
Multiprocessors and
Coherent Memory

Erik Hagersten
Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 2

AVDARK
2013

Programming Model:
Coherent shared memory

Shared Memory

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Thread
PC

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 3

AVDARK
2013

Automatic Replication of Data

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…

B:

Read B
…
Read A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 4

AVDARK
2013

The Cache Coherent Memory System
Coherent Write (Here: Write invalidate)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

INV INV

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 5

AVDARK
2013

The Cache Coherent Memory System
Coherent Read & Write-back
(Here: Cache to Cache Transfer)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A

B:

Read B
…
Read A
…
Replace B

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 6

AVDARK
2013

The Cache Coherent Memory System
Coherent Read & Write-back
(Here: Write Back)

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A
...

Replace A

B:

Read B
…
Read A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 7

AVDARK
2013

Summing up Coherence

There can be many copies of a
datum, but only one value
There is a single global order of
value changes to each datum

Thread1={1,2,3,4,5,6,7…} Thread2={1,4,7…} Thread3={1,8,7…}

After the computer stops, all
copies should have the same value

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 8

AVDARK
2013

Shared Memory

Snoop-based Protocol Implementation

A-tag State Data

CPU access

BUS snoop

CPU

”BUS”

Cache

Bus
transaction

BUS snoop

A-tag State

CPU access

BUS snoop

CPU

BUS snoop

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 9

AVDARK
2013

BUS TRANSACTIONS FROM OTHERS:

BUSrts ReadtoShare. Reading the data

BUSrtw: ReadToWrite. Reading the data
with the intention to modify it right away

BUSinv: Invalidating other caches copies

BUSwb: Writing data back to memory

Example: MOSI Bus Snoop

I

M O

S

BUSrtw BUSinv

BUSrtw/Data
BUSinv

BUSrts/Data

BUSrtw/Data

BUSrts
BUSwb

BUSrts/Data

BUSrts
BUSrtw
BUSinv
BUSwb

STATES:
M – Modified: My dirty* copy is
the only cached copy
S – Shared: I have a clean copy,
others may also have a copy
O – Owner: I have a dirty copy,
others may also have a copy
I – Invalid: I have no valid copy in
my cache (including cache miss)

Input-signal/Reply-signal
Meaning: If you are in state M
and see BUSrts, goto state O
and reply with Data

*Dirty: my value differs from the old
value in mem

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 10

AVDARK
2013

CPU access

Shared Memory

Snoop-based Protocol Implementation

A-tag State Data

CPU access

BUS snoop

CPU

BUS

Cache

Bus
transaction

CPU access

A-tag State D

CPU access

BUS snoop

CPU

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 11

AVDARK
2013

Example: CPU access MOSI

I

M O

S CPUread/BUSrts

CPUrepl/-

CPUrepl/BUSwb

CPUwrite/BUSinv

CPUwrite/BUSinv
CPUrepl/
BUSwb

CPUwrite/
BUSrtw

CPUread/-

CPUread/-
CPUread/-
CPUwrite/

FROM MY CPU:

CPUread Caused by a Load instruction

CPUwrite: Caused by a Store or Atomic instruction

CPUrepl: Caused by a replacement of this cachline (caused by murphy)

STATES:
M – Modified: My dirty* copy is
the only cached copy
S – Shared: I have a clean copy,
others may also have a copy
O – Owner: I have a dirty copy,
others may also have a copy
I – Invalid: I have no valid copy in
my cache (may be a cache miss)

Input-signal/Reply-signal
Meaning: If you are in state I
and see CPUread, send a
BUSrts and goto S

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 12

AVDARK
2013

”Upgrade” in snoop-based

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

BUSinv

Have to
INV

Have to
INV

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 13

AVDARK
2013

More Cache Lingo
 Capacity miss – too small cache
 Conflict miss – limited associativity
 Compulsory miss – accessing data the first time
 Coherence miss – The cache would have had the

data unless it had been invalidated by someone else
 Upgrade miss: (only for writes) – The cache would

have had a writable copy, but answered a read
request and “downgraded” itself to read-only state

 False sharing: Coherence/downgrade is caused by a
shared cacheline and not by shared data:

Read A
…
Write A
…
Read A

...
Read D
…
Write D

A, B, C, D
cacheline:False sharing

example:

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 14

AVDARK
2013

All the three RISC CPUs in a MOSI shared-memory (sequentially consistent) multiprocessor
executes the following code almost at the same time:

while(A != my_id){}; /* this is a primitive kind of lock */
B = B + A;
A = A + 1; /* this is a primitive kind of unlock */
while (A != 4) {}; /* this is a primitive kind of barrier sync */
<after a long time>
<some other execution replaces A and B from the caches, if still
present>

Initially, CPU1 has its local variable my_id=1, CPU has my_id=2 and CPU3 has my_id=3 and the globally
shared variables A is equal to 1 and B is equal to 0.
Assume that CPU3, 2 and 1 first make one memory reference (i.e, a load or a store) each and then repeats that interleaving.

The following four bus transaction types can be seen on the snooping bus connecting the CPUs:
• RTS: ReadtoShare (reading the data with the intention to read it)
• RTW, ReadToWrite (reading the data with the intention to modify it)
• WB: Writing data back to memory
• INV: Invalidating other caches copies

Show every state change and/or value change of A and B in each CPU’s cache according to one possible interleaving of the
memory accesses. After the parallel execution is done for all of the CPUs, the cache lines still in the caches will be
replaced. These actions should also be shown. For each line, also state what bus transaction occurs on the bus (if any) as
well as which device is providing the corresponding data (if any).

Example in Class:

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 15

AVDARK
2013

CPU action
Bus
Transactio
n (if any)

State/value after the CPU action Data is provided by
[Cache 1, 2, 3 or
Mem]
(if any)

CPU1
A B

CPU2
A B

CPU3
A B

Initially I I I I I I

CPU3: LD A RTS(A) Mem

CPU2: LD A

CPU1: LD A RTS(A)

RTS(A) Mem

.

Example of a state transition sheet:

S/1

S/1

S/1

CPU3: LDA __

Mem

__

What are Memory Models?

Erik Hagersten
Uppsala University

Sweden

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 17

AVDARK
2013

Where Memory Models Matters
 Flag synchronization

(initially flag = 0 and A = 0)

... ...
A = 1; while (flag != 1) {};
flag = 1; X = A;

print(X);

 Causality (Causal correctness)

…
A = 1;
…

…
...
while (A==0) {};
B = 1;

Read A
…
…
…
while (B==0) {};
X = A;
print (X);

(Initially A = 0 and B = 0)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 18

AVDARK
2013

Dekker’s Algorithm (mutual exclusion)

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0) print(“B won”)

Initially A = B = 0

“fork”

Does the write
become globally
visible
before
the read is
performed?

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 19

AVDARK
2013

“The intuitive memory order”
Sequential Consistency (Lamport)

 Global order achieved by interleaving all memory
accesses from different threads

 SW should not be able to detect contradictive orders
 “Programmer’s intuition is maintained”
 Unnecessarily restrictive ==> performance penalty

ThreadThreadThreadThreadThreadThreadT Thread

Shared Memory

loads, stores
Shared Memory

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 20

AVDARK
2013

“Almost intuitive memory model”
Total Store Ordering [TSO] (P. Sindhu)

 Global interleaving [order] for all stores from different
threads (own stores excepted)

 “Programmer’s intuition is almost maintained”
 Flag synchronization? Yes
 Store causality? Yes
 Does Dekker work? No

 Unnecessarily restrictive ==> performance penalty

ThreadThreadThreadThreadThreadThreadT Thread

Shared MemoryShared Memory

stores Loads(each thread can have
at most one outstanding load)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 21

AVDARK
2013

TSO HW Model

CPU

Store
Buffer

Stores loads

=
=
=
=
=

CPU

Store
Buffer

Stores loads

=
=
=
=
=

inv

Stores are moved off the critical path
Coherence implementation can be the same as for SC

Shared Memory

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 22

AVDARK
2013

Dekker’s Algorithm for TSO

A := 1
Memory barrier
if (B== 0) print(“A won”)

B := 1
Memory barrier
if (A == 0) print(“B won”)

Initially A = B = 0

“fork”

It depends on the memory model ed!

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 23

AVDARK
2013

Weak/release Consistency
(M. Dubois, K. Gharachorloo)

 Most accesses are unordered
 “Programmer’s intuition is not maintained”

 Flag synchronization? No
 Causal correctness? No
 Dekker? No

 Global order only established when the
programmer explicitly inserts memory barrier
instructions

++ Better performance!!
-- Interesting bugs!!

ThreadThreadThreadThread

Shared Memory

loads
stores

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 24

AVDARK
2013

Weak/Release consistency
 New flag synchronization needed

A := data; while (flag != 1) {};
membarrier; membarrier;
flag := 1; X := A;

 Dekker’s: same as TSO
 Causal correctness provided for this code

…
A:=1
…

…
...
While (A==0) {}
membarrier
B := 1

Read A
…
…
…
While (B==0) {}
membarrier
Print A

Initially A = B = 0

Synchronization

Erik Hagersten
Uppsala University

Sweden

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 26

AVDARK
2013

Need to introduce synchronization

 Locking primitives are needed to ensure that only
one process can be in the critical section:

Critical Section

LOCK(lock_variable) /* wait for your turn */

if (sum > threshold) {
sum := my_sum + sum

}
UNLOCK(lock_variable) /* release the lock*/

if (sum > threshold) {
LOCK(lock_variable) /* wait for your turn */

sum := my_sum + sum
UNLOCK(lock_variable) /* release the lock*/

}

Critical Section

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 27

AVDARK
2013

Components of a Synchronization Event

 Acquire method
 Acquire right to the synchronization (enter critical

section, go past sync event)
 Waiting algorithm

 Wait for synch to become available when it isn’t
 Release method

 Enable other processors to acquire right to the synch

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 28

AVDARK
2013

A Bad Example: ”POUNDING”

proc lock(lock_variable) {
while (TAS[lock_variable]==1) {} /* pound on the lock until free */

}

proc unlock(lock_variable) {
lock_variable := 0

}

Assume: The function TAS[addr] returns the current memory value at
addr and atomically writes the busy pattern “1” to the memory

Spinning threads produce traffic!

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 29

AVDARK
2013

Optimistic Test&Set Lock ”spinlock”

proc lock(lock_variable) {
while true {

if (TAS[lock_variable] ==0) break; /* pound on the lock once, done if TAS==0 */
while(lock_variable != 0) {} /* spin locally in your cache until ”0” observed*/

}
}

proc unlock(lock_variable) {
lock_variable := 0

}

Much less coherence traffic!!
-- still lots of traffic at lock handover!

More on this during Scalable Synchronization

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 30

AVDARK
2013

Pesimistic Test&Set Lock ”spinlock”

proc lock(lock_variable) {
while true {

while(lock_variable != 0) {} /* spin locally in your cache until ”0” observed*/
if (TAS[lock_variable] ==0) break; /* pound on the lock once, done if TAS==0

}
}

proc unlock(lock_variable) {
lock_variable := 0

}

Slightly less traffic than Optimistic for contended locks
-- still lots of traffic at lock handover!

More solutions during Scalable Shared Memory

Barrier Synchronization
Erik Hagersten

Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 32

AVDARK
2013

Barrier Synchronization

C
R …C

R
C
R

C
R

C
R

Barrier() /*wait for the others */

”New phase” of computation.
Need all threds to be done with the previous phase

barrier() barrier() barrier() barrier()

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 33

AVDARK
2013

A Naiive Centralized Barrier

BARRIER (bar_name, p) {

LOCK(bar_name.lock) {
if (bar_name.ctr == p) bar_name.ctr = 0; /* init count*/
bar_name.ctr++; /* globally increment the barrier count */

}
UNLOCK(bar_name.lock)

while (bar_name.ctr < p) {}; /* wait for the last thread */

}

Transactional Memory
Erik Hagersten

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 35

AVDARK
2013

lock(L);
C = B + 1;
A = A + 1;
unlock(L);

start_transaction();
C = B + 1;
A = A + 1;
end_transaction();

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 36

AVDARK
2013

New kind of synchronization:
Transactional Memory (TM)

 Traditional critical section: lock(ID); unlock(ID)
around critical sections

 TM: start_transaction; end_transaction around
”critical sections” (note: no ID!!)
 Underlying mechanism to guarantee atomic behavior by

rollback mechanisms
 This is not the same as guaranteeing that only one thread is

in the critical action!!
 Suggested by Maurice Herlihy in 1993
 Supported in HW (recent) or in SW (normally very

inefficient)

start_transaction();
C = B + 1;
A = A + 1;
end_transaction();

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 37

AVDARK
2013

Support for TM
 Start_transaction:

 Save original state to allow for rollback (i.e., save register
values)

 In critical section
 Make no global state changes [to memory]
 Detect ”atomic violations” (others writing data are reading in

CS or reading data you are writing in CS)
 On atomic violation: roll-back to original state
 Forward progress must be guaranteed

 End_transaction
 Atomically commit all global state changes performed in the

critical section.

start_transaction();
C = B + 1;
A = A + 1;
end_transaction();

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 38

AVDARK
2013

Advantage of TM
 Do not have to ”name” CS
 Less risk for deadlocks (e.g., nested locks)
 Potential performance advantage:

 Several thread can be in ”the same” CS as long as
they do not mess with each other

 CS can often be large with a potentially small
performance penalty

 Performance problems with large ”commit
state” and rollback overhead

start_transaction();
C = B + 1;
A = A + 1;
end_transaction();

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~ehMP 39

AVDARK
2013

TM Implementations
 Many suggestion for software TM (STM)
 Implemented in Sun’s Rock SPARC (RIP)
 Support for small transactions in AMD x86
 Decent support in IBM’s BlueGene-Q
 Better support in Power6
 Support in Haswell (latest Intel x86)
 The jury is still out…

