

Introduction to Lab 2

Mahdad Davari <mahdad.davari@it.uu.se>

Division of Computer Systems
Dept. of Information Technology

Uppsala University

2013-10-07

mailto:mahdad.davari@it.uu.se

Lab 2 in a nutshell

● Multicores, Shared Memory, Synchronization, and Memory
Ordering

● Need for synchronization
● Implementing synchronization using shared memory on

multicores
● Memory [consistency] model effect on programme behaviour
● Heavy-weight synchronization vs. Light-weight alternatives

Process vs. Thread

● Process1:
● Created by OS

● Requires fair amount of overhead

● Contains information about programme resources and programme execution
state, e.g.

– PID, GID, UID

– Environment

– Working directory

– Instruction & data

– Stack & heap

– File descriptors

– Signal action

– IPC tools (msg. queues, pipes, semaphors, shared memory, etc.)

– etc.

1. https://computing.llnl.gov/tutorials/pthreads

Process vs. Thread

● Threads1:
● Exist within a process and share process resources

● Scheduled individually by OS and run in parallel

● Duplicate only bare essential resources

– Stack pointer

– PC

– GP registers

– Scheduling info.

– Thread specific data

1. https://computing.llnl.gov/tutorials/pthreads

Process vs. Thread

1. https://computing.llnl.gov/tutorials/pthreads

1

Synchronization Between Threads

● Need for synchronization when accessing shared memory

if (balance > amount) {
balance = balance – amount;

}

- will a positive balance be maintained if all threads can execute
 the above code at the same time ???

Critical Sections

● defining Critical Sections

...

...

...
…

shared data

...

...

...

...

Critical Section
Enter CS

Exit CS

Mutual Exclusion

Critical Sections

● CS advantages:

● High-level programming → OS API, e.g.

POSIX Threads (pthread) library

● CS disadvantages:

● Heavy-weight (high overhead) → suitable for relatively large
critical sections

Atomic Instructions

● using Atomic Instructions

atomic instructions will serialize access to shared data → access by only
one thread at any time

● Examples of atomic instructions

● Intel:

– xchg %eax, 0x0(%ebx)

– lock inc 0x0(%eax)

– lock cmpxchg %ebx, 0x0(%ecx) // implicit operand %eax

● Alpha, PPC, MIPS, ARM

– load-link and store-conditional (LL/SC)

Atomic Instructions

● advantages:

● Light-weight (no OS overhead as in CS) → suitable for simple
tasks, e.g. inc/dec counter

● Disadvantages:

● might need to write assembly code

Memory Ordering

● Memory [consistency] model:

● Could be described as the relationship between the order of
loads/stores in a core and the order in which those loads/stores
are made visible globally; i.e. in which order main memory (other
cores) sees the loads/stores of a core

Memory Models

● SC:

all loads/stores by a core should be made globally visible in the
same order that occurred in the core, i.e. memory order respects
programme order

1

1. Daniel J. Sorin, Mark D. Hill, and David A. Wood, A Primer on Memory Consistency and Cache Coherence

Memory Models

● Total Store Order (TSO)

employed in x86. Similar to SC, except that “load” after “store” is not in the
same order in programme and memory order.

Allows optimizations, such as FIFO write buffer. Strict SC is not always
needed.

1. Daniel J. Sorin, Mark D. Hill, and David A. Wood, A Primer on Memory Consistency and Cache Coherence

1

Memory Models

● TSO can also achieve strict memory ordering similar to SC on
demand by enforcing ordering using memory fences (barriers).

● Fence instructions in x86:

● lfence

● sfence

● mfence

1. Daniel J. Sorin, Mark D. Hill, and David A. Wood, A Primer on Memory Consistency and Cache Coherence

1

Memory Ordering

● Memory ordering and atomic instructions in Intel architectures

memory accesses are not reordered past atomic instructions →
fences are not needed for sync. algorithms using atomic instructions

Dekker's Algorithm

● Back to Critical Sections:

two approaches:

– OS API → pthreads

– Using mutual exclusion (mutex) algorithms, such as Dekker

advantages:
● independent of OS – no special OS support needed
● independent of ISA – no special instruction, e.g. atomics

disadvantage:
● works only for two threads (as opposed to Peterson)
● requires SC memory model

Dekker's Algorithm

In this lab

● Implement Dekker's algorithm

● Adding necessary memory barriers to Dekker's algorithm
to make it run correctly on x86 machine

● Comparing performance of critical section implementation
using pthread and Dekker's algorithm

● Updating shared memory using different atomic
instructions

● Performance analysis and comparison of all the above
implementations (CS using pthreads, CS using Dekker's
algorithm, using atomic instructions to update shared
memory)

● All the shared memory test will be done using Algorithm 1

In this lab

In this lab

Download lab2 skeleton files from “piazza → course page → resources” and
extract them in your home directory.

Lab2 skeleton:

● Makefile

automates compilation: make clean, make all

● lab2.h & lab2.c: glue code for running the tests

● lab2_asm.h: inline assembler atomic implementations

● cs_pthread.c: reference sync implementation for CS using pthreads

● cs_dekker.c: implement sync for CS using Dekker's algorithm here

● test_critical.c: implements Algorithm 1 using CS

● test_incdec.c: implements Algorithm 1 using atomic inc/dec

● test_cmpxchg.c: implements Algorithm 1 using atomic cmpxchg

In this lab

Critical Section

test_critical.c

Enter CS

Exit CS

cs_pthread.c
cs_dekker.c

./lab2 -t critical -c pthreads ./lab2 -t critical -c dekker

Configuration:
 Test implementation: critical
 Critical sections implementation: dekker
 Iterations: 1000000

Statistics:
 Thread 0: 0.2927 s (3.4166e+06 iterations/s)
 Thread 1: 0.2927 s (3.4169e+06 iterations/s)
 Average execution time: 0.2927 s
 Avergage iterations/second: 3.4168e+06

NO INCONSISTENCY after 1000000 iterations

In this lab

test_incdec.c
./lab2 -t incdec_atomic

./lab2 -t incdec_no_atomic

test_cmpxchg.c
./lab2 -t cmpxchg_atomic

./lab2 -t cmpxchg_no_atomic

In this lab

./lab2 -h
Options:
 -c IMPL Use critical section implementation IMPL, use the
 'help' IMPL to get a list of available implementations
 (Default: pthreads)
 -t TEST Use test implementation TEST, use the 'help' TEST
 to list available implementations. (Default: critical)
 -i ITER Run ITER iterations (Default: 1000000)
 -h Display usage

./lab2 -c IMPL -t TEST -i ITER

./lab2 -c help
Critical section implementations:
 pthreads - Pthread mutexes
 null - NULL implementation that does not enforce mutual exclusion
 dekker - Dekker's algorithm
 queue - CLH Queue Locks

In this lab

./lab2 -t help
 critical - Modify a shared variable protected by critical sections
 critical4 - Modify a shared variable protected by critical sections
 critical8 - Modify a shared variable protected by critical sections
 incdec_no_atomic - Modify a shared variable using inc/dec instructions
 incdec_atomic - Modify a shared variable using atomic inc/dec instructions
 cmpxchg_atomic - Modify a shared variable using atomic compare and exchange
 cmpxchg_no_atomic - Modify a shared variable using compare and exchange

Lab Tasks
● Task 1: CS with pthreads → ./lab2 -t critical -c pthreads. Does the test pass? (look

into test_critical.c).

● Task 2: enforcing mutual exclusion using “enter_critical” and “exit_critical”
(cs_pthreads.c and cs_dekker.c) in “test_critical.c”

● Task 3: implement Dekker's algorithm (cs_dekker.c)

● Why should “flag” and “turn” be volatile?

● Does the test pass?

● Task 4: make Dekker's algorithm work by adding memory barriers (MFENCE) in
cs_dekker.c. Use the already defined macro, and notice the gcc intrinsic for fences.

● Task 5: implement Algorithm 1 using “inc” and “dec” (test_incdec.c). Use functions in
lab2_asm.h. Test non_atomic and atomic versions, and describe the result.

● Task 6: implement Algorithm 1 using “cmpxchg” (test_cmpxchg.c). Use functions in
lab2_asm.h. Test non_atomic and atomic versions, and describe the result.

● Task 7: compare and explain the performance (faster/slower) of CS implementations
and atomics.

● Task 8: compare and explain the performance of atomic and non_atomic versions.

● Task 9: Bonus. Implement queue locks “CLH” (cs_queue.c) using atomic instructions
in lab2_asm.h. (hint: fences and atomic_xchg). (refer to lecture notes).

Lab Sign-up and Groups

Sign up using doodle: piazza → Course Page → Resources → General Resources

Lab Preparation: 2013-10-08, 08:00 ~ 12:00, room 1412

Group A: 2013-10-09, 13:00 ~ 17:00, room 1412

Group B: 2013-10-10, 13:00 ~ 17:00, room 1412

Group C: 2013-10-11, 13:00 ~ 17:00, room 1412

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

