# Boolean Logic & Circuits

Fall 2013



Fall 2013 1 / 28

-





#### Introduction

• Learning Outcomes for this Presentation



Boolean logic & Circuits, early work



### Binary Number systems

- 2's Complement representation of binary integers
- Commonly used bases in computing



## Learning Outcomes ...

At the conclusion of this session, we will

- Explore the relationship between boolean operators and logical circuits.
- Show how hardware, logical gates, etc., compute boolean expressions.
- Demonstrate "normal" forms.
- Demonstrate the equivalence of circuits and boolean normal forms.
- Describe base-2 arithmetic, with an emphasis on addition and the construction of twos-complement (inverses) forms to perform subtraction.

## Computation in two-states

- Boolean expressions express two states: true or false, yes or no, on or off, open or closed, etc.
- Early in the twentieth century, Claude Shannon (and others) explored the equivalence of simple circuits and notions of computation.
- Our focus: circuits, gates, and then circuits.

#### Do in class

Use Shannon's original diagrams to express the essential Boolean operators as simple circuits.

## Equating circuits & Logic

- An "open circuit" is represented as a 1, impedance of 100%.
- A "closed circuit" is represented as a 0, impedance of 0%.



A B A A B A

# Working postulates (draw these!)

- A circuit is either open  $X_{ab} = 1$ , or closed  $X_{ab} = 0$ .
- O · O = O: A closed circuit in parallel with a closed circuit is a closed circuit.
- I · 1 = 1: A open circuit in parallel with an open circuit is an open circuit.
- 1+1=1: An open circuit *in series* with an open circuit is an open circuit.
- O + O = O: A closed circuit in series with a closed circuit is a closed circuit.
- $0 \cdot 1 = 1 \cdot 0 = 0$ : A closed circuit *in parallel* with an open circuit (in any order) is a closed circuit.
- 1+0=0+1=1: An open circuit in series with a closed circuit (in any order) is an open circuit;

・ロト ・四ト ・ヨト ・ヨト ・ヨ

## Additional postulates ...

Our system is incomplete with *negation*, which we will indicate with an accent, as in X' to indicate the negation of X.

- X + X' = 1
- $X \cdot X' = 0$
- 0' = 1
- 1' = 0
- (X')' = X.

イロト 不得下 イヨト イヨト

# Logical "duals ... "

• For a given postulate, replacing the 0's with 1's and switching operators, e.g., from  $\cdot$  to + generates another postulate:

$$0 + 0 = 0 \Rightarrow 1 \cdot 1 = 1.$$

• These kinds of relationships are called "duals." Where else have we seen this?



# Logical "duals ... "

• For a given postulate, replacing the 0's with 1's and switching operators, e.g., from  $\cdot$  to + generates another postulate:

$$0 + 0 = 0 \Rightarrow 1 \cdot 1 = 1.$$

- These kinds of relationships are called "duals." Where else have we seen this?
- Think about De Morgan's Laws! Allow + to be interpreted as a logical operator, say ∨, and · its "dual," ∧, now

$$eg (p \lor q) = \neg p \land \neg q \text{ and } \neg (p \land q) = \neg p \lor \neg q$$

- 4 同 6 4 日 6 4 日 6

# Shannon's proof technique

- Shannon employed "universal induction" to prove many of his claims about circuits and logic.
- Universal induction, however, was "proof by exhaustion," in other words, he constructed *truth tables*.

#### Example

Let X and Y be two circuits and construct the truth table showing the possible states for both a series and a parallel arrangement:

# Boolean Expressions as Circuits

- The take-away: any boolean expression can be represented as a circuit, and vice versa.
- Simplifications performed on boolean expressions translated into simplifications applied to circuits, saving components, reducing complexity, and enhancing efficiency and dependability.

A worked example

#### Example

Consider the expression:  $p \lor \neg(q \land r)$ :

First order of business: represent as a table, in *disjunctive normal form*:

| р | q | r | $p \bigvee \neg (q \wedge r)$ |
|---|---|---|-------------------------------|
| Т | Т | Т | Т                             |
| Т | Т | F | Т                             |
| Т | F | Т | Т                             |
| Т | F | F | Т                             |
| F | Т | Т | F                             |
| F | Т | F | Т                             |
| F | F | Т | Т                             |
| F | F | F | Т                             |

# Table of standard logical forms

Equivalent representations of  $p \lor \neg (q \land r)$ :

| DNF  | $p \lor (\neg q \land r)$                                             |
|------|-----------------------------------------------------------------------|
| CNF  | $(p \lor \neg q) \land (p \lor r)$                                    |
| ANF  | $(p \land r) \lor (q \land r) \lor (p \land q \land r) \lor p \lor r$ |
| NOR  | $(p\overline{\vee}\negq)\overline{\vee}(p\overline{\vee}r)$           |
| NAND | $\neg p \overline{\land} (\neg q \overline{\land} r)$                 |
| AND  | $\neg (\neg p \land q) \land \neg (\neg p \land \neg r)$              |
| OR   | $p \lor \neg (q \lor \neg r)$                                         |

(日) (同) (三) (三)

# Circuit for table



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

### Circuits that "add" ...

### Consider the "half-adder," depicted in the table below:

| Р | Q | Carry | Sum |
|---|---|-------|-----|
| 1 | 1 | 1     | 0   |
| 1 | 0 | 0     | 1   |
| 0 | 1 | 0     | 1   |
| 0 | 0 | 0     | 0   |

<E> ヨ つへで Fall 2013 14 / 28

<ロ> (日) (日) (日) (日) (日)

# Equivalences in tabular form

| DNF  | $(P \wedge \neg Q) \vee (\neg P \wedge Q)$                                     |  |
|------|--------------------------------------------------------------------------------|--|
| CNF  | $(\neg P \lor \neg Q) \land (P \lor Q)$                                        |  |
| ANF  | $P {\scriptstyle arphi} Q$                                                     |  |
| NOR  | $(\neg P  \overline{\lor}  \neg  Q)  \overline{\lor}  (P  \overline{\lor}  Q)$ |  |
| NAND | $(P \bar{\wedge} \neg Q) \bar{\wedge}  (\neg P \bar{\wedge} Q)$                |  |
| AND  | $\neg \ (P \land Q) \land \neg \ (\neg \ P \land \neg \ Q)$                    |  |
| OR   | $\neg (\neg P \lor Q) \lor \neg (P \lor \neg Q)$                               |  |

# Circuit diagram: half-adder



4 3 > 4 3

# Adding more than one binary digit ....

#### A full-adder is required to handle the carry bit!



Fall 2013 17 / 28

## Intermission

- Boolean logic is directly realized in physical circuits.
- Algebraic simplifications can be performed on expressions and directly applied to circuits.
- Mathematical characteristics, such as duality, symmetry/antisymmetry, equivalence, and complementarity find their way into circuit analysis and circuit design.



# Encoding binary logic as numbers

- Let 0 represent a *closed* circuit (0 impedance), 1 an *open* circuit (100% impedance).
- A string of circuit states is represented as a sequence of 0's and 1's.
- Construct a mapping from these strings to numeric values

which is interpreted as a base-10 digit number as follows:

$$(1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) = 10.$$

イロト 不得下 イヨト イヨト 二日



# Basic observations about binary numbers

- The "largest" value that can be encoded in a binary string is 2<sup>n</sup>, where *n* is a positive integer indicating the length of the string.
- Clearly, more binary digits are required to represent equivalent values in base-10 arithmetic.
- As presently defined, binary strings encode only *magnitude* (value, size).
- For simplicity's sake, we shall refer to binary strings as binary numbers from this point onward.

• • = • • = •

## Essential arithmetic operations

- Binary numbers can be "added" in much the same way as base-10 numbers; recall how a full-adder circuit operates!
- Multiplying binary numbers by powers of 2 is easy—think about multiplying base-10 numbers by 10.
- Division by powers of 2 is likewise easy (but, what are the limitations?).
- Subtraction amounts to adding inverses! Ask what is an "inverse" and what is the "inverse" of a binary number?

## Forming the additive inverse of a binary number

- Inverses are defined in relation to an operation: the additive inverse of the integer n is another integer, m, that when added to n gives the "identity" for addition: n + m = 0
- In binary arithmetic, the additive inverse of an integer is its "complement." And, conventionally, we use the 2's complement:

### Definition

Given a positive integer *a*, the 2's complement of *a* relative to a fixed-bit length *n* is the *n*-bit binary representation of  $2^n - a$ .

The usual algorithm modifies the original definition by explicitly adding 1 to the *1's complement*:

$$2^n - a = [(2^n - 1) - a] + 1$$

# Forming the 2's complement

Construct the 2's complement of 57, which in binary is  $00111001_2$ ; assume 8 bit word length

• Subtracting 1 from 2<sup>8</sup> gives:

 $10000000_2 - 1_2 = 1111111_2.$ 

< 注入 < 注入

# Forming the 2's complement

Construct the 2's complement of 57, which in binary is  $00111001_2$ ; assume 8 bit word length

• Subtracting 1 from 2<sup>8</sup> gives:

 $10000000_2 - 1_2 = 1111111_2.$ 

• Subtracting 57 from the 1's complement just "flips" its bits:

 $11111111_2 - 00111001_2 = 11000110_2.$ 

イロト 不得下 イヨト イヨト 二日



## Forming the 2's complement

Construct the 2's complement of 57, which in binary is  $00111001_2$ ; assume 8 bit word length

• Subtracting 1 from 2<sup>8</sup> gives:

 $10000000_2 - 1_2 = 11111111_2.$ 

• Subtracting 57 from the 1's complement just "flips" its bits:

 $11111111_2 - 00111001_2 = 11000110_2.$ 

• Finally, add 1 to form the 2's complement:

 $11000110_2 + 1_2 = 11000111_2.$ 

イロト 不得下 イヨト イヨト 二日

# Computing differences with 2's complements

Assuming that the 2's complement of 57 is equivalent to  $-57, \mbox{solve}$  100-57

• Translate 100 into an 8-bit binary number:  $100_{10} = 01100100_2$ .

(日) (同) (三) (三)

# Computing differences with 2's complements

Assuming that the 2's complement of 57 is equivalent to  $-57, \mbox{solve}$  100-57

- Translate 100 into an 8-bit binary number:  $100_{10} = 01100100_2$ .
- Subtracting 57 from 100 is the same adding its complement to 100:

 $01100100_2 + 11000111_2 = 00101011_2,$ 

- 4 圖 2 4 画 2 4 画 2 4

()

## Computing differences with 2's complements

Assuming that the 2's complement of 57 is equivalent to  $-57, \mbox{solve}$  100-57

- Translate 100 into an 8-bit binary number:  $100_{10} = 01100100_2$ .
- Subtracting 57 from 100 is the same adding its complement to 100:

 $01100100_2 + 11000111_2 = 00101011_2,$ 

• Because the leftmost digit is a 0, the result is positive, translate it directly to base 10.

(日) (周) (三) (三)

()

If we reverse the order of terms, we get a negative answer: 57-100.

• Translate 57 as 00111001<sub>2</sub>, and 100 as 01100100<sub>2</sub>.

If we reverse the order of terms, we get a negative answer: 57 - 100.

- Translate 57 as 00111001<sub>2</sub>, and 100 as 01100100<sub>2</sub>.
- Construct the 2's complement of 100:

 $11111111_2 - 01100100_2 = 10011011 + 1 = 10011100_2$ 

If we reverse the order of terms, we get a negative answer: 57-100.

- Translate 57 as 00111001<sub>2</sub>, and 100 as 01100100<sub>2</sub>.
- Construct the 2's complement of 100:

 $11111111_2 - 01100100_2 = 10011011 + 1 = 10011100_2$ 

• Add -100 to 57:

 $10011100_2 + 00111001_2 = 11010101_2$ 



If we reverse the order of terms, we get a negative answer: 57-100.

- Translate 57 as 00111001<sub>2</sub>, and 100 as 01100100<sub>2</sub>.
- Construct the 2's complement of 100:

```
11111111_2 - 01100100_2 = 10011011 + 1 = 10011100_2
```

• Add -100 to 57:

```
10011100_2 + 00111001_2 = 11010101_2
```

• Because the leftmost bit is a 1, use 2's complement arithmetic to translate this number, giving 00101011<sub>2</sub>, which is 43 (but preceded with a negative sign because of the leftmost bit).

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

# A mathematical property of the complement

The complement is an *involution*; recall Shannon's postulates, (X')' = X, which appears as -(-n) = n in common number systems.

### Definition

An *involution* is a function that when composed with itself gives the identity.

#### Do in class

Show that the definition of the 2's complement operation is an involution.

## Some other commonly seen bases in computing

- Base-2 (binary) arithmetic is how computation happens at the "lowest level," but it takes a lot of real-estate to say a little.
- Other commonly encountered bases are multiples of 2, viz., base 8 (octal) and base 16 (hexadecimal).

### Do in class

Construct some common base-2 numbers in base-8 and base-16, showing grouping patterns.

## Summary

- Boolean logic formed the basis of computing machinery at the turn of the last century.
- Properties of the Boolean algebra permeate the study of computing.
- An understanding of the mathematical principles underlying the Boolean algebra deepens our understanding and appreciation for a variety of topic in contemporary computing.
- We should not be surprised to see these concepts again ... perhaps in different contexts, throughout our study of computer science.

- 4 同 6 4 日 6 4 日 6