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Fig. 1. Pen-drop example

I. PROBABILITY MEASURE

Given a sample space Ω, the probability measure Pr satisfies
the following Komogorov axioms:

1) Pr(B) ≥ 0 for event B ∈ Ω.
2) Pr(Ω) = 1.
3)
∑
i Pr(Ei) = Pr(

⋃
i Ei) for any sequence E1, E2, · · · ⊆

Ω of disjoint events, i.e. Ei ∩ Ej = ∅.

Example 1 (Pen-drop) A pen is dropped on the ground. The
angle θ it points to with respect to the North direction is from
the sample space Ω = (0, 2π] as shown in Fig. 1. You receive
a reward of

X(θ) :=
θ

2π
θ ∈ Ω

Every angle is assumed to be equally likely. 2

Some questions of interest are:
1) How much do you earn on average?

i.e. the expectation E[X].
2) What is the chance that you earn more than average?

i.e. Pr{X > E[X]}.
3) What is the variance?

i.e. Var[X] = E[X2]− E[X]2.
X is a random variable that maps Ω to the unit interval

(0, 1]. The probability mass function (PMF) is defined as

PX(α) := Pr{X = α}

By the uniformity assumption that all angles are equally likely,
we have PX(α) = p ≥ 0 independent of α ∈ (0, 1].

Claim 1 Pr{X = α} = 0 for all α ∈ (0, 1] 2

PROOF Suppose to the contrary that Pr{X = α} = p > 0.
Choose a positive integer k sufficiently large such that kp > 1.
An possible choice is k = d 1

p + 1e. Choose a finite set A :=
{α1, α2, . . . , αk} of distinct values from (0, 1]. Then,

Pr{X ∈ A} =

k∑
i=1

Pr{X = αi} = kp > 1.

We have the desired contradiction since

Pr{X ∈ A} = 1− Pr{X 6∈ A} ≤ 1.

The first equality follows from the first and third axioms, while
the second inequality follows from the second axiom. �

Can we compute the expectation using the following for-
mula?

E[X] =
∑

α∈(0,1]

αPX(α)︸ ︷︷ ︸
=0

. (1)

Is the sum equal to 0? The answers are no, because the sum
is over an uncountably infinite set, and is therefore not well-
defined. The following false claim has the same issue.

Claim 2 (False) The pen never drops to any angle. i.e. it
stands up vertically, perpendicular to the ground. 2

PROOF (FALSE) Since Pr(θ) = 0 for any θ ∈ Ω, it is
impossible that the pen drops to any angle. i.e.

Pr{∅}+
∑
θ∈Ω

Pr(θ)︸ ︷︷ ︸
=0

(*)
= Pr{Ω} = 1

where the first and second equalities are by the third and the
second axioms respectively. It follows that Pr{∅} = 1, and so
the pen does not drop to any angle. �

What is wrong in the above proof is the equality (*). The
third axiom is valid only to a sequence of disjoint events. The
set Ω of all angles is uncountable, and therefore cannot be
enumerated as a sequence of singletons. Indeed, we can write
Pr{∅}+ Pr{Ω} = Pr{Ω} by the third axiom and deduce that
Pr{∅} = 0 instead.

II. CUMULATIVE DISTRIBUTION FUNCTION (CDF)

The main reason why the expectation cannot be computed
from PMF in Example 1 is because PX(α) = 0 does not say
anything about the distribution of X. e.g. Pr{X ∈ (a, b]} for
0 < a < b ≤ 1 cannot be computed from

∑
α∈(a,b] PX(α)

since the sum is not well-defined. What we need is a better
characterization of the distribution.

The CDF FX of X is defined as

FX(α) := Pr{X ≤ α} α ∈ R (2)

It follows that the probability of other events can be obtained
from the CDF. e.g.

Pr{X ∈ (a, b]} = Pr{X ≤ b} − Pr{X ≤ a}
= FX(b)− FX(a)
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Fig. 2. A typical CDF (2)

Fig. 3. CDF in (3) for Example 1

The typical shape of a CDF is shown in Fig. 2, with

lim
α→−∞

FX(α) = Pr(∅) = 0

lim
α→∞

FX(α) = Pr(Ω) = 1

FX(α) ≤ FX(β) ∀α ≤ β
The CDF for Example 1 is,

FX(α) =


0 α ≤ 0

α α ∈ (0, 1]

1 α > 1

(3)

which is shown in Fig. 3. In particular, FX(α) = α for (0, 1]
is by the uniformity assumption that every angle is equally
likely.

How do we compute E[X] from the cdf? The idea is
quantization, i.e. rounding X up or down to certain decimal
places. Consider Example 1, and divide the unit interval (0, 1]
into n parts as shown in Fig. 4, i.e.

(0, 1] =

n⋃
i=1

( i−1
n , in ].

Set X = i−1
n and X = i

n if and only if X ∈ (0, 1]. Since
X ≤ X ≤ X by definition, we have

E[X] ≤ E[X] ≤ E[X]. (4)

Note that X is a discrete random variable, and so its expecta-
tion can be computed easily from its PMF by (1).

E[X] =
n∑
i=1

i− 1

n
Pr{X ∈ ( i−1

n , in ]}︸ ︷︷ ︸
=FX( i

n )−FX( i−1
n )= 1

n

=
1

n2

n∑
i=1

(i− 1)

=
1

2

[
1− 1

n

]
n→∞−−−−→ 1

2

Fig. 4. Quantizing α ∈ (0, 1] for (3)

Similarly, we can show that

E[X] =
1

2

[
1 +

1

n

]
n→∞−−−−→ 1

2
,

and so E[X] = 1
2 by (4).

For general CDF, we can partition the real line into intervals
of size ∆ as shown in Fig. 5, and compute the expectation as
the limit

E[X] = lim
∆→0

∞∑
i=−∞

(i− 1)∆[FX(i∆)− FX((i− 1)∆)].

In the language of Calculus, the above limit gives the
following definite integral,

E[X] =

∫ ∞
−∞

βdFX(β). (5)

The term in the integral corresponds to the area of the
yellow bar illustrated in Fig. 6. Integrating the term with
respect to β over the entire real line, the quantity is equal
to the positive area of the yellow region (i.e. for β ≥ 0) in
Fig. 7 minus the positive area of the red region (i.e. for β ≤ 0).
We can also exchange the axes as shown in Fig. 8 and see that
the integral is the area of the inverse F−1

X of the CDF. i.e.

E[X] =

∫ ∞
0

(1− FX(β))dβ −
∫ 0

−∞
FX(β)dβ

=

∫ 1

0

F−1
X (y)dy

(6)

(7)

For the CDF in (3) for Example 1, we have for F−1
X (y) = y

for y ∈ (0, 1) and so

E[X] =

∫ 1

0

ydy =
1

2
.

As expected, this is computing the area of the upper triangle
in Fig. 3 bounded by the y-axis and the CDF.

Consider an alternative award of

X1 := − lnX.
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Fig. 5. Quantizing α ∈ R for general CDF.

Fig. 6. A term in the integral for the expectation in (5).

Will you choose X1 over X? To compute the expectation E[X1],
we first compute the inverse CDF as follows.

FX1(α) = Pr{X1 ≤ α}
= Pr{− lnX ≤ α}
= Pr{lnX ≥ −α}
= Pr{X ≥ e−α}
= 1− FX(e−α)

= 1−


0 e−α ≤ 0

e−α e−α ∈ (0, 1]

1 e−α ≥ 1

by (3)

= 1− e−α α ∈ [0,∞)

F−1
X1

(y) = − ln(1− y) y ∈ (0, 1)

Fig. 7. Expectation (5) from CDF.

Fig. 8. Expectation (5) from inverse CDF.

The expectation can be computed from (7) as follow.

E[X1] =

∫ 1

0

− ln(1− y)dy

=

∫ 1

0

ln(1− y)d(1− y)

=

∫ 0

1

ln z dz with z:=1-y

= z ln z|01 −
∫ 0

1

z d ln z integration by parts

= 1.

Thus, X1 has a larger expectation than X.
Consider another reward defined as

X2 := X + lnX.

Does it have a larger expectation? Note that the CDF for X2 is
difficult to compute because the inverse of the function x 7→
x+lnx is not simple. However, by the linearity of expectation,

E[X2] = E[X] + E[lnX] = E[X]− E[X1] =
1

2
− 1 = −1

2
.

This is clearly not a good reward.

III. PROBABILITY DENSITY FUNCTION

Consider yet another reward defined as

X3 := −X lnX.

Once again, finding the CDF is difficult because the inverse
of x 7→ −x lnx is not simple. Even though X3 = XX1, we
cannot equate E[X3] to E[X] E[X1] = 1

2 because X and X1 are
not independent.

To compute this expectation, we define another characteriza-
tion of the distribution, called the probability density function
(PDF).

The PDF fX of X is a function that satisfies

FX(α) =

∫ α

−∞
fX(β)dβ ∀β ∈ R. (8)

Probability of X ∈ (a, b] corresponds to the area under the
PDF fX over (a, b]. The expectation of any function g(X) can
be computed as
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Fig. 9. The CDF of a uniformly random bit

E[g(X)] =

∫ ∞
−∞

g(β)fX(β)dβ. (9)

The question is whether fX exists, and if so, how to find it.
Assuming fX exists, then

d

dα
FX(α) = fX(α)

for all α at which FX is differentiable. For the CDF in (3) for
Example 1, we have

fX(α) =


0 α < 0

1 α ∈ (0, 1)

0 α > 1

The expectation of X3 can be computed from (9) as follows.

E[X3] = E[−X lnX] =

∫ 1

0

−β lnβdβ =
1

4
.

Note that this is smaller than E[X] = 1
2 , E[X1] = 1 and also

E[X] E[X1] = 1
2 .

Although PDF gives us a simple way to compute expecta-
tion of complicated functions of random variables, it does not
always exist. For example, consider a uniformly random bit X
with the following CDF as shown in Fig. 9.

FX(α) =


0 α < 0
1
2 α ∈ [0, 1)

1 α ≥ 1

Taking the derivative, we have fX(α) = 0 for α ∈ R \ {0, 1}.
However, the area under the curve is zero, and therefore does
not satisfy (8). Note also that the expectation of 1

2 can be
computed from the CDF as (7) but not the PDF (9). The
problem is due to the discontinuity of the CDF at 0 and 1.
It can be shown that if the CDF is absolutely continuous
(which is a stronger notion than continuity), the desired PDF
satisfying (8) exists. This motivates the following definition.

X is a continuous random variable if its CDF is absolutely
continuous.


