
Advanced Computer Architecture
Lab 3 — Scalability of the Gauss-Seidel

Algorithm

1 Introduction
The purpose of this lab is to:

• apply what you have learned so far in the course to a real world math kernel

• get some experience in using the POSIX threads API

• demonstrate some of the issues related to scaling of numerical algorithms

In this lab assignment we will make extensive use of the POSIX threads (pthreads)
API, which is the standard threading API on Unix systems. We suggest that you check
out the tutorial at Lawrence Livermore National Laboratory1 if you have no prior ex-
perience with pthreads programming. Another excellent resource is the Single Unix
Specification2 which contains the documentation for all standard Unix APIs.

You are highly encouraged to solve this assignment in groups of two students. Talk
to the teaching assistant if you, for some reason, want to work in some other configu-
ration. This lab assignment is examined in the computer lab. During the examination,
you will be asked to demonstrate and explain your solutions.

2 Improving the performance of the Gauss-Seidel algo-
rithm

2.1 Introduction
The Gauss-Seidel algorithm is an iterative equation solver that is used to solve linear
equation systems. We’ll be solving the Laplace equation:

∆u = 0 in Ω (1)
u = 0 on δΩ (2)

We will only solve the equation in two dimension. We get the following equations
by expanding the Laplacian (∆) and including the parameters in the boundary condi-
tion:

δ2u

δx2 + δ2u

δy2 = 0 in Ω (3)

1https://computing.llnl.gov/tutorials/pthreads/
2http://www.unix.org/single_unix_specification/

1

https://computing.llnl.gov/tutorials/pthreads/
http://www.unix.org/single_unix_specification/
http://www.unix.org/single_unix_specification/
https://computing.llnl.gov/tutorials/pthreads/
http://www.unix.org/single_unix_specification/

u(x, y) = 0 on δΩ (4)

You may have noticed that Equation 1 is really a partial differential equation, it is
possible to discretize such an equation and solve it as a linear equation system. See
subsubsection 2.1.1 if you are interested, otherwise, skip to subsubsection 2.1.2.

2.1.1 Mathematical background

B Warning: The following section may contain intimidating math. Those who
are faint of heart might want to jump straight to subsubsection 2.1.2.

We discretizing the problem using a homogeneous grid with the spacing h. Using
central differences we can approximate the ∆u as:

∆ui , j ≈
ui−1, j +ui+1, j +ui , j−1 +ui , j+1 −4ui , j

h2 (5)

The discretized problem is thus:

ui−1, j +ui+1, j +ui , j−1 +ui , j+1 −4ui , j = 0 (6)

It is possible (consult your linear algebra textbook) to write the above equation on
the form:

Ax = b (7)

The system can then be solved as a linear equation system using an iterative method,
such as Gauss-Seidel. Let xk

i be the value of element i in the vector x after iteration k.
A general description of a sweep in a Gauss-Seidel solver would look as follows:

xk+1
i =

bi −∑
j<i ai j xk+1

j −∑
j>i ai j xk

j

ai i
(8)

In our case with the discretized Laplace equation (Equation 6), we get:

uk+1
i , j =

uk+1
i−1, j +uk+1

i , j−1 +uk
i+1, j +uk

i , j+1

4
(9)

We continue to iterate Equation 9 until the solution has converged, i.e. the differ-
ence between the approximate answer and the real answer is small. We will use the
following condition, where t is the tolerance, to test for convergence:∑

i

∑
j
|uk

i , j −uk+1
i , j | ≤ t (10)

What Equation 10 really means is that the algorithm has converged when the difference
in the results from two consecutive iterations is small.

2.1.2 Implementation

The neat thing about Gauss-Seidel is that it allows us to update the matrix representing
the solution in-place, unlike some other methods where the old version of the solution
must be kept in temporary storage. Algorithm 1 is a pseudo code implementation of
the sweep in Equation 9.

2

Algorithm 1 Gauss-Seidel solver for the Laplace equation on an n ×m matrix, with
the tolerance t .
Require: n,m ≥ 2

repeat
e ⇐ 0
for i = 1 to n −1 do

for j = 1 to m −1 do
v ⇐ ui−1, j +ui , j−1+ui+1, j +ui , j+1

4
e ⇐ e +|ui , j − v |
ui , j ⇐ v

end for
end for

until e ≤ t

Figure 1: Access pattern for the sequential version of the Gauss-Seidel algorithm. The
dark dots represent matrix elements that have been updated during the current iteration
and the bright dots represent “old” values.

The sequential sweep of Algorithm 1 starts in the top left corner of the matrix, and
iterate over each row, one element at a time, one row at a time, see Figure 1. We choose
this order to improve spatial locality since C stores matrices in row-major order.

To improve performance, we can set up several threads working in parallel on dif-
ferent (vertical) chunks of the matrix. When a thread arrives at the right end (assuming
that we sweep from left to right) of its chunk, it moves to the first element on the next
line and waits until the thread to the left has computed its last value for that row before
it continues, see Figure 2. In order to achieve this we have to include some kind of
synchronization between the threads. There are a couple of different strategies to solve
this, either you use a flag array with one flag per row and thread, or you use a progress
counter for each thread. To simplify things, you may (should) have a barrier at the end
of each iteration.

2.2 What is provided?

All the files related to the assignment can be downloaded from the course homepage.
The source code package contains the complete source code for the sequential version
of the algorithm, but only a skeleton for the parallel version. The source code for the
parallel version contains comments (pay particular interest to the TASK: comments) to
guide you towards what functionality should be implemented. Note that the comments
really only applies to one particular way of solving the problem, you may of course
solve the parallelization in a different way.

3

Thread 0 Thread 1

Figure 2: Access pattern for the multi-threaded Gauss-Seidel implementation. The
dashed line represent the division between two threads. In this example thread 1 is
waiting for thread 0 to update the last matrix element in its chunk on row 2, once that
element has been updated thread 1 can start working on the row.

We have split the project into several source files to make the project structure
cleaner and prepared a Makefile. In the source directory, you will find the following
files:

Makefile Controls the compilation using the make tool. You can simply type make
gs_pth to compile the pthreads version, or make gs_seq for the sequential
version. There is also a test target that you should use to verify your solution,
you may run it with make test.

gs_common.c Contains the common functions, like command line argument handling,
initialization etc. Mostly boring stuff you don’t need to bother yourselves about,
most of the interesting stuff resides in separate implementation files.

gs_interface.h Contains declarations and documentation for the interface between
gs_common.c and the GS implementations.

gsi_seq.c Contains the implementation of the gsi_calculate function for the se-
quential GS sweeps.

gsi_pth.c Will contain your version of the parallel gsi_calculate function.

solution.c Don’t peek!3

The code compiles as-is, but the parallel version doesn’t do any computations nor
does it contain any synchronization. You can set the debug mode by defining the macro
DEBUG to 1 at the top of the file.

The default matrix size is 2048x2048, so that the matrix (filled with double ele-
ments, i.e. 32MB of data) doesn’t fit in the cache. We start 4 threads by default. Inputs
must be a power of 2.

2.3 Tasks
Edit the gsi_pth.c file and implement the gsi_calculate function using the
pthreads library. The comments should give you some hints. Implement the synchro-
nization using a progress counter (or flags) and then the iteration barrier.

Check that your results are correct by using the make test command. Running
the test target of the Makefile will execute both the sequential and the parallel ver-
sion of the program and compare the output.

3Not built by the Makefile, but can be built with gcc -o solution ./solution.c.

4

1. Implement the synchronization between threads working on the same row in the
matrix.

2. Implement the barrier4 at the end of the iteration.

(a) Extra: Think of a solution without the barrier (a little more efficient), and
propose it to me (you don’t need to implement it).

3. Demonstrate your working solution implementation of the parallel Gauss-Seidel
algorithm (i.e. same outputs for gs_seq and gs_pth, but faster!).

4. The current parallel implementation is really slow, this is due to how the local
reduction variable for the error is stored. There is a simple thing that you can do
to improve this, you should have heard about this in the lectures. What kind of
miss is involved? Modify the thread_info_t data structure to improve the
performance.

2.3.1 Bonus

1. Is the performance gain linear with the number of processors/threads? Why/Why
not? (Elaborate your answer)

2. What kind of memory model do we rely on, here? (That is, what is the memory
model of the machine in the lab and what does it guarantees does it provide?)

3. Suppose we decide to implement the solution differently. We want to use a thread
pool, where each thread sits waiting for a task to be assigned. We implement the
solution as follows: As soon as a thread finishes with its current task (i.e. compu-
tations for a row), it is assigned another line (maybe from another chunk). How
would this affect performance? What is the name of the miss that is introduced?

4You may use a pthread barrier, see the documentation for pthread_barrier_init.

5

	Introduction
	Improving the performance of the Gauss-Seidel algorithm
	Introduction
	Mathematical background
	Implementation

	What is provided?
	Tasks
	Bonus

