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Fig. 1. Pen-drop example

I. PROBABILITY MEASURE

Given a sample space 2, the probability measure Pr satisfies
the following Komogorov axioms:

1) Pr(B) > 0 for event B € Q.

2) Pr(Q) = 1.

3) >, Pr(&) = Pr(l; &) for any sequence Ei, Ey,--- C
Q of disjoint events, i.e. E; N E; = 0.

Example 1 (Pen-drop) A pen is dropped on the ground. The
angle 6 it points to with respect to the North direction is from
the sample space Q2 = (0, 27] as shown in Fig. 1. You receive
a reward of

0
X(0) = — 0e)
(0) =5 €
Every angle is assumed to be equally likely. O

Some questions of interest are:

1) How much do you earn on average?
i.e. the expectation E[X].

2) What is the chance that you earn more than average?
ie. Pr{X > E[X]}.

3) What is the variance?
i.e. Var[X] = E[X?] — E[X]2

X is a random variable that maps 2 to the unit interval

(0, 1]. The probability mass function (PMF) is defined as

P(a) :=Pr{X=a}

By the uniformity assumption that all angles are equally likely,
we have Px(a) = p > 0 independent of « € (0, 1].

Claim 1 Pr{X = «a} =0 for all a € (0,1] O

PROOF Suppose to the contrary that Pr{X = a} = p > 0.
Choose a positive integer k sufficiently large such that kp > 1.
An possible choice is k = [% + 1]. Choose a finite set A :=
{a1,0as,...,a4} of distinct values from (0, 1]. Then,

k
Pr{Xe A} => Pr{X=qa;} =kp> 1.

=1

We have the desired contradiction since
Pr{Xe A} =1-Pr{X g A} <1.

The first equality follows from the first and third axioms, while
the second inequality follows from the second axiom. ™

Can we compute the expectation using the following for-
mula?

EX= > aR@). (1)
a€(0,1] -0

Is the sum equal to 0? The answers are no, because the sum
is over an uncountably infinite set, and is therefore not well-
defined. The following false claim has the same issue.

Claim 2 (False) The pen never drops to any angle. i.e. it
stands up vertically, perpendicular to the ground. O

PROOF (FALSE) Since Pr(f) = 0 for any 8 € Q, it is
impossible that the pen drops to any angle. i.e.

Pr{0} + Zw@Pr{Q} =1

0e0 7

where the first and second equalities are by the third and the
second axioms respectively. It follows that Pr{(}} = 1, and so
the pen does not drop to any angle. ™

What is wrong in the above proof is the equality (*). The
third axiom is valid only to a sequence of disjoint events. The
set ) of all angles is uncountable, and therefore cannot be
enumerated as a sequence of singletons. Indeed, we can write
Pr{0} +Pr{Q} = Pr{Q} by the third axiom and deduce that
Pr{@} = 0 instead.

II. CUMULATIVE DISTRIBUTION FUNCTION (CDF)

The main reason why the expectation cannot be computed
from PMF in Example 1 is because Px(a) = 0 does not say
anything about the distribution of X. e.g. Pr{X € (a,b|} for
0 < a < b <1 cannot be computed from 3, ; Px(c)
since the sum is not well-defined. What we need is a better
characterization of the distribution.

The CDF Fx of X is defined as

Fx(a) :=Pr{X < a} acR )

It follows that the probability of other events can be obtained
from the CDF. e.g.

Pr{X € (a,b]} = Pr{X < b} — Pr{X < a}
= Fx(b) — Fx(a)
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Fig. 2. A typical CDF (2)
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Fig. 3. CDF in (3) for Example 1

The typical shape of a CDF is shown in Fig. 2, with
agrgm Fx(a) =Pr(0)=0
lim Fx(a) =Pr(Q) =1
a—00

Fx(a) < Fx(B) Va < 3
The CDF for Example 1 is,
0 a<0
Fx(a)=<a ae(0,1] 3)
1 a>1

which is shown in Fig. 3. In particular, Fx(a) = a for (0, 1]
is by the uniformity assumption that every angle is equally
likely.

How do we compute E[X] from the cdf? The idea is
quantization, i.e. rounding X up or down to certain decimal
places. Consider Example 1, and divide the unit interval (0, 1]
into n parts as shown in Fig. 4, i.e.

i=1
i—1

I} @
IN T

n

et X = and X = % if and only if X € (0,1]. Since
X <X by definition, we have

E[X] < E[X] < E[X]. 4

Note that X is a discrete random variable, and so its expecta-
tion can be computed easily from its PMF by (1).

BX) = 3" Pr{xe (5.2))

n
=Fx(£)—Fx(353)=2%

= 5>
=1

S

n—r oo ]'

oo,
2

Fig. 4. Quantizing o € (0, 1] for (3)

Similarly, we can show that

1

Y 1 n—oo,
E[X]_Z[Hn] s, o

and so E[X] = by (4).
For general CDF, we can partition the real line into intervals
of size A as shown in Fig. 5, and compute the expectation as

the limit

E[X] = Aiino‘z (i = DA[Fx(id) — Fx((i — 1)A))].

1=—00

In the language of Calculus, the above limit gives the
following definite integral,

EX] = [ " BdF(B). 5)

The term in the integral corresponds to the area of the
yellow bar illustrated in Fig. 6. Integrating the term with
respect to 3 over the entire real line, the quantity is equal
to the positive area of the yellow region (i.e. for § > 0) in
Fig. 7 minus the positive area of the red region (i.e. for 5 < 0).
We can also exchange the axes as shown in Fig. 8 and see that
the integral is the area of the inverse Fy ! of the CDF. i.e.

Em=4ﬂuﬁmmw—[ BBd8  ©

1
= /O F Hy)dy ©)

For the CDF in (3) for Example 1, we have for Fy *(y) = y
for y € (0,1) and so

! 1
E[X] :/ ydy = 7
0

As expected, this is computing the area of the upper triangle
in Fig. 3 bounded by the y-axis and the CDF.
Consider an alternative award of

Xy := —InX.
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Fig. 5. Quantizing o € R for general CDF.
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Fig. 6. A term in the integral for the expectation in (5).

Will you choose X; over X? To compute the expectation E[X;],
we first compute the inverse CDF as follows.

Fx, () =Pr{X; < a}
=Pr{-lnX < a}

=Pr{lnX > —a}
=Pr{X>e™ "}
=1-—Fx(e™®)
0 e <0
=1-qe®* e *e(0,1] by (3)
1 e *>1
=l-e" [ 700)
Fl(y) = —In(1-y) y€(0,1)
Fx(a)
Jo~ (1= Fx(8))dp
1 -%-ﬁ—
0 0 ¢
Jooo Fx(B)dS

Fig. 7. Expectation (5) from CDF.

F (y)

o B (y)dy

Fig. 8. Expectation (5) from inverse CDF.

The expectation can be computed from (7) as follow.
1
B = [ -l - y)dy
0
1
= [ w=paa -y

0
:/ Inzdz
1

0
=zln z|(1) — / zdInz  integration by parts
1

with z:=1-y

=1.
Thus, X; has a larger expectation than X.
Consider another reward defined as

Xy : =X+ 1InX.

Does it have a larger expectation? Note that the CDF for X, is
difficult to compute because the inverse of the function x +—
z+In z is not simple. However, by the linearity of expectation,

EMﬂzmm+mmm:Em_Emﬂ:%_1:_%

This is clearly not a good reward.

III. PROBABILITY DENSITY FUNCTION

Consider yet another reward defined as
X3 := —XInX.

Once again, finding the CDF is difficult because the inverse
of x — —xlnx is not simple. Even though X3 = XX, we
cannot equate E[X3] to E[X] E[X;] = % because X and X; are
not independent.

To compute this expectation, we define another characteriza-
tion of the distribution, called the probability density function
(PDF).

The PDF fx of X is a function that satisfies

FM®=/aﬁWW3 VBER. @

Probability of X € (a,b] corresponds to the area under the
PDF fx over (a, b]. The expectation of any function g(X) can
be computed as
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Fig. 9. The CDF of a uniformly random bit

Blo(x)] = | " 98 fx(B)dB. )

— 00

The question is whether fx exists, and if so, how to find it.
Assuming fx exists, then

(@) = fx(a)

for all « at which FY is differentiable. For the CDF in (3) for
Example 1, we have

0 a<0
x(@)=<1 aec(0,1)
0 a>1

The expectation of X3 can be computed from (9) as follows.
1
1
E[X3] = E[-XInX] = / —B1nBds = 1
0

Note that this is smaller than E[X] = 3, E[X;] = 1 and also
EX]E[Xi] = %

Although PDF gives us a simple way to compute expecta-
tion of complicated functions of random variables, it does not
always exist. For example, consider a uniformly random bit X
with the following CDF as shown in Fig. 9.

0 a<0
Fx(a)=43 a€cl0,1)
1 a>1

Taking the derivative, we have fx(a) =0 for « € R\ {0, 1}.
However, the area under the curve is zero, and therefore does
not satisfy (8). Note also that the expectation of % can be
computed from the CDF as (7) but not the PDF (9). The
problem is due to the discontinuity of the CDF at 0 and 1.
It can be shown that if the CDF is absolutely continuous
(which is a stronger notion than continuity), the desired PDF
satisfying (8) exists. This motivates the following definition.

X is a continuous random variable if its CDF is absolutely
continuous.



