Homework 1: Coordinate Transforms, Rotation Matrices, Homogeneous Transformations

Problems: Due Fri, 9/20 Code: Due week of 9/16, IN LAB

September 16, 2013

Problems:

- 1. Show that rotations are rigid body transformations, i.e. show that any rotation matrix R preserves the norm of any vector it acts on and the angle between any two vectors it acts on.
- 2. Consider two bases for \mathbb{R}^3

$$\left\{ x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, z = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \qquad \left\{ x' = \begin{bmatrix} \sqrt{3}/3 \\ \sqrt{3}/3 \\ \sqrt{3}/3 \end{bmatrix}, y' = \begin{bmatrix} 0 \\ -\sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}, z' = \begin{bmatrix} \sqrt{2}/\sqrt{3} \\ -1/\sqrt{6} \\ -1/\sqrt{6} \end{bmatrix} \right\} \tag{1}$$

- Show that they are both orthonormal.
- Suppose $v := [v_x \ v_y \ v_z]^T$ is the coordinates of some vector with respect to the standard basis. Find a 3×3 coordinate transformation matrix T such that v' = Tv where v' is the coordinates of the vector written with respect to the x'y'z' basis.
- Show that T is a rotation matrix and explain briefly why you would expect this.
- 3. Derive the Rodrigues formula for a rotation matrix R of an angle θ about an axis ω .

$$R = e^{\omega \theta} = I + \hat{\omega} \sin \theta + \hat{\omega}^2 (1 - \cos \theta) \tag{2}$$

(Assume $||\omega|| = 1$.) You may follow either the derivation we did in Discussion (Wed, 9/4) or the derivation in the book. Give some brief intuition for each step.

- 4. Write down the rotation matrix for an angle of 37.5° about the axis $[-3, 1, 2.5]^{T}$.
- 5. Find the axis of rotation and angle of rotation of a rotation matrix

$$R = \begin{bmatrix} 3/4 & -1/4 & \sqrt{6}/4\\ -1/4 & 3/4 & \sqrt{6}/4\\ -\sqrt{6}/4 & -\sqrt{6}/4 & 1/2 \end{bmatrix}.$$
 (3)

Code:

Write python functions to implement the following formulas from the book. You will need these to complete the labs starting the week of Mon, 9/16. Some of these formulas, we will cover next week.

- The (^) operator for rotation axes in 3D.
 - Input: 3×1 vector, $\omega = \begin{bmatrix} \omega_x & \omega_y & \omega_z \end{bmatrix}^T$.

- Output: 3×3 matrix,

$$\hat{\omega} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}. \tag{4}$$

• Rotation matrix in 2D as function of θ .

- Input: Scalar, θ .

- Output: 2×2 matrix,

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 (5)

- Rotation matrix in 3D as a function of ω and θ .
 - Inputs: 3×1 vector, $\omega = \begin{bmatrix} \omega_x & \omega_y & \omega_z \end{bmatrix}^T$, and scalar, θ .
 - Output: 3×3 matrix,

$$R(\omega, \theta) = e^{\hat{\omega}\theta} = I + \frac{\hat{\omega}}{||\omega||} \sin(||\omega||\theta) + \frac{\hat{\omega}^2}{||\omega||^2} (1 - \cos(||\omega||\theta))$$
(6)

(This is the form for the Rodrigues formula when $||\omega|| \neq 1$.)

- The (^) operator for twists in 2D.
 - Input: 3×1 vector, $\xi = \begin{bmatrix} v_x & v_y & \omega \end{bmatrix}^T$. (Note that here ω is a scalar.)
 - Output: 3×3 matrix,

$$\hat{\xi} = \begin{bmatrix} 0 & -\omega & v_x \\ \omega & 0 & v_y \\ 0 & 0 & 0 \end{bmatrix} . \tag{7}$$

- The (^) operator for twists in 3D.
 - Input: 6×1 vector, $\xi = \begin{bmatrix} v^T & \omega^T \end{bmatrix}^T = \begin{bmatrix} v_x & v_y & v_z & \omega_x & \omega_y & \omega_z \end{bmatrix}^T$.
 - Output: 4×4 matrix,

$$\hat{\xi} = \begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\omega_z & \omega_y & v_x \\ \omega_z & 0 & -\omega_x & v_y \\ -\omega_y & \omega_x & 0 & v_z \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$
 (8)

- Homogeneous transformation in 2D.
 - Inputs: 3×1 vector, $\xi = \begin{bmatrix} v_x & v_y & \omega \end{bmatrix}^T$, and scalar, θ . (Note that here ω is a scalar.)
 - Output: 3×3 matrix,

$$g(\xi, \theta) = e^{\hat{\xi}\theta} = \begin{bmatrix} R & p \\ \mathbf{0} & 1 \end{bmatrix}$$
 (9)

where

$$R = \begin{bmatrix} \cos \omega \theta & -\sin \omega \theta \\ \sin \omega \theta & \cos \omega \theta \end{bmatrix}$$

$$p = \begin{bmatrix} 1 - \cos \omega \theta & \sin \omega \theta \\ -\sin \omega \theta & 1 - \cos \omega \theta \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v_x/\omega \\ v_y/\omega \end{bmatrix}$$

$$(10)$$

$$p = \begin{bmatrix} 1 - \cos \omega \theta & \sin \omega \theta \\ -\sin \omega \theta & 1 - \cos \omega \theta \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v_x/\omega \\ v_y/\omega \end{bmatrix}$$
(11)

- Homogeneous tranformation in 3D.
 - $-\text{ Inputs: } 6\times 1 \text{ vector, } \xi = \begin{bmatrix} v^T & \omega^T \end{bmatrix}^T = \begin{bmatrix} v_x & v_y & v_z & \omega_x & \omega_y & \omega_z \end{bmatrix}^T \text{, and scalar, } \theta.$
 - Output:

$$g(\xi,\theta) = e^{\hat{\xi}\theta} = \begin{bmatrix} e^{\hat{\omega}\theta} & \frac{1}{||\omega||^2} (I - e^{\hat{\omega}\theta})(\hat{\omega}v) + \frac{1}{||\omega||^2} \omega \omega^T v\theta \\ 0 & 1 \end{bmatrix}$$
(12)

- Product of exponentials in 3D.
 - Inputs: $n, 6 \times 1$ vectors, $\xi_1, \xi_2, \dots, \xi_n$, and n, scalars, $\theta_1, \theta_2, \dots, \theta_n$.
 - Outputs

$$g(\xi_1, \theta_1, \xi_2, \theta_2, \dots, \xi_n \theta_n) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} \dots e^{\hat{\xi}_n \theta_n}$$
(13)