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In this lab

● Parallel programming using pthreads

● A real-world example of parallelising sequential code for multicores (Gauss-
Seidel numerical method)

● Putting all together parallel programming techniques, data access pattern, 
and cache usage when writing parallel code for multicores

● A lot of mathematics  :~(



  

Parallel programming paradigms

● Process-level

● MPI (Message Passing Interface) library
– Process creation

– Explicit message “send” and “receive”, synchronizations, barriers

● Thread-level
● POSIX Threads (pthreads) library

– Explicit thread creation and control by programmer

● Open Multi-Processing (OpenMP) Compiler Extension
– Implicit thread creation and control by compiler



  

Some pthread types and routines ...

#include <pthread.h>

pthread_t thread;



  

Some pthreads types and functions ...

#include <pthread.h>



  

Some pthreads types and functions ...



  

Some pthreads types and functions ...

#include <pthread.h>

pthread_mutex_t mutex;
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Some pthreads types and functions ...

#include <pthread.h>

pthread_barrier_t barrier;



  

Some pthreads types and functions ...

#include <pthread.h>

pthread_barrier_t barrier;



  

Some pthreads types and functions ...

#include <pthread.h>

pthread_barrier_t barrier;

void * thread() {

// some computation

pthread_barrier_wait(&barrier);

// rest of computation

return;

}



  

Some pthreads types and functions ...

#include <pthread.h>

pthread_barrier_t barrier;

void * thread() {

// some computation

int ret = pthread_barrier_wait(&barrier);

if (ret != 0 && ret != PTHREAD_BARRIER_SERIAL_THREAD) {
// error handling routine

} else if (ret == PTHREAD_BARRIER_SERIAL_THREAD) {
// serial task

}

// rest of computation

return;

}



  

More information on pthread ...

● Lawrence Livermore National Laboratory

● Single Unix Specification

● Your local system's manual pages:

● host$ man man

● host$ man pthreads

● Variety of material available online

1

2

1. https://computing.llnl.gov/tutorials/pthreads/

2. http://www.unix.org/single_unix_specification/



  

Gauss-Seidel Numerical Method

● Gauss-Seidel method:

● An iterative method for solving linear systems of equations 1

1. http://en.wikipedia.org/



  

Gauss-Seidel Numerical Method

● Gauss-Seidel method:
● matrix A is decomposed into a lower triangular component , and a strictly 

upper triangular component U: 

1. http://en.wikipedia.org/

1



  

Gauss-Seidel Numerical Method

● Gauss-Seidel method:    solved sequentially using forward substitution 

1. http://en.wikipedia.org/

1



  

Gauss-Seidel Numerical Method

● Gauss-Seidel method in lab3:



  

Gauss-Seidel Numerical Method

● Access pattern for serial version:

● Access pattern for parallel version:



  

In this lab

● We will complete the synchronization between threads that implement the 
parallel version of Gauss-Seidel solver.

● lab3 skeleton files available on Piazza (a revised version uploaded) and 
extract the package:

● Makefile: automates compilation and run

– make gs_seq

– make gs_pth

– make test
● gs_common.c: glue code for running lab3 – it is recommended to have a quick 

look into this file (the beginning) to see how default values are defined.

● gs_interface.h

● gsi_seq.c: sequential implementation of GS sweep

● gsi_pth.c: your parallel version of GS sweep

● solution.c: don't peek!



  

In this lab

● To test your solution:

● make test

run gs_seq run gs_pth

==

Test OK.

Please ignore “test did NOT converge!”



  

In this lab – a closer look

gsi_calculate () {
.
.
pthread_create (&threads[t].thread, NULL, thread_compute, &threads[t]);
.
.
pthread_join (…);
.
.
.

}



  

In this lab – a closer look

typedef struct {
        int thread_id;
        pthread_t thread;

        volatile double error;

        /* TASK: Do you need any thread local state for synchronization? */
        /* !END_SOLUTION! */
} thread_info_t;



  

In this lab – a closer look

gsi_calculate () {
.
.
pthread_create (&threads[t].thread, NULL, thread_compute, &threads[t]);
.
.
pthread_join (…);
.
.
.

}



  

In this lab – a closer look

thread_compute (…) {

// TASK compute bounds

for (iteration = 0; < gs_iterations && global_error > gs_tolerance; ++) {

thread_sweep(tid, iter, lbound, rbound);

// TASK update global error → which thread should update this ?

// TASK barrier: all threads should finish the current iteration before next one
}

}



  

In this lab – a closer look

thread_sweep (…) {

threads[tid].error = 0.0;

for (int row = 1; row < gs_size - 1; row++) {

// TASK when should we start sweeping a row ?

              for (int col = lbound; col < rbound; col++) {
// sweep the row

}

// TASK tell the thread to the right to continue
}

}



  

In this lab – a closer look

● We use four threads to parallelize GS sweep

thread 0 thread 1 thread 2 thread 3

for (int row = 1; row < gs_size - 1; row++) {
for (int col = lbound; col < rbound; col++) {

gs_matrix[GS_INDEX(row + 1, col)] +
gs_matrix[GS_INDEX(row - 1, col)] +
gs_matrix[GS_INDEX(row, col + 1)] +
gs_matrix[GS_INDEX(row, col – 1)]);

}
}

matrix size n (n columns)

chunk (n/4)



  

In this lab – a closer look

● Pay attention to gsi_init() and gsi_finish()

● Define your barrier before initialization and use

● Notice that first thread does not need to synchronize with its left thread (use 
tid)

● To debug, set DEBUG to 1 in gsi_pth.c (#define DEBUG 1)

● Lab tasks review

● Implement synchronization between threads working on the same row in 
matrix

● Barrier implementation at the end of each iteration 

– extra: a solution without using barrier
● Speed-up your design by modifying how error variable is stored (modify 

thread_info_t)  



  

Lab sign-up and groups

Sign up using doodle: piazza → Course Page → Resources → General Resources

Lab Preparation: 2013-10-28, 13:00 ~ 17:00, room 1412

Group A: 2013-10-29, 08:00 ~ 12:00, room 1412

Group B: 2013-10-31, 08:00 ~ 12:00, room 1412

Group C: 2013-11-01, 13:00 ~ 17:00, room 1412

Good luck!
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