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Introduction Learning Outcomes for this Presentation

Learning Outcomes . . .

At the conclusion of this session, we will

Define the elements of propositional logic: statements and operations,
including implication, and its converse, inverse, and negation.

Use both truth tables and derivations to demonstrate equivalence of
logical statements.

Translate English expressions into logical statements.

Define common tautologies, contradictions, and equivalences.

Recognize and employ modus ponens and modus tollens and other
forms of valid argumentation.
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Introduction Learning Outcomes for this Presentation

It’s difficult, and possibly counterproductive, to provide a concise
description of logic. . .

What is logic?

A formal system for expressing truth and falsity.

Why is it important?

Provides a systematic, tractable method of reasoning from given
truths (called axiomata or axioms) to new truths (called propositions
or theorems).

How will we use it in this class?

Logic is the skeleton that supports mathematical truth-making.

Logic is the glue that holds programs together.
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Definitions Statements

Propositional statements

Definition

A statement is a declarative utterance in a language that is either true or
false. A statement is either atomic, meaning that it contain a single
element of truth or falsity, or it is compound, meaning that it consists of
statements that are composed with various logical operators.

Example

Let s := it is raining and t := the sun is shining. Clearly, s and t are
atomic statements. These may be combined in a variety of manners, to be
described shortly, but s or t, written (s ∨ t) is certainly one conceivable
compound statement: “it is raining” or “the sun is shining.”
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Definitions Logical connectives

Making new statements by connecting propositions

Three fundamental operators are adequate to create the spectrum of
logical possibilities.

Operator Description
And (conjunction) Written s ∧ t: true when s and t are

true.

Or (disjunction) Written s ∨ t: true when s or t are
true.

Negation Written ¬s (or sometimes ∼ s or s̄):
true only when s is false, and vice
versa.

Keep in mind that s and t may be atomic or compound propositions
themselves!
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Definitions Interpretations, contexts, . . .

Truth, falsity, and interpretations

The truth or falsity of any statement depends upon its context.

“Context” can be visualized as the values that are associated with
each variable in a statement.

Example

Is a ∨ b true? Well, if either a = true or b = true, then the statement
a ∨ b is true.
Ask now if a ∧ b is true, and you will see that it is true, but under fewer
interpretations—or, its context is different.
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Definitions Logically equivalent statements

Logical equivalences

How might we determine if two logical statements were equivalent?

Construct truth tables for each.
Show that one can be transformed into the other through the
systematic application of operations—this is sometimes called a
derivation.

Your textbook emphasizes constructing truth tables, but mastery of
derivations will prove helpful in reading and writing proofs later in this
course.

() Propositional Logic Fall 2013 8 / 30



Definitions Logically equivalent statements

Patterns in truth tables

Truth tables contain rows and columns.

The number of necessary rows is determined by the number of
variables (this is a homework question!)

Read rows (horizontal values) as products. (Assuming that columns
are arranged as they appear in your text: from variables to final
forms.)

Read columns (vertical values) as co-products (sums).

This means that we (generally) care about rows whose terminal
values (products) are True.
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Definitions Exclusive versus Inclusive Ors and Equivalence

Apples or Oranges . . . or both!

Observe that the “or operator” is inclusive, meaning a ∨ b is true
exactly when either a, b or both are true.

In common English, sometimes, we mean either a or b, but not both.

Example

Let’s construct a new operator, called the “exclusive or,” and use both
truth tables and derivations (equivalence) to explore its properties.
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Definitions Exclusive versus Inclusive Ors and Equivalence

An important property . . .

Visualize an “exclusive-or” machine that takes two inputs and outputs
either a 0 for false and a 1 for true (note: these values are arbitrary).

If the machine outputs a 1, what do we know about its last input?

If the machine outputs a 0 . . . ?

Would you say that the machine “remembers?”

Would you say that the machine “computes?” Hint: consider the
behavior of our machine on a string of 0 and 1’s. If it returns a 0
what might we know about that string, etc.
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Definitions De Morgan’s Laws . . .

An effect of negation . . . De Morgan’s Laws

Alphonse De Morgan identified a fundamental property that we will find
extremely helpful: Let a and b be logical statements, then

¬(a ∨ b) = ¬a ∧ ¬b

and
¬(a ∧ b) = ¬a ∨ ¬b

Construct a Truth Table showing De Morgan’s Laws

What property does this Law exhibit?
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Logical implication

Introducing logical implication

Arguably, logical implication is the most useful operator in predicate
logic.

Logical implication is expressible using only two of the operators
introduced in the last slide.

Implication captures the notion of an action depending upon the
success (or failure) of another action.

Unlike primitive connectors, implication is directional!

Example

If it rains, then Richard brings an umbrella.

We would like a way of assigning truth or falsity to these kinds of
statements.
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Logical implication

Implication, cont’d.

Examine the truth table for the implication a =⇒ b:

a b a =⇒ b

T T T
F T T
T F F
F F T

Note two important qualities of implication:

1 We see only one case where the implication is false.

2 Compare rows 2 and 3: implication is sensitive to direction!.
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Logical implication

Implications of implication . . .

Everything to the left of the implication symbol is called either the
antecedent, the hypothesis, or the sufficient condition.

Everything to the right of the implication symbol is called the
consequent, the conclusion, or the necessary condition.

An implication is false just in the case that its hypothesis is true, but
its conclusion is false. Said another way: an implication is false when
its necessary condition is not satisfied.

Unlike in common speech, no relationship need exist between the
hypothesis and the conclusion. Thus, implications such as “If the
moon is made of cheese, then the empty set is the subset of all sets.”
are true.
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Logical implication

Trying on an implication . . .

Consider the following implication: if x > 2, then x2 > 4. Using our
understanding of implication, let’s see how different interpretations
(bindings) for x play out:

1 What happens when x > 2? In other words: how does the implication
behave when its hypothesis is satisfied?

2 What happens when x ≤ 2? How does the implication behave when
its hypothesis is not satisfied?

3 Under what circumstances would the implication ever be false?
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Logical implication

Implications, expressed in terms of primitives

The implication is a composite expression built from disjunction and
negation:

p =⇒ q has the same truth table as ¬p ∨ q

Try it . . . right now!

It is crucial that you remember this equivalence because it will prove
helpful throughout this (and subsequent) course(s).
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Logical implication Variations on implication

Some important variations of implications

We will define the following variations of the implication:

The “negation” of an implication: ¬(a =⇒ b).

The “converse” of an implication?

The “inverse” of an implication?

The “contrapositive” of an implication, and show that it is equivalent.

Discuss equivalences of other forms.
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Logical implication Variations on implication

Negating an implication

Simply negating each component of an implication does not negate the
implication. Why?

Because the negation of p =⇒ q is p and not q! In other words, we need
to show that the conclusion does not follow from the premise: in symbols:

¬(p =⇒ q) ≡ p ∧ ¬q.

Show this now by derivation and/or truth-table.

Negate x > 2 =⇒ x2 > 4.
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Logical implication Variations on implication

The converse of an implication

Definition

The converse of an implication is obtained by transposing its conclusion
with its premise.

Example

Given p =⇒ q, its converse is q =⇒ p.

Construct and evaluate the converse of x > 2 =⇒ x2 > 4.
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Logical implication Variations on implication

The inverse of an implication

Definition

The inverse of an implication is obtained by negating both its premise and
its conclusion.

Example

Given p =⇒ q, its inverse is (¬p) =⇒ (¬q). (Parentheses added for
emphasis.)

Construct and evaluate the inverse of x > 2 =⇒ x2 > 4.
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Logical implication Variations on implication

The Contrapositive form of an implication

Definition

The contrapositive form of an implication is an equivalent statement
formed by inverting its converse.

Given a =⇒ b, form its contrapositive as ¬a =⇒ ¬b.

Explore the contrapostitive of x > 2 =⇒ x2 > 4.
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Logical implication Variations on implication

Working through an example on your own. . .

Construct truth tables and convince yourself that

If an object is a square, then it is a closed polygon comprising
exactly 4 sides.

is equivalent to its contrapositive. Show that the original implication is not
equivalent to either its converse or its inverse, or their negations.

Is there a relationship between the inverse and the converse of an
implication?
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Bidirectional implication

Bidirectional implication

Often, we want to state the something happens or that something is true
only when or only if something else is also true.

Definition

The biconditional statement is an implication that is true only when its
antecedent and its consequent have the same truth values; it is false
otherwise. In symbols, p ↔ q is true only when p =⇒ q and q =⇒ p.
The biconditional is written p iff q.

In colloquial speech, “if” is often used when “iff” is logically intended.

See if you can construct its truth table.
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Validities & Contradictions

Validities & contradictions

Certain statements are true or false under any interpretation. For
example: a ∨ ¬a, is true no matter what truth value is assigned to a.
Likewise, a ∧ ¬a is never true, regardless of the truth value assigned
to a.

A statement that is true under any interpretation is called a tautology
or a validity.

A statement that is false under any interpretation is called a
contradiction.

Said another way: certain statements are true (or false) by virtue of their
logical structure alone—such statements are formally true (or formally
false).
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Valid and Invalid Arguments Definition

Validity, as a matter of “form.”

Definition

An argument is a sequence of statements terminating with a conclusion.

Validity is based upon formal properties, not content.

Mastery of logical argumentation translates into a deeper
understanding of and facility for constructing mathematical proof.
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Valid and Invalid Arguments Two forms of argument . . .

Definition (Modus Ponens)

Modus ponens (“To affirm by affirming”) is a valid form of inference that
appears in symbols as:

p =⇒ q, p

∴ q

Informally: if p implies q and we know that p is true, then we may
conclude q.

Commonsense observation: seen in “forward-chaining” production
systems.

Observe that computationally we can view modus ponens as a law of
substitution or replacement.
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Valid and Invalid Arguments Two forms of argument . . .

Modus Tollens . . .

Applying the contrapositive, we obtain another form of argumentation:

Definition (Modus Tollens)

Modus tollens (“To affirm by denying”) is a valid form of inference that
appears in symbols as:

p =⇒ q,¬q
∴ ¬p

Informally: if p implies q and we show q is not the case, then we may
conclude that p is not true.

Example

Construct an argument using Modus Tollens using x > 2 =⇒ x2 > 4.
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Valid and Invalid Arguments Two forms of argument . . .

Recapitulating . . .

Logic is a system composed of discrete statements which are either
true or false, but not both.

Logical Implication (p =⇒ q) is directional.

Bidirectional implication is bidirectional: for example, p ⇐⇒ q
means (p =⇒ q) ∧ (q =⇒ p).

Consistent forms are exactly those logical constructions that are true
for at least one set of bindings.

A contradiction is a logical statement that is false under any
interpretation.

A tautology is a logical statement that is true under any
interpretation.
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Valid and Invalid Arguments Two forms of argument . . .

Additional forms commonly used in proofs . . .

Suppose that we know p is true, then we can argue p ∨ q.
(Generalization)

Suppose that we know p ∧ q holds, then was can affirm p, we can
also conclude q. (Specialization)

Suppose that we know p ∨ q holds, and we show that ¬p, then we
can conclude q, and . . . (Elimination)

Suppose that we know p =⇒ q and q =⇒ r , then we may conclude
p =⇒ r . (Transitivity)

Example

(Time permitting) Show each of these using our class example.
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Summary & next steps . . .

How logic fits in

Your success in this class depends upon your ability to construct proofs:

A “proof” is a collection of definitions, axioms, and conclusions
(results of other proofs and lemmas) that convinces the audience of
the truth of a proposition (theorem, lemma).

Logic is the glue that hold these statements together.

Next, we will explore how simple logic underlies programming behaviors,
such as flow of control, and arithmetic.

() Propositional Logic Fall 2013 31 / 30


	Introduction
	Learning Outcomes for this Presentation

	Definitions
	Statements
	Logical connectives
	Interpretations, contexts, …
	Logically equivalent statements
	Exclusive versus Inclusive Ors and Equivalence
	De Morgan's Laws …

	Logical implication
	Variations on implication

	Bidirectional implication
	Validities & Contradictions
	Valid and Invalid Arguments
	Definition
	Two forms of argument …


