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Lab 2 in a nutshell

● Multicores, Shared Memory, Synchronization, and Memory 
Ordering

● Need for synchronization
● Implementing synchronization using shared memory on 

multicores
● Memory [consistency] model effect on programme behaviour
● Heavy-weight synchronization vs. Light-weight alternatives



  

Process vs. Thread

● Process1:
● Created by OS

● Requires fair amount of overhead

● Contains information about programme resources and programme execution 
state, e.g.

– PID, GID, UID

– Environment

– Working directory

– Instruction & data

– Stack & heap

– File descriptors

– Signal action

– IPC tools (msg. queues, pipes, semaphors, shared memory, etc.)

– etc.

1. https://computing.llnl.gov/tutorials/pthreads



  

Process vs. Thread

● Threads1:
● Exist within a process and share process resources

● Scheduled individually by OS and run in parallel

● Duplicate only bare essential resources

– Stack pointer

– PC

– GP registers

– Scheduling info.

– Thread specific data

1. https://computing.llnl.gov/tutorials/pthreads



  

Process vs. Thread

1. https://computing.llnl.gov/tutorials/pthreads
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Synchronization Between Threads

● Need for synchronization when accessing shared memory

if ( balance > amount ) {
balance = balance – amount;

}

- will a positive balance be maintained if all threads can execute 
  the above code at the same time ???



  

Critical Sections

● defining Critical Sections 

...

...

...
…

shared data

...

...

...

...

Critical Section
Enter CS

Exit CS

Mutual Exclusion



  

Critical Sections

● CS advantages:

● High-level programming → OS API, e.g. 

POSIX Threads (pthread) library

● CS disadvantages:

● Heavy-weight (high overhead) → suitable for relatively large 
critical sections



  

Atomic Instructions

● using Atomic Instructions

atomic instructions will serialize access to shared data → access by only 
one thread at any time

● Examples of atomic instructions

● Intel:

– xchg %eax, 0x0(%ebx)

– lock inc 0x0(%eax)

– lock cmpxchg %ebx, 0x0(%ecx)   // implicit operand %eax

● Alpha, PPC, MIPS, ARM

– load-link and store-conditional (LL/SC)



  

Atomic Instructions

● advantages:

● Light-weight (no OS overhead as in CS) → suitable for simple 
tasks, e.g. inc/dec counter

● Disadvantages:

● might need to write assembly code



  

Memory Ordering

● Memory [consistency] model:

● Could be described as the relationship between the order of 
loads/stores in a core and the order in which those loads/stores 
are made visible globally; i.e. in which order main memory (other 
cores) sees the loads/stores of a core



  

Memory Models

● SC: 

all loads/stores by a core should be made globally visible in the 
same order that occurred in the core, i.e. memory order respects 
programme order

1

1. Daniel J. Sorin, Mark D. Hill, and David A. Wood, A Primer on Memory Consistency and Cache Coherence



  

Memory Models

● Total Store Order (TSO)

employed in x86. Similar to SC, except that “load” after “store” is not in the 
same order in programme and memory order.

Allows optimizations, such as FIFO write buffer. Strict SC is not always 
needed.

1. Daniel J. Sorin, Mark D. Hill, and David A. Wood, A Primer on Memory Consistency and Cache Coherence
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Memory Models

● TSO can also achieve strict memory ordering similar to SC on 
demand by enforcing ordering using memory fences (barriers).

● Fence instructions in x86:

● lfence

● sfence

● mfence

1. Daniel J. Sorin, Mark D. Hill, and David A. Wood, A Primer on Memory Consistency and Cache Coherence
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Memory Ordering

● Memory ordering and atomic instructions in Intel architectures

memory accesses are not reordered past atomic instructions → 
fences are not needed for sync. algorithms using atomic instructions



  

Dekker's Algorithm

● Back to Critical Sections:

two approaches:

– OS API → pthreads

– Using mutual exclusion (mutex) algorithms, such as Dekker

advantages: 
● independent of OS – no special OS support needed
● independent of ISA – no special instruction, e.g. atomics

disadvantage:
● works only for two threads (as opposed to Peterson)
● requires SC memory model



  

Dekker's Algorithm



  

In this lab

● Implement Dekker's algorithm

● Adding necessary memory barriers to Dekker's algorithm 
to make it run correctly on x86 machine

● Comparing performance of critical section implementation 
using pthread and Dekker's algorithm

● Updating shared memory using different atomic 
instructions

● Performance analysis and comparison of all the above 
implementations (CS using pthreads, CS using Dekker's 
algorithm, using atomic instructions to update shared 
memory)

● All the shared memory test will be done using Algorithm 1



  

In this lab



  

In this lab

Download lab2 skeleton files from “piazza → course page → resources” and 
extract them in your home directory.

Lab2 skeleton:

● Makefile

automates compilation: make clean, make all

● lab2.h & lab2.c: glue code for running the tests

● lab2_asm.h: inline assembler atomic implementations

● cs_pthread.c: reference sync implementation for CS using pthreads

● cs_dekker.c: implement sync for CS using Dekker's algorithm here

● test_critical.c: implements Algorithm 1 using CS

● test_incdec.c: implements Algorithm 1 using atomic inc/dec

● test_cmpxchg.c: implements Algorithm 1 using atomic cmpxchg



  

In this lab

Critical Section

test_critical.c

Enter CS

Exit CS

cs_pthread.c
cs_dekker.c

./lab2 -t critical -c pthreads ./lab2 -t critical -c dekker

Configuration:
        Test implementation: critical
        Critical sections implementation: dekker
        Iterations: 1000000

Statistics:
        Thread 0: 0.2927 s (3.4166e+06 iterations/s)
        Thread 1: 0.2927 s (3.4169e+06 iterations/s)
        Average execution time: 0.2927 s
        Avergage iterations/second: 3.4168e+06

NO INCONSISTENCY after 1000000 iterations



  

In this lab

test_incdec.c
./lab2 -t incdec_atomic

./lab2 -t incdec_no_atomic

test_cmpxchg.c
./lab2 -t cmpxchg_atomic

./lab2 -t cmpxchg_no_atomic



  

In this lab

./lab2 -h
Options:
        -c IMPL         Use critical section implementation IMPL, use the
                        'help' IMPL to get a list of available implementations
                        (Default: pthreads)
        -t TEST         Use test implementation TEST, use the 'help' TEST
                        to list available implementations. (Default: critical)
        -i ITER         Run ITER iterations (Default: 1000000)
        -h              Display usage

./lab2 -c IMPL -t TEST -i ITER

./lab2 -c help
Critical section implementations:
        pthreads - Pthread mutexes
        null - NULL implementation that does not enforce mutual exclusion
        dekker - Dekker's algorithm
        queue - CLH Queue Locks



  

In this lab

./lab2 -t help
        critical - Modify a shared variable protected by critical sections
        critical4 - Modify a shared variable protected by critical sections
        critical8 - Modify a shared variable protected by critical sections
        incdec_no_atomic - Modify a shared variable using inc/dec instructions
        incdec_atomic - Modify a shared variable using atomic inc/dec instructions
        cmpxchg_atomic - Modify a shared variable using atomic compare and exchange
        cmpxchg_no_atomic - Modify a shared variable using compare and exchange



  

Lab Tasks
● Task 1: CS with pthreads → ./lab2 -t critical -c pthreads. Does the test pass? (look 

into test_critical.c).

● Task 2: enforcing mutual exclusion using “enter_critical” and “exit_critical” 
(cs_pthreads.c and cs_dekker.c) in “test_critical.c”

● Task 3: implement Dekker's algorithm (cs_dekker.c)

● Why should “flag” and “turn” be volatile?

● Does the test pass?

● Task 4: make Dekker's algorithm work by adding memory barriers (MFENCE) in 
cs_dekker.c. Use the already defined macro, and notice the gcc intrinsic for fences.

● Task 5: implement Algorithm 1 using “inc” and “dec” (test_incdec.c). Use functions in 
lab2_asm.h. Test non_atomic and atomic versions, and describe the result.

● Task 6: implement Algorithm 1 using “cmpxchg” (test_cmpxchg.c). Use functions in 
lab2_asm.h. Test non_atomic and atomic versions, and describe the result.

● Task 7: compare and explain the performance (faster/slower) of CS implementations 
and atomics.

● Task 8: compare and explain the performance of atomic and non_atomic versions.

● Task 9: Bonus. Implement queue locks “CLH” (cs_queue.c) using atomic instructions 
in lab2_asm.h. (hint: fences and atomic_xchg). (refer to lecture notes).



  

Lab Sign-up and Groups

Sign up using doodle: piazza → Course Page → Resources → General Resources

Lab Preparation: 2013-10-08, 08:00 ~ 12:00, room 1412

Group A:  2013-10-09, 13:00 ~ 17:00, room 1412

Group B:  2013-10-10, 13:00 ~ 17:00, room 1412

Group C:  2013-10-11, 13:00 ~ 17:00, room 1412
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