
  

Introduction to Lab 3

Mahdad Davari <mahdad.davari@it.uu.se>

Division of Computer Systems
Dept. of Information Technology

Uppsala University

2013-10-28

mailto:mahdad.davari@it.uu.se


  

In this lab

● Parallel programming using pthreads

● A real-world example of parallelising sequential code for multicores (Gauss-
Seidel numerical method)

● Putting all together parallel programming techniques, data access pattern, 
and cache usage when writing parallel code for multicores

● A lot of mathematics  :~(



  

Parallel programming paradigms

● Process-level

● MPI (Message Passing Interface) library
– Process creation

– Explicit message “send” and “receive”, synchronizations, barriers

● Thread-level
● POSIX Threads (pthreads) library

– Explicit thread creation and control by programmer

● Open Multi-Processing (OpenMP) Compiler Extension
– Implicit thread creation and control by compiler



  

Some pthread types and routines ...

#include <pthread.h>

pthread_t thread;



  

Some pthreads types and functions ...

#include <pthread.h>



  

Some pthreads types and functions ...



  

Some pthreads types and functions ...

#include <pthread.h>

pthread_mutex_t mutex;



  

Some pthreads types and functions ...

#include <pthread.h>



  

Some pthreads types and functions ...



  

Some pthreads types and functions ...

#include <pthread.h>

pthread_barrier_t barrier;



  

Some pthreads types and functions ...

#include <pthread.h>

pthread_barrier_t barrier;



  

Some pthreads types and functions ...

#include <pthread.h>

pthread_barrier_t barrier;

void * thread() {

// some computation

pthread_barrier_wait(&barrier);

// rest of computation

return;

}



  

Some pthreads types and functions ...

#include <pthread.h>

pthread_barrier_t barrier;

void * thread() {

// some computation

int ret = pthread_barrier_wait(&barrier);

if (ret != 0 && ret != PTHREAD_BARRIER_SERIAL_THREAD) {
// error handling routine

} else if (ret == PTHREAD_BARRIER_SERIAL_THREAD) {
// serial task

}

// rest of computation

return;

}



  

More information on pthread ...

● Lawrence Livermore National Laboratory

● Single Unix Specification

● Your local system's manual pages:

● host$ man man

● host$ man pthreads

● Variety of material available online

1

2

1. https://computing.llnl.gov/tutorials/pthreads/

2. http://www.unix.org/single_unix_specification/



  

Gauss-Seidel Numerical Method

● Gauss-Seidel method:

● An iterative method for solving linear systems of equations 1

1. http://en.wikipedia.org/



  

Gauss-Seidel Numerical Method

● Gauss-Seidel method:
● matrix A is decomposed into a lower triangular component , and a strictly 

upper triangular component U: 

1. http://en.wikipedia.org/

1



  

Gauss-Seidel Numerical Method

● Gauss-Seidel method:    solved sequentially using forward substitution 

1. http://en.wikipedia.org/

1



  

Gauss-Seidel Numerical Method

● Gauss-Seidel method in lab3:



  

Gauss-Seidel Numerical Method

● Access pattern for serial version:

● Access pattern for parallel version:



  

In this lab

● We will complete the synchronization between threads that implement the 
parallel version of Gauss-Seidel solver.

● lab3 skeleton files available on Piazza (a revised version uploaded) and 
extract the package:

● Makefile: automates compilation and run

– make gs_seq

– make gs_pth

– make test
● gs_common.c: glue code for running lab3 – it is recommended to have a quick 

look into this file (the beginning) to see how default values are defined.

● gs_interface.h

● gsi_seq.c: sequential implementation of GS sweep

● gsi_pth.c: your parallel version of GS sweep

● solution.c: don't peek!



  

In this lab

● To test your solution:

● make test

run gs_seq run gs_pth

==

Test OK.

Please ignore “test did NOT converge!”



  

In this lab – a closer look

gsi_calculate () {
.
.
pthread_create (&threads[t].thread, NULL, thread_compute, &threads[t]);
.
.
pthread_join (…);
.
.
.

}



  

In this lab – a closer look

typedef struct {
        int thread_id;
        pthread_t thread;

        volatile double error;

        /* TASK: Do you need any thread local state for synchronization? */
        /* !END_SOLUTION! */
} thread_info_t;



  

In this lab – a closer look

gsi_calculate () {
.
.
pthread_create (&threads[t].thread, NULL, thread_compute, &threads[t]);
.
.
pthread_join (…);
.
.
.

}



  

In this lab – a closer look

thread_compute (…) {

// TASK compute bounds

for (iteration = 0; < gs_iterations && global_error > gs_tolerance; ++) {

thread_sweep(tid, iter, lbound, rbound);

// TASK update global error → which thread should update this ?

// TASK barrier: all threads should finish the current iteration before next one
}

}



  

In this lab – a closer look

thread_sweep (…) {

threads[tid].error = 0.0;

for (int row = 1; row < gs_size - 1; row++) {

// TASK when should we start sweeping a row ?

              for (int col = lbound; col < rbound; col++) {
// sweep the row

}

// TASK tell the thread to the right to continue
}

}



  

In this lab – a closer look

● We use four threads to parallelize GS sweep

thread 0 thread 1 thread 2 thread 3

for (int row = 1; row < gs_size - 1; row++) {
for (int col = lbound; col < rbound; col++) {

gs_matrix[GS_INDEX(row + 1, col)] +
gs_matrix[GS_INDEX(row - 1, col)] +
gs_matrix[GS_INDEX(row, col + 1)] +
gs_matrix[GS_INDEX(row, col – 1)]);

}
}

matrix size n (n columns)

chunk (n/4)



  

In this lab – a closer look

● Pay attention to gsi_init() and gsi_finish()

● Define your barrier before initialization and use

● Notice that first thread does not need to synchronize with its left thread (use 
tid)

● To debug, set DEBUG to 1 in gsi_pth.c (#define DEBUG 1)

● Lab tasks review

● Implement synchronization between threads working on the same row in 
matrix

● Barrier implementation at the end of each iteration 

– extra: a solution without using barrier
● Speed-up your design by modifying how error variable is stored (modify 

thread_info_t)  



  

Lab sign-up and groups

Sign up using doodle: piazza → Course Page → Resources → General Resources

Lab Preparation: 2013-10-28, 13:00 ~ 17:00, room 1412

Group A: 2013-10-29, 08:00 ~ 12:00, room 1412

Group B: 2013-10-31, 08:00 ~ 12:00, room 1412

Group C: 2013-11-01, 13:00 ~ 17:00, room 1412

Good luck!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

