

M. DURANTON, **D. BLACK-SHAFFER**, S. YEHIA, K. DE BOSSCHERE

http://www.hipeac.net/roadmap

Part of the HiPEAC roadmap is required reading for AVDARK

You will find it and other required reading in the "Extra course papers" directory.

As specified in the "Reading instructions":

- page 2-33 are required reading
- page 34-40 read-through (RT)

http://www.hipeac.net/roadmap

(These slides are a shortend and modified version of the official HiPEAC presentation)

Trends influencing Computing Systems

Application Pull	Business Trends
 Data Deluge Intelligent Processing Ubiquitous Communication 	 Convergence Specialization Post-PC Devices

Data Deluge

Growth of data storage in Exabytes

Intelligent processing of "natural" data

More and more applications are not only "number crunching"

the top of the figure, Computer Vision is classified as Recognition, Data Mining is Mining, and Rendering, Physical Simulation, and Financial Analytics are Synthesis. [Chen 2006]

Source: "The Landscape of Parallel Computing Research: A View from Berkeley" Krste Asanovic et all.

HPEAT

Ubiquitous computing in a connected world

Trends influencing Computing Systems

Application Pull	Business Trends
 Data Deluge Intelligent Processing Ubiquitous Communication 	 Convergence/standards Specialization Post-PC Devices

MacBook image © Jared C. Benedict Phone, TV images © LG Electronics

Hipea

Hipead

Post-PC devices

Ubiquitous access

iPad image © Apple, Inc MP3 player image © J A S P E R@flickr | iPhone image © K!T@flickr

PC Market

Western Europe: PC Vendor Unit Shipment Estimates for 2Q11 (Thousands of Units)

Vendor	2Q11 Shipments	2Q11 Market Share (%)	2Q10 Shipments	2Q10 Market Share (%)	2Q11-2Q10 Growth (%)
HP	3,171	25.1	3,376	21.6	-6.1
Acer Group	2,046	16.2	3,696	23.7	-44.6
Dell	1,371	10.8	1,571	10.1	-12.7
Asus	1,021	8.1	1,324	8.5	-22.9
Apple	879	7.0	875	5.6	0.5
Others	4161	32.8	4751	30.5	-12.4
Total	12,649	100	15,593	100	-18.9

Note: Data includes desk-based PCs and mobile PCs. Media tablets are excluded. Source: Gartner (August 2011) (from http://www.gartner.com/it/page.jsp?id=1769215)

Computing Systems: Drivers

Technological trends influencing Computing Systems

Constraints	Opportunities
 Frequency Limits Power Limits Dark Silicon 	 CMOS Phonotic Non-volatile memories 3D Stacking New paradigms

Technological constraints We are at a turning point

Moore's law: increase in transistor density

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanovic,

Limited frequency increase \Rightarrow more cores

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanovic,

Limitation by power density and dissipation

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanovic,

Dark Silicon

Source: Krisztián Flautner "From niche to mainstream:can critical systems make the transition?"

Specialization leads to more efficiency

GPU 200pJ/Instruction

Optimized for Throughput Explicit Management of On-chip Memory

Optimized for Latency Caches

Source: Bill Dally, « To ExaScale and Beyond »

www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf

Technological consequences

Efficiency \rightarrow locality

Frequency limit → parallelism Energy efficiency → specialization

Ease of programming

Technological trends influencing Computing Systems

Constraints	Opportunities
 Frequency Limits Power Limits Dark Silicon 	 CMOS Phonotic Non-volatile memories 3D Stacking New paradigms

Optical interconnects

CMOS photonic is the integration of a photonic layer with an electronic

circuit.

Advantages of CMOS photonic are:

- Use of standard tools and foundry, wafer scale co-integration
- Lower energy (~100 fJ/bit), (wire: ~1 pJ/mm)
- High bandwidth (10 Gbps), Low latency (~10 ps/mm)

Non-volatile memories....

Example: Memristive Devices Principle

3D stacking

Multiple integration with 3D stacking...

Source: STMicroelectronics & CEA 26

٠

Technology also drives us to think differently...

• Also silicon based!

Core Computing Systems Challenges

Efficiency	Complexity	Dependability
 Power Performance	ParallelismHeterogeneity	ReliabilityPrivacy

Improving efficiency

- Power defines performance
- Heterogeneity and accelerators to the rescue
- More specialized hardware

Managing complexity

- The reign of legacy code
- Parallelism seems to be too complex for humans
- Hardware complexity

(4G is 500x more complex than 2G)

Improving dependability

- Worst case design is not an option anymore
- Systems must be built from unreliable components
- Safety and security!

Cost-effective software for heterogeneous multicores

Frequency limit → parallelism Energy efficiency → heterogeneity

Ease of programming

