

a

b

c

d

Acess graph

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 23

AVDARK
2013

“Almost intuitive memory model”
Total Store Ordering [TSO] (P. Sindhu)

 Global interleaving [order] for all stores from different
threads (own stores excepted)

ThreadThreadThreadThreadThreadThreadT Thread

Shared MemoryShared Memory

stores Loads(each thread can have
at most one outstanding load)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 24

AVDARK
2013

TSO HW Model

CPU

Store
Buffer

Stores loads

=
=
=
=
=

CPU

Store
Buffer

Stores loads

=
=
=
=
=

inv

Shared Memory

A=1

A=0

B=0

B=1

B=0

A=0

A = 1
if (B== 0) print(“A won”)

B = 1
if (A == 0) print(“B won”)

Q: What happens if the SB gets full?

IRL Sync

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 26

AVDARK
2013

A Bad Example: ”POUNDING”

proc lock(lock_variable) {
while (TAS[lock_variable]==1) {} /* pound on the lock until free */

}

proc unlock(lock_variable) {
lock_variable := 0

}

Assume: The function TAS[addr] returns the current memory value at
addr and atomically writes the busy pattern “1” to the memory

How is TAS treated by the coherence protocol?
 Like a CPU read operation
 Like a CPU write opreration
 By performing the ”SWAP” atomically in DRAM

If two threads are waiting for the lock
 They will both spin locally in their cache
 They will create coherence traffic by

invalidating each other
 They will both block and need to be

woken up by the OS

CPU:
TAS R1, m(L)

R1:

$

Bus
0

0

M L

Memory

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 27

AVDARK
2013

Optimistic Test&Set Lock ”spinlock”

proc lock(lock_variable) {
while true {

if (TAS[lock_variable] == 0) break; /* pound on the lock once, done if TAS==0 *
while(lock_variable != 0) {} /* spin locally in your cache until ”0” observed*/

}
}

proc unlock(lock_variable) {
lock_variable := 0

}

Much less coherence traffic!!
-- still lots of traffic at lock handover!

More on this during Scalable Synchronization

If two threads are waiting for the lock
 They will mostly spin locally in their cache
 They will create coherence traffic all the time

by invalidating each other
 They will both block and need to be woken

up by the OS

IRL: More Problem
solving

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 29

AVDARK
2013

All the three RISC CPUs in a MOSI shared-memory (sequentially consistent) multiprocessor
executes the following code almost at the same time:

while(A != my_id){}; /* this is a primitive kind of lock */
B = B + A;
A = A + 1; /* this is a primitive kind of unlock */
while (A != 4) {}; /* this is a primitive kind of barrier sync */
<after a long time>
<some other execution replaces A and B from the caches, if still
present>

Initially, CPU1 has its local variable my_id=1, CPU has my_id=2 and CPU3 has my_id=3 and the globally
shared variables A is equal to 1 and B is equal to 0.
Assume that CPU3, 2 and then 1 first make one memory reference (i.e, a load or a store) each , after which they repeats that
memory access interleaving.

The following four bus transaction types can be seen on the snooping bus connecting the CPUs:
• RTS: ReadtoShare (reading the data with the intention to read it)
• RTW, ReadToWrite (reading the data with the intention to modify it)
• WB: Writing data back to memory
• INV: Invalidating other caches copies

Show every state change and/or value change of A and B in each CPU’s cache according to one possible interleaving of the
memory accesses. After the parallel execution is done for all of the CPUs, the cache lines still in the caches will be
replaced. These actions should also be shown. For each line, also state what bus transaction occurs on the bus (if any) as
well as which device is providing the corresponding data (if any).

Extra Example not used in IRL Class:

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 30

AVDARK
2013

Mem Instr Bus 1:A 1:B 2:A 2:B 3:A 3:B Data

3:LD A RTS(A) S/1 MEM

2:LD A RTS(A) S/1 MEM

1:LD A RTS(A) S/1 MEM

3,2:LD A -- --

1:LD B RTS(B) S/0 MEM

3,2:LD A -- --

1:ST B INV(B) M/1 --

3,2:LD A -- --

1:ST A INV(A) M/2 I I --

3:LD A RTS(A) O/2 S/2 $1

2:LD A RTS(A) S/2 $1

1,3:LD A -- --

2:LD B RTS(B) O/1 S/1 $1

1,3:LD A -- --

2:ST B INV(B) I M/2 --

1,3:LD A -- --

2:ST A INV(A) I M/3 I --

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 31

AVDARK
2013

Mem Instr Bus 1:A 1:B 2:A 2:B 3:A 3:B Data

TRANSPORT M/3 M/2

1:LD A RTS(A) S/3 O/3 $2

3:LD A RTS(A) S/3 $2

2,1:LD A -- --

3:LD B RTS(B) O/2 S/2 $2

2,1:LD A -- --

3:ST B INV(B) I M/5 --

2,1:LD A -- --

3:ST A INV(A) I I M/4 --

2:LD A RTS(A) S/4 O/4 $3

1:LD A RTS(A) S/4 $3

3:LD A -- --

LONG TIME

1,2:REPL A -- I I --

3:REPL A WB(A) I $3

3:REPL B WB(B) I $3

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 32

AVDARK
2013

All the three RISC CPUs in a MSI shared-memory (sequentially consistent) multiprocessor
executes the following code almost at the same time:

while(A != my_id){}; /* this is a primitive kind of lock */
B = B + A;
A = A + 1; /* this is a primitive kind of unlock */
while (A != 4) {}; /* this is a primitive kind of barrier sync */
<after a long time>
<some other execution replaces A and B from the caches, if still
present>

Initially, CPU1 has its local variable my_id=1, CPU has my_id=2 and CPU3 has my_id=3 and the globally
shared variables A is equal to 1 and B is equal to 0.
Assume that CPU3, 2 and then 1 first make one memory reference (i.e, a load or a store) each , after which they repeats that
memory access interleaving.

The following four bus transaction types can be seen on the snooping bus connecting the CPUs:
• RTS: ReadtoShare (reading the data with the intention to read it)
• RTW, ReadToWrite (reading the data with the intention to modify it)
• WB: Writing data back to memory
• INV: Invalidating other caches copies

Show every state change and/or value change of A and B in each CPU’s cache according to one possible interleaving of the
memory accesses. After the parallel execution is done for all of the CPUs, the cache lines still in the caches will be
replaced. These actions should also be shown. For each line, also state what bus transaction occurs on the bus (if any) as
well as which device is providing the corresponding data (if any).

Using MSI

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 33

AVDARK
2013

Mem Instr Bus 1:A 1:B 2:A 2:B 3:A 3:B Data

3:LD A RTS(A) S/1 MEM

2:LD A RTS(A) S/1 MEM

1:LD A RTS(A) S/1 MEM

3,2:LD A -- --

1:LD B RTS(B) S/0 MEM

3,2:LD A -- --

1:ST B INV(B) M/1 --

3,2:LD A -- --

1:ST A INV(A) M/2 I I --

3:LD A RTS(A) O/2 S/2 $1

2:LD A RTS(A) S/2 $1

1,3:LD A -- --

2:LD B RTS(B) O/1 S/1 $1

1,3:LD A -- --

2:ST B INV(B) I M/2 --

1,3:LD A -- --

2:ST A INV(A) I M/3 I --

S/2

MEM

S/1

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 34

AVDARK
2013

Mem Instr Bus 1:A 1:B 2:A 2:B 3:A 3:B Data

TRANSPORT M/3 M/2

1:LD A RTS(A) S/3 O/3 $2

3:LD A RTS(A) S/3 $2

2,1:LD A -- --

3:LD B RTS(B) O/2 S/2 $2

2,1:LD A -- --

3:ST B INV(B) I M/5 --

2,1:LD A -- --

3:ST A INV(A) I I M/4 --

2:LD A RTS(A) S/4 O/4 $3

1:LD A RTS(A) S/4 $3

3:LD A -- --

LONG TIME

1,2:REPL A -- I I --

3:REPL A WB(A) I $3

3:REPL B WB(B) I $3

S/3

MEM

S/2

S/4

MEM

-- --

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 35

AVDARK
2013

All the three RISC CPUs in a MOESI shared-memory (sequentially consistent) multiprocessor
executes the following code almost at the same time:

while(A != my_id){}; /* this is a primitive kind of lock */
B = B + A;
A = A + 1; /* this is a primitive kind of unlock */
while (A != 4) {}; /* this is a primitive kind of barrier sync */
<after a long time>
<some other execution replaces A and B from the caches, if still
present>

Initially, CPU1 has its local variable my_id=1, CPU has my_id=2 and CPU3 has my_id=3 and the globally
shared variables A is equal to 1 and B is equal to 0.
Assume that CPU3, 2 and then 1 first make one memory reference (i.e, a load or a store) each , after which they repeats that
memory access interleaving.

The following four bus transaction types can be seen on the snooping bus connecting the CPUs:
• RTS: ReadtoShare (reading the data with the intention to read it)
• RTW, ReadToWrite (reading the data with the intention to modify it)
• WB: Writing data back to memory
• INV: Invalidating other caches copies

Show every state change and/or value change of A and B in each CPU’s cache according to one possible interleaving of the
memory accesses. After the parallel execution is done for all of the CPUs, the cache lines still in the caches will be
replaced. These actions should also be shown. For each line, also state what bus transaction occurs on the bus (if any) as
well as which device is providing the corresponding data (if any).

Using MOESI

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 36

AVDARK
2013

Mem Instr Bus 1:A 1:B 2:A 2:B 3:A 3:B Data

3:LD A RTS(A) E/1 MEM

2:LD A RTS(A) S/1 S/1 MEM

1:LD A RTS(A) S/1 MEM

3,2:LD A -- --

1:LD B RTS(B) E/0 MEM

3,2:LD A -- --

1:ST B INV(B) M/1 --

3,2:LD A -- --

1:ST A INV(A) M/2 I I --

3:LD A RTS(A) O/2 S/2 $1

2:LD A RTS(A) S/2 $1

1,3:LD A -- --

2:LD B RTS(B) O/1 S/1 $1

1,3:LD A -- --

2:ST B INV(B) I M/2 --

1,3:LD A -- --

…

--

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 37

AVDARK
2013

All the three RISC CPUs in a MOSI shared-memory (sequentially consistent) multiprocessor
executes the following code almost at the same time:

barrier(B, 3);

Assume that CPU3, 2 and then 1 first make one memory reference (i.e, a load, store or atomic) each , after which they
repeats that memory access interleaving. Fill out the state transition sheet for the entire execution including cache evictions
at the and.

Sync example

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 38

AVDARK
2013

Barrier Synchronization

C
R …C

R
C
R

C
R

C
R

Barrier() /*wait for the others */

”New phase” of computation.
Need all threds to be done with the previous phase

barrier() barrier() barrier() barrier()

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 39

AVDARK
2013

All the three RISC CPUs in a MOSI shared-memory (sequentially consistent) multiprocessor
executes the following code almost at the same time:

barrier(B, 3);

Assume that CPU3, 2 and then 1 first make one memory reference (i.e, a load, store or atomic) each , after which they
repeats that memory access interleaving. Fill out the state transition sheet for the entire execution including cache evictions
at the and. Initially B.ctr = 0 and B.L = 0. Both reside in memory only.

Sync example

DEF barrier (bar_name, p) { /* we know that this barrier is way too simple,
right? */

lock(bar_name.L);
bar_name.ctr++ ; /* globally increment the barrier count
*/

unlock(bar_name.L);
while (bar_name.ctr < p) {}; /* wait for the last thread */

}

DEF lock(lock_variable) { /* This is an optimistic
spinlock */

while true {
if (TAS[lock_variable] == 0) break; /* Pound once. Done if TAS returns 0

*/
while(lock_variable != 0) {} /* Spin locally */

}
}

DEF unlock(lock_variable) {
lock variable = 0;

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 40

AVDARK
2013

Mem Instr Bus 1:ctr 1:L 2:ctr 2:L 3:ctr 3:L Data

3:TAS L in cs RTW(L) M/FF Mem

2:TAS L RTW(L) M/FF I 3

1:TAS L RTW(L) M/FF I 2

3:LD CTR RTS(ctr) S/0 Mem

2:LD L spin RTS(L) O/FF S/FF 1

1:LD L spin -- --

3:ST CTR INV(ctr) M/1 --

2:LD L spin -- --

1:LD L spin -- --

3:ST L unlock RTW(L) I I M/0 1

2:LD L spin RTS(L) S/0 O/0 3

1:LD L spin RTS(L) S/0 3

3:LD CTR -- --

2:TAS L in cs INV(L) I M/FF I --

1:TAS L RTW(L) M/FF I 2

3:LD CTR -- --

2: LD CTR RTS(ctr) S/1 O/1 3

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 41

AVDARK
2013

Mem Instr Bus 1:ctr 1:L 2:ctr 2:L 3:ctr 3:L Data

Transport M/FF S/1 I O/1 I

1:LD L spin -- --

3:LD CTR -- --

2:ST CTR INV(ctr) M/2 I --

1:LD L spin -- --

3:LD CTR RTS(ctr) O/2 S/2 2

2:ST L unlock RTW(L) I M/0 1

1:LD L spin RTS(L) S/0 O/0 2

3+2:LD CTR -- --

1:TAS L in cs INV(L) M/FF I --

3+2:LD CTR -- --

1:LD CTR RTS(ctr) S/2 2

3+2:LD CTR -- --

1:ST CTR INV(ctr) M/3 I I --

3:LD CTR done RTS(ctr) O/3 S/3 1

2:LD CTR done RTS(ctr) S/3 1

… …

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 42

AVDARK
2013

A Naiive Centralized Barrier

BARRIER (bar_name, p) {

LOCK(bar_name.lock) {
if (bar_name.ctr == p) bar_name.ctr = 0; /* init count*/
bar_name.ctr++; /* globally increment the barrier count */

}
UNLOCK(bar_name.lock)

while (bar_name.ctr < p) {}; /* wait for the last thread */

}

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 43

AVDARK
2013

A More Complicated Centralized Barrier

BARRIER (bar_name, p) {
int loops;
loops = 0;

local_sense = !(local_sense) ; /* toggle private sense variable
each time the barrier is used */

LOCK(bar_name.lock);
bar_name.counter++; /* globally increment the barrier count */
if (bar_name.counter == p) { /* everybody here yet ? */

bar_name.flag = local_sense; /* release waiters*/
UNLOCK(bar_name.lock)

}
else

{ UNLOCK(bar_name.lock);
while (bar_name.flag != local_sense) { /* wait for the last guy */

if (loops++ > UNREASONABLE) report_warning(pid)}
}

Microbenchmarks

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 45

AVDARK
2013

Stepping through the array

A
B

C
D

CL

Stride [Bytes]

Vector size [Bytes]

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 46

AVDARK
2013

Micro Benchmark Signature
for (times = 0; times < Max; times++) /* many times*/

for (i=0; i < ArraySize; i = i + Stride)
dummy = A[i]; /* touch an item in the array */




        


 




Ti
m

e
(n

s)

Stride (bytes)








   








   




 








   








  



 







   








 













  














   









 

          
4 16 64 256 1 K 4 K 16 K 64 K 256 K 1 M 4 M

0

100

200

300

400

500

600

700

  
 

   


    





 8 M
 4 M
 2 M
 1 M
 512 K

256 K
 128 K
 64 K

32 K
16 K







Stride(bytes)

Av
g

tim
e

(c
yc

le
s)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| http://user.it.uu.se/~ehSW optimizations47

AVDARK
2013 0

100

200

300

400

500

600

700

4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Strides

Microbenchmark

4k

8k

16k

32k

64k

128k

256k

512k

1M

2M

4M

8M

A

B

C

D

CL

Vector=4kB
8kB

16kB
32kB
64kB

128kB
256kB512kB

1MB

2MB

L1: size=4kB CL= 32B

L2: size=256kB CL= 128B

Page: size=16kB

TLB: reach=1MB #Entries= 64

This ski-slope of the ”L2 curve”
gives the CL size for L1

This ski-slope of the ”next”
curve” gives the CL size for L2

This ski-slope of the next curve
gives the page size

Why is it hurting 2MB and not
1MB?

Why is it falling for strides
>16kB?

Vector size

Stride [B]

Latency

Memory: Lat = 220

Dept of Information Technology| www.it.uu.se © Erik Hagersten| http://user.it.uu.se/~ehSW optimizations48

AVDARK
2013

In-class: Guess the Cache

Vector=4-32kB

64kB-1MB

>2MB

2MB

4MB
8MB

16MB
32MB

32B 64B 4kB
1ns

10ns

60ns

130ns

L1: size= CL=

L2: size= CL=

Page: size=

TLB: reach= #Entries=

32kB 32B

64B 1MB

4kB

2MB 512

L1: Lat= 1ns

L1: Lat= 10ns

Mem: Lat= 60ns

TLB miss penalty: 70ns

Stride

Latency

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 49

AVDARK
2013

Micro Benchmark Signature




        


 




Ti
m

e
(n

s)

Stride (bytes)








   








   




 








   








  



 







   








 













  














   









 

          
4 16 64 256 1 K 4 K 16 K 64 K 256 K 1 M 4 M

0

100

200

300

400

500

600

700

  
 

   


    





 8 M
 4 M
 2 M
 1 M
 512 K

256 K
 128 K
 64 K

32 K
16 K







ArraySize=8MB

ArraySize=512kB

ArraySize=32-256kB

ArraySize=4-16kB

Stride(bytes)

Av
g

tim
e

(”
C
YC

LE
S
”)

A

B

C

D

CL

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 50

AVDARK
2013

Micro Benchmark Signature
for (times = 0; times < Max; time++) /* many times*/

for (i=0; i < ArraySize; i = i + Stride)
dummy = A[i]; /* touch an item in the array */




        


 




Ti
m

e
(n

s)

Stride (bytes)








   








   




 








   








  



 







   








 













  














   









 

          
4 16 64 256 1 K 4 K 16 K 64 K 256 K 1 M 4 M

0

100

200

300

400

500

600

700

  
 

   


    





 8 M
 4 M
 2 M
 1 M
 512 K

256 K
 128 K
 64 K

32 K
16 K







ArraySize=8MB

ArraySize=512kB

ArraySize=32kB-256kB

ArraySize=16kB

L1$ hit

L2$hit=40ns

Mem=300ns

Mem+TLBmiss

L2$ block
size=64B

Page
size=8k ==> #TLB entries = 32-64

(56 normal+8 large)

L1$ block
size=16B

L2$+TLBmiss

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 51

AVDARK
2013

Twice as large L2 cache ???

for (times = 0; times < Max; time++) /* many times*/

for (i=0; i < ArraySize; i = i + Stride)
dummy = A[i]; /* touch an item in the array */




        


 




Ti
m

e
(n

s)

Stride (bytes)








   








   




 








   








  



 







   








 













  














   









 

          
4 16 64 256 1 K 4 K 16 K 64 K 256 K 1 M 4 M

0

100

200

300

400

500

600

700

  
 

   


    





 8 M
 4 M
 2 M
 1 M
 512 K

256 K
 128 K
 64 K

32 K
16 K







ArraySize=8MB

ArraySize=512kB

ArraySize=32-256kB

ArraySize=16kB

Stride(bytes)

Av
g

tim
e

(n
s)

ArraySize=1M

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehIRL-Coherence 52

AVDARK
2013

Twice as large TLB…

for (times = 0; times < Max; time++) /* many times*/

for (i=0; i < ArraySize; i = i + Stride)
dummy = A[i]; /* touch an item in the array */




        


 




Ti
m

e
(n

s)

Stride (bytes)








   








   




 








   








  



 







   








 













  














   









 

          
4 16 64 256 1 K 4 K 16 K 64 K 256 K 1 M 4 M

0

100

200

300

400

500

600

700

  
 

   


    





 8 M
 4 M
 2 M
 1 M
 512 K

256 K
 128 K
 64 K

32 K
16 K







ArraySize=8MB

ArraySize=512kB

ArraySize=32-256kB

ArraySize=16kB

Stride(bytes)

Av
g

tim
e

(n
s)

ArraySize=1MB

Survey Coh & Mem mods

Dept of Information Technology| www.it.uu.se © Erik Hagersten| http://user.it.uu.se/~ehIRL Coherence 54

AVDARK
2013

My take-home message
 The correct answers were sometime wrong
 Sound quality
 Even shorter videos
 More questions during videos
 This part was harder to follow, use more examples
 More ”hover-over hints”
 Question where the screen goes blank is no hit
 Didn’t learn much from the first part of the lab
 Problem-solving in IRL is better the PPT
 More meat during lab lectures
 Please share some questions/stats with us

Dept of Information Technology| www.it.uu.se © Erik Hagersten| http://user.it.uu.se/~ehIRL Coherence 55

AVDARK
2013

1 Try to make the sound as clear as possible. Questions are good, more questions. Maybe even
shorter videos?
2 I think this course is perfect. It is nice to get the information from different channels like videos,
labs and classes. The only thing that I can come up with is that it can be more questions in the videos.
They help you stay focused through the whole video, and also it's better when the video is around 20
minutes rather than 60. If it is 20 minutes you can watch it while eating breakfast for example.
3 The questions from the last batch had some problrms. In one question there was not a correct
answer and on another one the correct one was not right. The last lecture from the previous batch had
really low volume.
4 Frågorna där skärmen blankades till vitt så att all hela sammanhanget försvann var ingen hit.
5 More hands on examples we can all work through in class like today when the power went off.
It's bringing in the active learning aspect as opposed to running through the examples on PowerPoint. I for
one, get more out of it, I'm sure there are others that feel the same way.
6 I think that it was better in the first videos where it was given some explanation to the answers
when hovering the mouse.
7 More questions in the videos
8 The IRL classes are very helpful when Erik holds them. It really sums up the important parts of
the videos and gives a deeper understanding of the concepts in the course. The one lecture we had with
the lab assistants did not do much for understanding the course or understanding the lab assignment. I
would really appreciate a good lab preparation lecture. The labs would be so much more helpful for
understanding the course when you actually understand the assignment.
9 Can't say that learned anything new during the first lab. It was more bothersome since the terms
during the lectures were different from the terms used in the skeleton code. So it took awhile to
understand what was what. However, the bonus hand-in was a great way to gain a better understanding of
the course material.
10 I would like more questions during the web lectures. That way we need to use our heads more
frequently.
11 The first part of the lab was mostly just understanding and getting into the code written in
the file. I didn't feel like I gained any particular insights into caching or somesuch. Also the hints were not
really hints when we mostly only had to change one function (access), they just confused us as to where
the changes needed to be. The video lectures can be a chore to get through but they explain things
well. I prefer regular lectures though.
12 Can't come up with anything for you to improve
13 I don't know. I think it is good!
14 This time it was not clear. :(

Dept of Information Technology| www.it.uu.se © Erik Hagersten| http://user.it.uu.se/~ehIRL Coherence 56

AVDARK
2013

15 Can't think of anything, except another Lab soon would be nice!
16 With the exception of some technical problems (i.e. bad sound in one of videos and the "order
the consistency models" question didn't work correctly), I have no complaints.
17 Would be nice to have a cheatsheet or something for all the terms being thrown around so that
if we what something means we can easily go back and check without going through a bunch of videos. All
in all very good and understandable! The cache lab really made me get it!
18 Maybe I've misunderstood some recaps to the slides to be answered question, or people aren't
asking anything during video lectures. If not any of these, I would like to hear what people are asking from
the videos during the IRL classes. A few words about answering statistics could also be in place and
spending a little more time where a lot of people got them wrong. Also: please hint in the videos that a
quiz is coming. I've watched a few videos directly through Youtube and swapped to scalable-learning when
a question comes (in one of those red boxes). However, some times a question is not hinted for - it just
pops up. This may make me miss some quiz.
19 Compared to last time, the length of the video was perfect.
20 More focused videos
21 This lecture was a bit confusing, consider giving more examples to concepts rather than
glossing over them OR explain that you are glossing over them before you begin to explain the concept
itself. There were several times where I would rewind to understand something that I later found out was
not as necessary.
22 Shorter videos were definitely better, it is however difficult to judge how much the labs help as
we have only done one lab.
23 The videos are a good idea, but sometimes they are too long, I think that if we could read some
of the things said in the video, some videos wouldn't be that necessary. I also think that we should try
more excercises in class (or maybe more hours of class per week)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| http://user.it.uu.se/~ehIRL Coherence 57

AVDARK
2013

Goto 19!

Videos

Labs

IRL

