

Lab 4 - SIMD

Moncef Mechri
<moncef.mechri@it.uu.se>

Room 1258, mailbox 42

mailto:moncef.mechri@it.uu.se

Flynn's taxonomy

● SISD: Single Instruction Single Data
● SIMD: Single Instruction Multiple Data
● MISD: Multiple Instruction Single Data
● MIMD: Multiple Instruction Multiple Data

SIMD

● In scalar code, instructions operate on one
datum

● In vector code, instructions operate on multiple
data (using vector instructions and registers)

D
at

a
Po

ol

Instruction Pool

PU

PU

PU

PU

SIMD

SIMD implementations

● Most modern processors support vector
instructions:
– X86: SSE, AVX, …

– PowerPC: Altivec

– ARM: Neon

Why?

● Vector instructions allow fast implementations
of some algorithms, such as:
– Image and video algorithms (filters, codecs, …)

– Cryptography

– String manipulation

Disadvantages

● Some problems are hard/impossible to
vectorize

● Hard to program and debug (as you will see
soon enough...)

● Architecture and processor dependent

Streaming SIMD Extensions

● Set of vector instructions and registers
available on “recent” x86 processors
– Several versions: SSE, SSE2, SSE3, Supplemental

SSE3 (SSSE3), SSE4, …

● Note: ALL x86_64 processors support at least
SSE2

Streaming SIMD Extensions

● 128bits vector registers (also called “XMM
registers”)

● ...as well as instructions to operate on them

Using SSE

● Several ways:
– Compilers can (try to) do it for you, or

– Use assembly SSE instructions directly, or

– Use the “wrappers” provided by the compiler
(“intrinsics”)

Compiler intrinsics

● Different vector types:
– __m128i (integral types)

– __m128 (single precision floats)

– __m128d (double precision floats)

● SSE instructions wrappers.
– Format: _mm_<op>_<type>

– Example:

_mm_add_ps(__m128 a, __m128 b)

Compiler intrinsics

● Include the necessary headers (Example:
<emmintrin.h> for SSE2)

● And the necessary compiler flags (Example:
-msse2 for SSE2)

Load, set & store operations

● SSE programming requires explicit loads and
stores
– Use intrinsics to load/store 128 bits at once.

Example:

_mm_loadu_si128();

_mm_store_pd();

● Beware the data alignment!

Load, set & store operations

● Set operations: Used to load a value into a
XMM register. Example:

_mm_set1_epi32(10);

→ Load the constant '10' four times in a vector
register

Load, set & store operations

● 3 classes of load & store operations
– Unaligned: No alignment requirement, but slower

– Aligned: Faster, but requires 16-byte alignment

– Streaming: Avoir cache pollution. Requires 16-byte
alignment

● Runtime error if alignment not respected
● Note: Streaming load requires SSE4

Data alignment

● Dynamic allocation:
– _mm_malloc()/_mm_free() (Compiler intrinsics)

– posix_memalign() (POSIX only)

– aligned_alloc() (introduced in C11)

● Static allocation: Compiler attributes

Loop unrolling

● First step to vectorize a loop

● Type int is 32-bits. XMM registers are 128-bits
wide

→ each XMM registers will hold 4 int's
→ Each loop iteration will operate on 4 int's at a time

● Question: What about char's? Double's?

Loop unrolling

int array[4096];

for (int I = 0; I < 4096; ++i)

array[i] = 10;

Becomes...
for (int I = 0; I < 4096; I += 4)

{

array[i] = 10;

array[i + 1] = 10;

array[i + 2] = 10;

array[i + 3] = 10;

}

Demo

● Add 42 to every element in an int array

● Works as follow:
– Load the constant '42' four times in a XMM register

– Unroll the loop four times
● For each iteration:

– Load 128 bits from the array in a XMM register
– Perform 4 additions at a time
– Store the result back into the array

Your tasks

● You will implement with SSE:
– Convert a string to lower case

– Matrix-vector multiplication

– Matrix-matrix multiplication

● Bonus: Blocked matrix-matrix multiplication

Schedule

● Monday 18 November 13:00 ~ 17:00 - Lab4
preparation slot - room 1412

● Wednesday 20 November 8:00 ~ 12:00 - Lab4
Group A - room 1412

● Thursday 21 November 8:00 ~ 12:00 - Lab4
Group B - room 1412

● Friday 22 November 13:00 ~ 17:00 - Lab4
Group C - room 1412

Good luck!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

