
Boolean Logic & Circuits

Fall 2013

() Boolean Logic & Circuits Fall 2013 1 / 28



1 Introduction
Learning Outcomes for this Presentation

2 Boolean logic & Circuits, early work

3 Binary Number systems
2’s Complement representation of binary integers
Commonly used bases in computing

4 Summary

() Boolean Logic & Circuits Fall 2013 2 / 28



Introduction Learning Outcomes for this Presentation

Learning Outcomes . . .

At the conclusion of this session, we will

Explore the relationship between boolean operators and logical
circuits.

Show how hardware, logical gates, etc., compute boolean expressions.

Demonstrate “normal” forms.

Demonstrate the equivalence of circuits and boolean normal forms.

Describe base-2 arithmetic, with an emphasis on addition and the
construction of twos-complement (inverses) forms to perform
subtraction.

() Boolean Logic & Circuits Fall 2013 3 / 28



Boolean logic & Circuits, early work

Computation in two-states

Boolean expressions express two states: true or false, yes or no, on or
off, open or closed, etc.

Early in the twentieth century, Claude Shannon (and others) explored
the equivalence of simple circuits and notions of computation.

Our focus: circuits, gates, and then circuits.

Do in class

Use Shannon’s original diagrams to express the essential Boolean operators
as simple circuits.

() Boolean Logic & Circuits Fall 2013 4 / 28



Boolean logic & Circuits, early work

Equating circuits & Logic

An “open circuit” is represented as a 1, impedance of 100%.

A “closed circuit” is represented as a 0, impedance of 0%.

Relay(s):
Xab

a b Relay

Series:
X Y

(X + Y )

Parallel:

X

Y

X · Y

() Boolean Logic & Circuits Fall 2013 5 / 28



Boolean logic & Circuits, early work

Working postulates (draw these!)

1 A circuit is either open Xab = 1, or closed Xab = 0.

2 0 · 0 = 0: A closed circuit in parallel with a closed circuit is a closed
circuit.

3 1 · 1 = 1: A open circuit in parallel with an open circuit is an open
circuit.

4 1 + 1 = 1: An open circuit in series with an open circuit is an open
circuit.

5 0 + 0 = 0: A closed circuit in series with a closed circuit is a closed
circuit.

6 0 · 1 = 1 · 0 = 0: A closed circuit in parallel with an open circuit (in
any order) is a closed circuit.

7 1 + 0 = 0 + 1 = 1: An open circuit in series with a closed circuit (in
any order) is an open circuit;

() Boolean Logic & Circuits Fall 2013 6 / 28



Boolean logic & Circuits, early work

Additional postulates . . .

Our system is incomplete with negation, which we will indicate with an
accent, as in X ′ to indicate the negation of X .

X + X ′ = 1

X · X ′ = 0

0′ = 1

1′ = 0

(X ′)′ = X .

() Boolean Logic & Circuits Fall 2013 7 / 28



Boolean logic & Circuits, early work

Logical “duals . . . ”

For a given postulate, replacing the 0’s with 1’s and switching
operators, e.g., from · to + generates another postulate:

0 + 0 = 0⇒ 1 · 1 = 1.

These kinds of relationships are called “duals.” Where else have we
seen this?

Think about De Morgan’s Laws! Allow + to be interpreted as a
logical operator, say ∨, and · its “dual,” ∧, now

¬(p ∨ q) = ¬p ∧ ¬q and ¬(p ∧ q) = ¬p ∨ ¬q

() Boolean Logic & Circuits Fall 2013 8 / 28



Boolean logic & Circuits, early work

Logical “duals . . . ”

For a given postulate, replacing the 0’s with 1’s and switching
operators, e.g., from · to + generates another postulate:

0 + 0 = 0⇒ 1 · 1 = 1.

These kinds of relationships are called “duals.” Where else have we
seen this?

Think about De Morgan’s Laws! Allow + to be interpreted as a
logical operator, say ∨, and · its “dual,” ∧, now

¬(p ∨ q) = ¬p ∧ ¬q and ¬(p ∧ q) = ¬p ∨ ¬q

() Boolean Logic & Circuits Fall 2013 8 / 28



Boolean logic & Circuits, early work

Shannon’s proof technique

Shannon employed “universal induction” to prove many of his claims
about circuits and logic.

Universal induction, however, was “proof by exhaustion,” in other
words, he constructed truth tables.

Example

Let X and Y be two circuits and construct the truth table showing the
possible states for both a series and a parallel arrangement:

() Boolean Logic & Circuits Fall 2013 9 / 28



Boolean logic & Circuits, early work

Boolean Expressions as Circuits

The take-away: any boolean expression can be represented as a
circuit, and vice versa.

Simplifications performed on boolean expressions translated into
simplifications applied to circuits, saving components, reducing
complexity, and enhancing efficiency and dependability.

() Boolean Logic & Circuits Fall 2013 10 / 28



Boolean logic & Circuits, early work

A worked example

Example

Consider the expression: p ∨ ¬(q ∧ r):

First order of business: represent as a table, in disjunctive normal form:

() Boolean Logic & Circuits Fall 2013 11 / 28



Boolean logic & Circuits, early work

Table of standard logical forms

Equivalent representations of p ∨ ¬(q ∧ r):

() Boolean Logic & Circuits Fall 2013 12 / 28



Boolean logic & Circuits, early work

Circuit for table

() Boolean Logic & Circuits Fall 2013 13 / 28



Boolean logic & Circuits, early work

Circuits that “add” . . .

Consider the “half-adder,” depicted in the table below:

P Q Carry Sum

1 1 1 0

1 0 0 1

0 1 0 1

0 0 0 0

() Boolean Logic & Circuits Fall 2013 14 / 28



Boolean logic & Circuits, early work

Equivalences in tabular form

() Boolean Logic & Circuits Fall 2013 15 / 28



Boolean logic & Circuits, early work

Circuit diagram: half-adder

() Boolean Logic & Circuits Fall 2013 16 / 28



Boolean logic & Circuits, early work

Adding more than one binary digit . . .

A full-adder is required to handle the carry bit!

() Boolean Logic & Circuits Fall 2013 17 / 28



Boolean logic & Circuits, early work

Intermission

Boolean logic is directly realized in physical circuits.

Algebraic simplifications can be performed on expressions and directly
applied to circuits.

Mathematical characteristics, such as duality,
symmetry/antisymmetry, equivalence, and complementarity find their
way into circuit analysis and circuit design.

() Boolean Logic & Circuits Fall 2013 18 / 28



Binary Number systems

Encoding binary logic as numbers

Let 0 represent a closed circuit (0 impedance), 1 an open circuit
(100% impedance).

A string of circuit states is represented as a sequence of 0’s and 1’s.

Construct a mapping from these strings to numeric values

. . . 1 0 1 0

2n 23 22 21 20

which is interpreted as a base-10 digit number as follows:

(1× 23) + (0× 22) + (1× 21) + (0× 20) = 10.

() Boolean Logic & Circuits Fall 2013 19 / 28



Binary Number systems

Basic observations about binary numbers

The “largest” value that can be encoded in a binary string is 2n,
where n is a positive integer indicating the length of the string.

Clearly, more binary digits are required to represent equivalent values
in base-10 arithmetic.

As presently defined, binary strings encode only magnitude (value,
size).

For simplicity’s sake, we shall refer to binary strings as binary
numbers from this point onward.

() Boolean Logic & Circuits Fall 2013 20 / 28



Binary Number systems

Essential arithmetic operations

Binary numbers can be “added” in much the same way as base-10
numbers; recall how a full-adder circuit operates!

Multiplying binary numbers by powers of 2 is easy—think about
multiplying base-10 numbers by 10.

Division by powers of 2 is likewise easy (but, what are the
limitations?).

Subtraction amounts to adding inverses! Ask what is an “inverse”
and what is the “inverse” of a binary number?

() Boolean Logic & Circuits Fall 2013 21 / 28



Binary Number systems 2’s Complement representation of binary integers

Forming the additive inverse of a binary number

Inverses are defined in relation to an operation: the additive inverse of
the integer n is another integer, m, that when added to n gives the
“identity” for addition: n + m = 0

In binary arithmetic, the additive inverse of an integer is its
“complement.” And, conventionally, we use the 2’s complement:

Definition

Given a positive integer a, the 2’s complement of a relative to a fixed-bit
length n is the n-bit binary representation of 2n − a.

The usual algorithm modifies the original definition by explicitly
adding 1 to the 1’s complement:

2n − a = [(2n − 1)− a] + 1

() Boolean Logic & Circuits Fall 2013 22 / 28



Binary Number systems 2’s Complement representation of binary integers

Forming the 2’s complement

Construct the 2’s complement of 57, which in binary is 001110012; assume
8 bit word length

Subtracting 1 from 28 gives:

1000000002 − 12 = 111111112.

Subtracting 57 from the 1’s complement just “flips” its bits:

111111112 − 001110012 = 110001102.

Finally, add 1 to form the 2’s complement:

110001102 + 12 = 110001112.

() Boolean Logic & Circuits Fall 2013 23 / 28



Binary Number systems 2’s Complement representation of binary integers

Forming the 2’s complement

Construct the 2’s complement of 57, which in binary is 001110012; assume
8 bit word length

Subtracting 1 from 28 gives:

1000000002 − 12 = 111111112.

Subtracting 57 from the 1’s complement just “flips” its bits:

111111112 − 001110012 = 110001102.

Finally, add 1 to form the 2’s complement:

110001102 + 12 = 110001112.

() Boolean Logic & Circuits Fall 2013 23 / 28



Binary Number systems 2’s Complement representation of binary integers

Forming the 2’s complement

Construct the 2’s complement of 57, which in binary is 001110012; assume
8 bit word length

Subtracting 1 from 28 gives:

1000000002 − 12 = 111111112.

Subtracting 57 from the 1’s complement just “flips” its bits:

111111112 − 001110012 = 110001102.

Finally, add 1 to form the 2’s complement:

110001102 + 12 = 110001112.

() Boolean Logic & Circuits Fall 2013 23 / 28



Binary Number systems 2’s Complement representation of binary integers

Computing differences with 2’s complements

Assuming that the 2’s complement of 57 is equivalent to−57,solve
100− 57

Translate 100 into an 8-bit binary number: 10010 = 011001002.

Subtracting 57 from 100 is the same adding its complement to 100:

011001002 + 110001112 = 001010112,

Because the leftmost digit is a 0, the result is positive, translate it
directly to base 10.

() Boolean Logic & Circuits Fall 2013 24 / 28



Binary Number systems 2’s Complement representation of binary integers

Computing differences with 2’s complements

Assuming that the 2’s complement of 57 is equivalent to−57,solve
100− 57

Translate 100 into an 8-bit binary number: 10010 = 011001002.

Subtracting 57 from 100 is the same adding its complement to 100:

011001002 + 110001112 = 001010112,

Because the leftmost digit is a 0, the result is positive, translate it
directly to base 10.

() Boolean Logic & Circuits Fall 2013 24 / 28



Binary Number systems 2’s Complement representation of binary integers

Computing differences with 2’s complements

Assuming that the 2’s complement of 57 is equivalent to−57,solve
100− 57

Translate 100 into an 8-bit binary number: 10010 = 011001002.

Subtracting 57 from 100 is the same adding its complement to 100:

011001002 + 110001112 = 001010112,

Because the leftmost digit is a 0, the result is positive, translate it
directly to base 10.

() Boolean Logic & Circuits Fall 2013 24 / 28



Binary Number systems 2’s Complement representation of binary integers

Interpreting negative solutions

If we reverse the order of terms, we get a negative answer: 57− 100.

Translate 57 as 001110012, and 100 as 011001002.

Construct the 2’s complement of 100:

111111112 − 011001002 = 10011011 + 1 = 100111002

Add−100 to 57:

100111002 + 001110012 = 110101012

Because the leftmost bit is a 1, use 2’s complement arithmetic to
translate this number, giving 001010112, which is 43 (but preceded
with a negative sign because of the leftmost bit).

() Boolean Logic & Circuits Fall 2013 25 / 28



Binary Number systems 2’s Complement representation of binary integers

Interpreting negative solutions

If we reverse the order of terms, we get a negative answer: 57− 100.

Translate 57 as 001110012, and 100 as 011001002.

Construct the 2’s complement of 100:

111111112 − 011001002 = 10011011 + 1 = 100111002

Add−100 to 57:

100111002 + 001110012 = 110101012

Because the leftmost bit is a 1, use 2’s complement arithmetic to
translate this number, giving 001010112, which is 43 (but preceded
with a negative sign because of the leftmost bit).

() Boolean Logic & Circuits Fall 2013 25 / 28



Binary Number systems 2’s Complement representation of binary integers

Interpreting negative solutions

If we reverse the order of terms, we get a negative answer: 57− 100.

Translate 57 as 001110012, and 100 as 011001002.

Construct the 2’s complement of 100:

111111112 − 011001002 = 10011011 + 1 = 100111002

Add−100 to 57:

100111002 + 001110012 = 110101012

Because the leftmost bit is a 1, use 2’s complement arithmetic to
translate this number, giving 001010112, which is 43 (but preceded
with a negative sign because of the leftmost bit).

() Boolean Logic & Circuits Fall 2013 25 / 28



Binary Number systems 2’s Complement representation of binary integers

Interpreting negative solutions

If we reverse the order of terms, we get a negative answer: 57− 100.

Translate 57 as 001110012, and 100 as 011001002.

Construct the 2’s complement of 100:

111111112 − 011001002 = 10011011 + 1 = 100111002

Add−100 to 57:

100111002 + 001110012 = 110101012

Because the leftmost bit is a 1, use 2’s complement arithmetic to
translate this number, giving 001010112, which is 43 (but preceded
with a negative sign because of the leftmost bit).

() Boolean Logic & Circuits Fall 2013 25 / 28



Binary Number systems 2’s Complement representation of binary integers

A mathematical property of the complement

The complement is an involution; recall Shannon’s postulates, (X ′)′ = X ,
which appears as−(−n) = n in common number systems.

Definition

An involution is a function that when composed with itself gives the
identity.

Do in class

Show that the definition of the 2’s complement operation is an involution.

() Boolean Logic & Circuits Fall 2013 26 / 28



Binary Number systems Commonly used bases in computing

Some other commonly seen bases in computing

Base-2 (binary) arithmetic is how computation happens at the
“lowest level,” but it takes a lot of real-estate to say a little.

Other commonly encountered bases are multiples of 2, viz., base 8
(octal) and base 16 (hexadecimal).

Do in class

Construct some common base-2 numbers in base-8 and base-16, showing
grouping patterns.

() Boolean Logic & Circuits Fall 2013 27 / 28



Summary

Summary

Boolean logic formed the basis of computing machinery at the turn of
the last century.

Properties of the Boolean algebra permeate the study of computing.

An understanding of the mathematical principles underlying the
Boolean algebra deepens our understanding and appreciation for a
variety of topic in contemporary computing.

We should not be surprised to see these concepts again . . . perhaps in
different contexts, throughout our study of computer science.

() Boolean Logic & Circuits Fall 2013 28 / 28


	Introduction
	Learning Outcomes for this Presentation

	Boolean logic & Circuits, early work
	Binary Number systems
	2's Complement representation of binary integers
	Commonly used bases in computing

	Summary

