
Quiz 7: MDPs 

§  MDPs must have terminal states. False 
§  Every MDP is also a search problem. False 
§  Every search problem can be phrased as an MDP. True 
§  “Markov” means the future is independent of the past, given 

the present. True  
§  There are many (>17) ways to define stationary utilities over 

sequences of rewards. False 
§  Discounting with 0<𝛾<1 can lead to infinite sequence 

rewards, even if every reward is bounded by some R. False 
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Announcements 

§  HW 2 due Tuesday.   
§  Project 3 out today! 
 
§  Should we move Midterm to Oct 29th?  

§  Read: Ch. 17.1-3, S&B Ch. 6.1,2,5   
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Recap: Defining MDPs 
§  Markov decision processes: 

§  States S 
§  Start state s0 
§  Actions A 
§  Transitions P(s’|s,a) (or T(s,a,s’)) 
§  Rewards R(s,a,s’) (and discount γ) 

§  MDP quantities so far: 
§  Policy = Choice of action for each state 
§  Utility (or return) = sum of discounted rewards 

§  Quiz: What is different from our previous 
definition of search problems? 

a

s

s, a 

s,a,s’ 
s’ 
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Grid World 
§  The agent lives in a grid 
§  Walls block the agent’s path 
§  The agent’s actions do not always 

go as planned: 
§  80% of the time, the action North 

takes the agent North  
(if there is no wall there) 

§  10% of the time, North takes the 
agent West; 10% East 

§  If there is a wall in the direction the 
agent would have been taken, the 
agent stays put 

§  Small (negative) “reward” each step 
§  Big rewards come at the end 
§  Goal: maximize sum of rewards* 



Discounting 

§  Typically discount 
rewards by γ < 1 
each time step 
§  Sooner rewards 

have higher utility 
than later rewards 

§  Also helps the 
algorithms 
converge 
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Optimal Utilities 
§  Fundamental operation: compute 

the values (optimal expectimax 
utilities) of states s 

§  Why?  Optimal values define 
optimal policies! 

§  Define the value of a state s: 
V*(s) = expected utility starting in s 

and acting optimally 

§  Define the value of a q-state (s,a): 
Q*(s,a) = expected utility starting in s, 

taking action a and thereafter 
acting optimally 

 
§  Define the optimal policy: 

π*(s) = optimal action from state s 

a

s

s, a 

T(s,a,s’) 
s’ 

R(s,a,s’) 
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Quiz: Define V* in terms of Q*  
and vice versa! 

V*(s) 

Q*(s,a) 

V*(s’) 



The Bellman Equations 
§  Definition of “optimal utility” leads to a 

simple one-step lookahead relationship 
amongst optimal utility values: 

  

 Optimal rewards = maximize over first 
action and then follow optimal policy 

§  Formally: 
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s

s, a 

T(s,a,s’) 
s’ 

R(s,a,s’) 

V*(s) 

Q*(s,a) 

V*(s’) 



Solving MDPs 
§  We want to find the optimal policy π* 

§  Proposal 1: modified expectimax search, starting from 
each state s: 
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a=π*(s) 

s

s, a 

T(s,a,s’) 
s’ 

R(s,a,s’) 

V*(s) 

Q*(s,a) 

V*(s’) 



Why Not Search Trees? 
§  Why not solve with expectimax? 

§  Problems: 
§  This tree is usually infinite (why?) 
§  Same states appear over and over (why?) 
§  We would search once per state (why?) 

§  Idea: Value iteration 
§  Compute optimal values for all states all at 

once using successive approximations 
§  Will be a bottom-up dynamic program 

similar in cost to memoization 
§  Do all planning offline, no replanning 

needed! 
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Value Iteration 
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Value Estimates 
§  Calculate estimates Vk

*(s) 
§  Not the optimal value of s! 
§  The optimal value considering 

only next k time steps (k 
rewards) 

§  As k → ∞, it approaches the 
optimal value 

§  Why: 
§  If discounting, distant rewards 

become negligible 
§  If terminal states reachable from 

everywhere, fraction of episodes 
not ending becomes negligible 

§  Otherwise, can get infinite 
expected utility and then this 
approach actually won’t work 
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Quiz 

1.  What is V*0(s)? 
2.  Express V*k+1(s) in terms of V*k (s’).  
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a
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s, a 

T(s,a,s’) 
s’ 

R(s,a,s’) 

V*
k (s) 

Q*(s,a) 

V*
k (s’) 



Value Iteration 
§  Idea: 

§  Start with V0
*(s) = 0, which we know is right (why?) 

§  Given Vi
*, calculate the values for all states for depth i+1: 

§  This is called a value update or Bellman update 
§  Repeat until convergence 

§  Theorem: will converge to unique optimal values 
§  Basic idea: approximations get refined towards optimal values 
§  Policy may converge long before values do 
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Example: Bellman Updates 
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max happens for 
a=right, other 
actions not shown 

Example: γ=0.9, living 
reward=0, noise=0.2 

=0.8·[0+0.9·1]+0.1·[0+0.9·0]+0.1[0+0.9·0] 

Warning: Quiz on next slide! 



Quiz: Value Iteration 

§  Information propagates outward from terminal 
states and eventually all states have correct 
value estimates 

V2 V3 
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Example: Value Iteration 

§  Information propagates outward from terminal 
states and eventually all states have correct 
value estimates 

V2 V3 
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Gridworld 



Gridworld 
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Gridworld 
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Gridworld 
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Gridworld 
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Convergence* 
§  Define the max-norm: 

§  Theorem: For any two approximations U and V 

§  I.e. any distinct approximations must get closer to each other, 
so, in particular, any approximation must get closer to the true U 
and value iteration converges to a unique, stable, optimal 
solution 

§  Theorem: 

§  I.e. once the change in our approximation is small, it must also 
be close to correct 
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Practice: Computing Actions 

§  Which action should we chose from state s: 
§  Given optimal values V*? 

§  Given optimal q-values Q*? 

§  Lesson: actions are easier to select from Q’s! 
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a

s

s, a 

T(s,a,s’) 
s’ 

R(s,a,s’) 

V*(s) 

Q*(s,a) 

V*(s’) 



Policy Iteration 
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Why do we 
compute V* or Q*, 

if all we care 
about is the best  

policy π*? 



Utilities for Fixed Policies 
§  Another basic operation: compute 

the utility of a state s under a fix 
(general non-optimal) policy 

§  Define the utility of a state s, under a 
fixed policy π: 
Vπ(s) = expected total discounted 

rewards (return) starting in s and 
following π 

§  Recursive relation (one-step look-
ahead / Bellman equation): 
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a

s

s, a 

T(s,a,s’) 
s’ 

R(s,a,s’) 

Vπ (s) 

Q*(s,a) 

a=π(s) 



Policy Evaluation 
§  How do we calculate the V’s for a fixed policy? 

§  Idea one: modify Bellman updates 

§  Idea two: Optimal solution is stationary point 
(equality). Then it’s just a linear system, solve 
with Matlab (or whatever) 
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Policy Iteration 
§  Policy evaluation: with fixed current policy π, find values 

with simplified Bellman updates: 
§  Iterate until values converge 

§  Policy improvement: with fixed utilities, find the best 
action according to one-step look-ahead 
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Comparison 
§  In value iteration: 

§  Every pass (or “backup”) updates both utilities (explicitly, based on 
current utilities) and policy (possibly implicitly, based on current 
policy) 

§  Policy might not change between updates (wastes computation) L  

§  In policy iteration: 
§  Several passes to update utilities with frozen policy 
§  Occasional passes to update policies 
§  Value update can be solved as linear system 
§  Can be faster, if policy changes infequently 

§  Hybrid approaches (asynchronous policy iteration): 
§  Any sequences of partial updates to either policy entries or utilities 

will converge if every state is visited infinitely often 
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Asynchronous Value Iteration 
§  In value iteration, we update every state in each iteration 

§  Actually, any sequences of Bellman updates will 
converge if every state is visited infinitely often 

 
§  In fact, we can update the policy as seldom or often as 

we like, and we will still converge 
 
§  Idea: Update states whose value we expect to change: 

 If                         is large then update predecessors of s 


