
Advanced Computer Architecture

Lab 4 — SIMD
Moncef Mechri <moncef.mechri@it.uu.se>

1 Introduction
The purpose of this lab assignment is to give some experience in using SIMD instruc-
tions on x86. We will use a matrix-vector multiplication to illustrate how SIMD can be
used for numerical algorithms and a simple algorithm to convert text into lower-case to
demonstrate how SIMD can be used for integer code.

You will be using GCC in this assignment. GCC supports two sets of intrinsics,
or built-ins, for SIMD. One is native to GCC and the other one is defined by Intel for
their C++ compiler. We will use the intrinsics defined by Intel since these much better
documented.

Both Intel1 and AMD2 provide excellent optimization manuals that discuss the use
of SIMD instructions and software optimizations. These are good sources for infor-
mation if you are serious about optimizing your software, but they are not mandatory
reading for this assignment. You will, however, find them, and the instruction set ref-
erences, useful as reference literature when using SSE. Another useful reference is the
Intel C++ compiler manual3, which documents the SSE intrinsics supported by ICC
and GCC.

We will, for various practical reasons, use Uppmax for this lab assignment. sub-
section 3.2 introduces the tools and commands you need to know to get started.

2 Introduction to SSE
The SSE extension to the x86 consists of a set of 128-bit vector registers and a large
number of instructions to operate on them. The number of available registers depends
on the mode of the processor, only 8 registers are available in 32-bit mode, while 16
registers are available in 64-bit mode.

The data type of the packed elements in the 128-bit vector is decided by the specific
instruction. For example, there are separate addition instructions for adding vectors of
single and double precision floating point numbers. Some operations that are normally
independent of the operand types (integer or floating point), e.g. bit-wise operations,
have separate instructions for different types for performance reasons.

When reading the manuals, it’s important to keep in mind that the size of a word in
the x86-world is not really the native word size, i.e. 32-bits or 64-bits. Instead, it’s 16-
bits, which was the word size of the original microprocessor which the entire x86-line

1http://www.intel.com/products/processor/manuals/
2http://developer.amd.com/documentation/guides/
3http://software.intel.com/sites/products/documentation/hpc/

compilerpro/en-us/cpp/lin/compiler_c/index.htm

1

http://www.intel.com/products/processor/manuals/
http://developer.amd.com/documentation/guides/
http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-us/cpp/lin/compiler_c/index.htm
http://www.intel.com/products/processor/manuals/
http://developer.amd.com/documentation/guides/
http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-us/cpp/lin/compiler_c/index.htm
http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-us/cpp/lin/compiler_c/index.htm

Header file Extension name Abbrev.
xmmintrin.h Streaming SIMD Extensions SSE
emmintrin.h Streaming SIMD Extensions 2 SSE2
pmmintrin.h Streaming SIMD Extensions 3 SSE3
tmmintrin.h Supplemental Streaming SIMD Extensions 3 SSSE3
smmintrin.h Streaming SIMD Extensions 4 (Vector math) SSE4.1
nmmintrin.h Streaming SIMD Extensions 4 (String processing) SSE4.2

Table 1: Header files used for different SSE versions

Intel Name Elements/Reg. Element type Vector type Type
Bytes 16 int8_t __m128i epi8
Words 8 int16_t __m128i epi16
Doublewords 4 int32_t __m128i epi32
Quadwords 2 int64_t __m128i epi64
Single Precision Floats 4 float __m128 ps
Double Precision Floats 2 double __m128d pd

Table 2: Packed data types supported by the SSE instructions. The fixed-length C-types
requires the inclusion of stdint.h.

descends from. Whenever the manual talks about a word, it’s really 16-bits. A 64-bit
integer, i.e. the register size of a modern x86, is known as a quadword. Consequently,
a 32-bit integer is known as a doubleword.

2.1 Using SSE in C-code
Using SSE in a modern C-compiler is fairly straightforward. In general, no assembler
coding is needed. Most modern compilers expose a set of vector types and intrinsics to
manipulate them. We will assume that the compiler supports the same SSE intrinsics
as the Intel C-compiler. The intrinsics are enabled by including a the correct header
file. The name of the header file depends on the SSE version you are targeting, see
Table 1. You may also need to pass an option to the compiler to allow it to generate SSE
code, e.g. -msse4.1. A portable application would normally try to detect which SSE
extensions are present by running the CPUID instruction and use a fallback algorithm
if the expected SSE extensions are not present. For the purpose of this assignment,
we simple ignore those portability issues and assume that at least SSE 4.1 is present,
which is the case for the 45 nm Core 2 and newer.

The SSE intrinsics add a set of new data types to the language, these are sum-
marized in Table 2. In general, the data types provided to support SSE provide little
protection against programmer errors. Vectors of integers of different size all use the
same vector type (__m128i), there are however separate types for vectors of single
and double precision floating point numbers.

The vector types do not support the native C operators, instead they require explicit
use of special intrinsics. All SSE intrinsics have a name on the form _mm_<op>_<type>,
where <op> is the operation to perform and <type> specifies the data type. The most
common types are listed in Table 2.

The following sections will present some useful instructions and examples to get
you started with SSE. It is not intended to be an exhaustive list of available instructions
or intrinsics. In particular, most of the instructions that rearrange data within vectors

2

Listing 1: Load store example using unaligned accesses

i n c l u d e < pmmin t r in . h>

s t a t i c vo id
my_memcpy (char * d s t , c o n s t char * s r c , s i z e _ t l e n)
{

/ * Assume t h a t l e n g t h i s an even m u l t i p l e o f t h e
* v e c t o r s i z e * /

a s s e r t ((l e n & 0xF) == 0) ;
f o r (i n t i = 0 ; i < l e n ; i += 16) {

__m128i v = _mm_loadu_si128 ((__m128i *) (s r c + i)) ;
_mm_storeu_s i128 ((__m128i *) (d s t + i) , v) ;

}
}

(shuffling), various data-packing instructions and generally esoteric instructions have
been left out. Interested readers should refer to the optimization manuals from the CPU
manufacturers for a more thorough introduction.

2.2 Loads and stores
There are three classes of load and store instructions for SSE. They differ in how they
behave with respect to the memory system. Two of the classes require their memory
operands to be naturally aligned, i.e. the operand has to be aligned to its own size. For
example, a 64-bit integer is naturally aligned if it is aligned to 64-bits. The following
memory accesses classes are available:

Unaligned A “normal” memory access. Does not require any special alignment, but
may perform better if data is naturally aligned.

Aligned Memory access type that requires data to be aligned. Might perform slightly
better than unaligned memory accesses. Raises an exception if the memory
operand is not naturally aligned.

Streaming Memory accesses that are optimized for data that is streaming, also known
as non-temporal, and is not likely to be reused soon. Requires operands to be
naturally aligned. Streaming stores are generally much faster than normal stores
since they can avoid reading data before the writing. However, they require data
to be written sequentially and, preferably, in entire cache line units.

See Table 3 for a list of load and store intrinsics and their corresponding assembler
instructions. A usage example is provided in Listing 1. Constants should usually not
be loaded using these instructions, see subsection 2.5 for details about how to load
constants and how to extract individual elements from a vector.

2.3 Arithmetic operations
All of the common arithmetic operations are available in SSE. Addition, subtraction
and multiplication is available for all vector types, while division is only available for
floating point vectors.

3

Intrinsic Assembler Vector Type

Unaligned

_mm_loadu_si128 MOVDQU __m128i
_mm_storeu_si128 MOVDQU __m128i
_mm_loadu_ps MOVUPS __m128
_mm_storeu_ps MOVUPS __m128
_mm_loadu_pd MOVUPD __m128d
_mm_storeu_pd MOVUPD __m128d
_mm_load1_ps Multiple __m128
_mm_load1_pd Multiple __m128d

Aligned

_mm_load_si128 MOVDQA __m128i
_mm_store_si128 MOVDQA __m128i
_mm_load_ps MOVAPS __m128
_mm_store_ps MOVAPS __m128
_mm_load_pd MOVAPD __m128d
_mm_store_pd MOVAPD __m128d

Streaming

_mm_stream_si128 MOVNTDQ __m128i
_mm_stream_ps MOVNTPS __m128
_mm_stream_pd MOVNTPD __m128d
_mm_stream_load_si128 MOVNTDQA __m128i

Table 3: Load and store operations. The load1 operation is used to load one value
into all elements in a vector.

A special horizontal add operation is available to add pairs of values, see Figure 1,
in its input vectors. This operation can be used to implement efficient reductions.
Using this instruction to create a vector of sums of four vectors with four floating point
numbers can be done using only three instructions.

There is an instruction to calculate the scalar product between two vectors. This
instruction takes three operands, the two vectors and an 8-bit flag field. The four highest
bits in the flag field are used to determine which elements in the vectors to include in
the calculation. The lower four bits are used as a mask to determine which elements in
the destination are updated with the result, the other elements are set to 0. For example,
to include all elements in the input vectors and store the result to the third element in
the destination vector, set flags to F416.

A transpose macro is available to transpose 4×4 matrices represented by four vec-
tors of packed floats. The transpose macro expands into several assembler instructions
that perform the in-place matrix transpose.

Individual elements in a vector can be compared to another vector using compare
intrinsics. These operations compare two vectors; if the comparison is true for an
element, that element is set to all binary 1 and 0 otherwise. Only two compare instruc-
tions, equality and greater than, working on integers are provided by the hardware. The
less than operation is synthesized by swapping the operands and using the greater than
comparison. See Listing 3 for an example of how to use the SSE compare instructions.

2.4 Bitwise operations

Bitwise SSE operations behave exactly like their non-SSE counter parts, the only dif-
ference is the size of the operands. All operations work on the entire register. Note that
there is a different set of operations for integers and floating point types, even though

4

Intrinsic Operation
_mm_add_<type>(a, b) ci = ai +bi

_mm_sub_<type>(a, b) ci = ai +bi

_mm_mul_(ps|pd)(a, b) ci = ai bi

_mm_div_(ps|pd)(a, b) ci = ai /bi

_mm_hadd_(ps|pd)(a, b) Performs a horizontal add, see Figure 1
_mm_dp_(ps|pd)(a, b, FLAGS) c = a ·b (dot product)
_MM_TRANSPOSE4_PS(a, ..., d) Transpose the matrix (at . . .d t) in place
_mm_cmpeq_<type>(a, b) Set ci to −1 if ai = bi , 0 otherwise
_mm_cmpgt_<type>(a, b) Set ci to −1 if ai > bi , 0 otherwise
_mm_cmplt_<type>(a, b) Set ci to −1 if ai < bi , 0 otherwise

Table 4: Arithmetic operations available in SSE. The transpose operation is a macro
that expands to several SSE instructions to efficiently transpose a matrix.

Figure 1: Calculating c = _mm_hadd_ps(a, b)

+ + + +

Input vectors

Output vector

a0 a1 a2 b2b1b0

c1c0

b3a3

c3c2

Listing 2: Summarize the elements of four vectors and store each vectors sum as one
element in a destination vector

i n c l u d e < pmmin t r in . h>

s t a t i c __m128
vec_sum (c o n s t __m128 v0 , c o n s t __m128 v1 ,

c o n s t __m128 v2 , c o n s t __m128 v3)
{

re turn _mm_hadd_ps (
_mm_hadd_ps (v0 , v1) ,
_mm_hadd_ps (v2 , v3)) ;

}

5

Intrinsic Operation (per bit) Assembler
_mm_and_si128(a, b) c = a ∧b PAND
_mm_andnot_si128(a, b) c =¬a ∧b PANDA
_mm_or_si128(a, b) c = a ∨b POR
_mm_xor_si128(a, b) c = a ⊕b PXOR
_mm_and_(ps|pd)(a, b) c = a ∧b AND(PS|PD)
_mm_andnot_(ps|pd)(a, b) c =¬a ∧b ANDN(PS|PD)
_mm_or_(ps|pd)(a, b) c = a ∨b OR(PS|PD)
_mm_xor_(ps|pd)(a, b) c = a ⊕b XOR(PS|PD)

Table 5: Bitwise operations available in SSE. All operations are performed bitwise on
entire 128-bit vector registers.

Intrinsic Operation
_mm_set_<type>(p0, ..., pn) ci = pi

_mm_setzero_(ps|pd|si128)() ci = 0
_mm_set1_<type>(a) ci = a
_mm_cvtss_f32(a) Extract the first float from a
_mm_cvtsd_f64(a) Extract the first double from a

Table 6: Miscellaneous operations. Most of the operations expand into multiple as-
sembler instructions.

the instructions are functionally identical. The CPU uses the information about the data
type to eliminate a potential stall due to data dependencies in the vector pipelines.

2.5 Loading constants and extracting elements

There are several intrinsics for loading constants into SSE registers. The most general
can be used to specify the value of each element in a vector. In general, try to use
the most specific intrinsic for your needs. For example, to load 0 into all elements in
a vector, _mm_set_epi64, _mm_set1_epi64 or _mm_setzero_si128 could
be used. The two first will generate a number of instructions to load 0 into the two
64-bit integer positions in the vector. The _mm_setzero_si128 intrinsic uses a
shortcut and emits a PXOR instruction to generate a register with all bits set to 0.

There are a couple of intrinsics to extract the first element from a vector. They can
be useful to extract results from reductions and similar operations.

2.6 Data alignment

Aligned memory accesses are usually required to get the best possible performance.
There are several ways to allocate aligned memory. One would be to use the POSIX
API, but posix_memalign has an awkward syntax and is unavailable on many plat-
forms. A more convenient way is to use the intrinsics in Table 7. Remember that data
allocated using _mm_malloc must be freed using _mm_free.

It is also possible to request a specific alignment of static data allocations. The
preferred way to do this is using GCC attributes, which is also supported by the Intel
compiler. See Listing 4 for an example.

6

Listing 3: Transform an array of 16-bit integers using a threshold function. Values
larger than the threshold (4242) are set to FFFF16 and values smaller than the threshold
are set to 0

i n c l u d e < s t d i n t . h>
i n c l u d e < pmmin t r in . h>

s t a t i c vo id
t h r e s h o l d (u i n t 1 6 _ t * d s t , c o n s t u i n t 1 6 _ t * s r c , s i z e _ t l e n)
{

c o n s t __m128i t = _mm_set1_epi16 (4 2 4 2) ;
f o r (i n t i = 0 ; i < l e n ; i += 8) {

c o n s t __m128i v = _mm_loadu_si128 ((__m128i *) (s r c + i)) ;
_mm_storeu_s i128 ((__m128i *) (d s t + i) ,

_mm_cmpgt_epi16 (v , t)) ;
}

}

Intrinsic Operation
_mm_malloc(s, a) Allocate sB of memory with aB alignment
_mm_free(*p) Free data previously allocated by _mm_malloc(s, a)

Table 7: Memory allocation

Listing 4: Aligning static data using attributes

f l o a t foo [SIZE] _ _ a t t r i b u t e _ _ ((a l i g n e d (1 6))) ;

7

3 Lab Environment
You can either use the IT department’s Linux servers or Uppmax (Kalkyl cluster4).

3.1 IT Department’s Linux Servers
To login, connect with SSH to tussilago.it.uu.se or vitsippa.it.uu.se, e.g. using:

host$ ssh -Y user-name@tussilago.it.uu.se.

or use
host$ linuxlogin.

You should now be connected to one of the linux servers. Several users might use the
same server at the same time. If you get non-intuitive results. Check that no one else
is stressing the system.

3.2 Using Uppmax
To login on the cluster, connect with SSH to kalkyl.uppmax.uu.se, e.g. using:
host$ ssh -Y user-name@kalkyl.uppmax.uu.se.

You are now connected to one of the login nodes of the cluster. These nodes are
only used to test code and submit jobs to the cluster.

Before you start working on the assignment, you need to load the GCC module to
ensure that you have a recent GCC version:
host$ module load gcc

Download the source files from the course homepage.
You should develop and test your solutions on the login node. However, you should

run your performance experiments in the cluster. The easiest way to do this is to sched-
ule an interactive shell with a short run time. Use the following command:
host$ interactive -A g2012170 -p node -n 1 -t 15:00

The commands above allocates an entire node for 15 minutes. Restricting the run-
time to 15 minutes or less allows the job to be enqueued in a special high-priority queue
for short jobs. The interactive command automatically requests the high prior-
ity queue if possible. If you need to run a longer job, simply increase the estimated
runtime.

4 The code framework
Makefile Automates the compilation. You can use make clean to remove automat-

ically generated files from the working directory.

lcase.c Skeleton code for the text conversion part of the assignment. Contains a testing
and timing harness that tests that your vectorized version is correct and computes
the speedup compared to the serial reference version.

matmul.c Skeleton code for multiplying matrices. Also contains reference code for
testing and timing.

4http://www.uppmax.uu.se/systems/kalkyl

8

http://www.uppmax.uu.se/systems/kalkyl
http://www.uppmax.uu.se/systems/kalkyl

Listing 5: Conditional lower case conversion algorithm

s t a t i c vo id
l c a s e _ s i m p l e (char * d s t , c o n s t char * s r c , s i z e _ t l e n)
{

c o n s t char * c u r = s r c ;
whi le (c u r != s r c + l e n)

* (d s t ++) = *(c u r ++) | 0x20 ;
}

matvec.c Skeleton code for multiplying a matrix and a vector. Also contains reference
code for testing and timing.

util.(c|h) Utility functions for printing vectors and measuring time. See the header file
for more information.

5 Converting text into lower-case
We will assume that all characters we need to handle can be represented in the ASCII5

character set. This means that we only care about A through Z and disregard silly
inventions like umlauts.

It turns out that the ASCII character set is ordered so that the case of a character
is determined by one bit. To convert a character into lower-case, simply logically OR
it with 2016. Listing 5 shows how this is done in plain C. Converting this code into
SSE is fairly straight forward, just unroll the loop 16-times (SSE registers are 128 bits,
which means that they can hold 16-bytes) and replace the serial operations with SIMD
operations. There are, however, a few gotchas. Depending on what kind of memory
access you use, you may have to make sure that data is aligned. You also have to make
sure that data sizes that are not even multiples of the SIMD register length are correctly
handled.

In order to preserve symbols that are not letters, we need to check that the character
code is within the range of the upper-case letters (4116–5A16), this can easily be ac-
complished in C by the code in Listing 6. Converting this into SIMD is not as straight
forward as converting the code in Listing 5. The intuitive way to handle conditionals
in serial code is to change the control flow, this is usually undesirable in SIMD code.
Instead, you have to resort to bit manipulation.

Imagine that you have a function, cmpgt(a, b), that evaluates the expression
a > b and returns a bit pattern that is all ones if the result is true and zero otherwise.
This would allow us to remove the conditions in the control flow and replace it with a
logical expression. The result of this transformation is shown in Listing 7.

5.1 Tasks
1. Implement the simple algorithm in the function lcase_sse_simple() using

SSE. Test that your implementation is correct by running lcase_MOVDQU.

2. Implement the full algorithm using SSE in lcase_sse_cond(). Test that
your implementation is correct by running lcase_MOVDQU.

5http://en.wikipedia.org/wiki/ASCII

9

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII

Listing 6: Conditional lower case conversion algorithm

s t a t i c vo id
l c a s e _ c o n d (char * d s t , c o n s t char * s r c , s i z e _ t l e n)
{

c o n s t char * c u r = s r c ;
whi le (c u r != s r c + l e n) {

c o n s t char c = *(c u r + +) ;
* (d s t ++) = (c >= ’A’ && c <= ’Z ’) ?

c | 0x20 : c ;
}

}

Listing 7: Conditional lower case conversion using bit manipulation

s t a t i c vo id
l c a s e _ c o n d 2 (char * d s t , c o n s t char * s r c , s i z e _ t l e n)
{

c o n s t char * c u r = s r c ;
whi le (c u r != s r c + l e n) {

c o n s t char c = *(c u r + +) ;
* (d s t ++) = c | (cmpgt (c , ’A’ − 1)

& cmpgt (’Z ’ + 1 , c)
& 0x20) ;

}
}

10

Listing 8: Simple matrix-vector multiplication

s t a t i c vo id
matvec_s imp le (s i z e _ t n , double vec_c [n] ,

c o n s t double mat_a [n] [n] , c o n s t double vec_b [n])
{

f o r (i n t i = 0 ; i < n ; i ++)
f o r (i n t j = 0 ; j < n ; j ++)

vec_c [i] += mat_a [i] [j] * vec_b [j] ;
}

Listing 9: Matrix-vector multiplication, unrolled four times

s t a t i c vo id
m a t v e c _ u n r o l l e d (s i z e _ t n , double vec_c [n] ,

c o n s t double mat_a [n] [n] , c o n s t double vec_b [n])
{

f o r (i n t i = 0 ; i < n ; i ++)
f o r (i n t j = 0 ; j < n ; j += 4)

vec_c [i] += mat_a [i] [j + 0] * vec_b [j + 0]
+ mat_a [i] [j + 1] * vec_b [j + 1]
+ mat_a [i] [j + 2] * vec_b [j + 2]
+ mat_a [i] [j + 3] * vec_b [j + 3] ;

}

3. Run lcase_MOVDQU. Why is the SIMD version faster than the reference ver-
sion?

4. Compare the performance of lcase_MOVDQU, lcase_MOVDQA and lcase_
MOVNTDQ. Explain the differences in performance.

6 Multiplying a matrix and a vector

Multiplying a matrix and a vector can be accomplished by the code in Listing 8, this
should be familiar if you have taken a linear algebra course. The first step in vectorizing
this code is to unroll it four times. Since we are working on 32-bit floating point ele-
ments, this allows us to process 4 elements in parallel using the 128-bit SIMD registers
in x86. The unrolled code is shown in Listing 9.

6.1 Tasks

1. Implement your version of the matrix-vector multiplication in the matvec_sse()
function. Run your code and make sure that it produces the correct result. Is it
faster than the traditional serial version?

2. Can you think of any optimizations that may make this code faster? You don’t
need to implement them.

11

Listing 10: Matrix-matrix multiplication

s t a t i c vo id
matmat (s i z e _ t n , double mat_c [n] [n] ,

c o n s t double mat_a [n] [n] , c o n s t double mat_b [n] [n])
{

f o r (i n t i = 0 ; i < n ; i ++) {
f o r (i n t k = 0 ; k < n ; k ++) {

f o r (i n t j = 0 ; j < n ; j ++) {
mat_c [i] [j] += mat_a [i] [k] * mat_b [k] [j] ;

}
}

}
}

7 Matrix-matrix multiplication
The simplest way to multiply two matrices is to use the algorithm in Listing 10. Again,
the first step in converting this algorithm to SSE is to unroll some of the loops. The
simplest vectorization of this code is to unroll the inner loop 4 times, remember that
we can fit four single precision floating point numbers in a vector, and use vector in-
structions to compute the results of the inner loop.

7.1 Tasks
1. Implement a vectorized version of Listing 10 in the matmul_sse() function

that belongs to the SSE mode. (Search for the TASK: comment). Run your
solution to check that it is correct and measure its speedup compared to the serial
version. What is the speedup?

2. Bonus: Finish the blocked version of the matrix multiplication by implementing
an efficient vectorized version of matmul_block_sse(). Run your solution
to check that it is correct and measure its speedup compared to the serial version.
What is the speedup?

12

	Introduction
	Introduction to SSE
	Using SSE in C-code
	Loads and stores
	Arithmetic operations
	Bitwise operations
	Loading constants and extracting elements
	Data alignment

	Lab Environment
	IT Department's Linux Servers
	Using Uppmax

	The code framework
	Converting text into lower-case
	Tasks

	Multiplying a matrix and a vector
	Tasks

	Matrix-matrix multiplication
	Tasks

