
Quiz 7: MDPs

§  MDPs must have terminal states. False
§  Every MDP is also a search problem. False
§  Every search problem can be phrased as an MDP. True
§  “Markov” means the future is independent of the past, given

the present. True
§  There are many (>17) ways to define stationary utilities over

sequences of rewards. False
§  Discounting with 0<𝛾<1 can lead to infinite sequence

rewards, even if every reward is bounded by some R. False

CS 511a: Artificial Intelligence
Fall 2013

Lecture 9: MEU / Markov Processes
10/10/2013

Kilian Weinberger

Many slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore

2

Announcements

§  HW 2 due Tuesday.
§  Project 3 out today!

§  Should we move Midterm to Oct 29th?

§  Read: Ch. 17.1-3, S&B Ch. 6.1,2,5

3

Recap: Defining MDPs
§  Markov decision processes:

§  States S
§  Start state s0
§  Actions A
§  Transitions P(s’|s,a) (or T(s,a,s’))
§  Rewards R(s,a,s’) (and discount γ)

§  MDP quantities so far:
§  Policy = Choice of action for each state
§  Utility (or return) = sum of discounted rewards

§  Quiz: What is different from our previous
definition of search problems?

a

s

s, a

s,a,s’
s’

4

Grid World
§  The agent lives in a grid
§  Walls block the agent’s path
§  The agent’s actions do not always

go as planned:
§  80% of the time, the action North

takes the agent North
(if there is no wall there)

§  10% of the time, North takes the
agent West; 10% East

§  If there is a wall in the direction the
agent would have been taken, the
agent stays put

§  Small (negative) “reward” each step
§  Big rewards come at the end
§  Goal: maximize sum of rewards*

Discounting

§  Typically discount
rewards by γ < 1
each time step
§  Sooner rewards

have higher utility
than later rewards

§  Also helps the
algorithms
converge

6

Optimal Utilities
§  Fundamental operation: compute

the values (optimal expectimax
utilities) of states s

§  Why? Optimal values define
optimal policies!

§  Define the value of a state s:
V*(s) = expected utility starting in s

and acting optimally

§  Define the value of a q-state (s,a):
Q*(s,a) = expected utility starting in s,

taking action a and thereafter
acting optimally

§  Define the optimal policy:

π*(s) = optimal action from state s

a

s

s, a

T(s,a,s’)
s’

R(s,a,s’)

7

Quiz: Define V* in terms of Q*
and vice versa!

V*(s)

Q*(s,a)

V*(s’)

The Bellman Equations
§  Definition of “optimal utility” leads to a

simple one-step lookahead relationship
amongst optimal utility values:

 Optimal rewards = maximize over first
action and then follow optimal policy

§  Formally:

8

a

s

s, a

T(s,a,s’)
s’

R(s,a,s’)

V*(s)

Q*(s,a)

V*(s’)

Solving MDPs
§  We want to find the optimal policy π*

§  Proposal 1: modified expectimax search, starting from
each state s:

9

a=π*(s)

s

s, a

T(s,a,s’)
s’

R(s,a,s’)

V*(s)

Q*(s,a)

V*(s’)

Why Not Search Trees?
§  Why not solve with expectimax?

§  Problems:
§  This tree is usually infinite (why?)
§  Same states appear over and over (why?)
§  We would search once per state (why?)

§  Idea: Value iteration
§  Compute optimal values for all states all at

once using successive approximations
§  Will be a bottom-up dynamic program

similar in cost to memoization
§  Do all planning offline, no replanning

needed!

10

Value Iteration

11

Value Estimates
§  Calculate estimates Vk

*(s)
§  Not the optimal value of s!
§  The optimal value considering

only next k time steps (k
rewards)

§  As k → ∞, it approaches the
optimal value

§  Why:
§  If discounting, distant rewards

become negligible
§  If terminal states reachable from

everywhere, fraction of episodes
not ending becomes negligible

§  Otherwise, can get infinite
expected utility and then this
approach actually won’t work

12

Quiz

1.  What is V*0(s)?
2.  Express V*k+1(s) in terms of V*k (s’).

13

a

s

s, a

T(s,a,s’)
s’

R(s,a,s’)

V*
k (s)

Q*(s,a)

V*
k (s’)

Value Iteration
§  Idea:

§  Start with V0
*(s) = 0, which we know is right (why?)

§  Given Vi
*, calculate the values for all states for depth i+1:

§  This is called a value update or Bellman update
§  Repeat until convergence

§  Theorem: will converge to unique optimal values
§  Basic idea: approximations get refined towards optimal values
§  Policy may converge long before values do

14

Example: Bellman Updates

15

max happens for
a=right, other
actions not shown

Example: γ=0.9, living
reward=0, noise=0.2

=0.8·[0+0.9·1]+0.1·[0+0.9·0]+0.1[0+0.9·0]

Warning: Quiz on next slide!

Quiz: Value Iteration

§  Information propagates outward from terminal
states and eventually all states have correct
value estimates

V2 V3

16

? ?

?

Example: Value Iteration

§  Information propagates outward from terminal
states and eventually all states have correct
value estimates

V2 V3

17

18

Gridworld

Gridworld

19

Gridworld

20

Gridworld

21

Gridworld

22

Convergence*
§  Define the max-norm:

§  Theorem: For any two approximations U and V

§  I.e. any distinct approximations must get closer to each other,
so, in particular, any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal
solution

§  Theorem:

§  I.e. once the change in our approximation is small, it must also
be close to correct

23

Practice: Computing Actions

§  Which action should we chose from state s:
§  Given optimal values V*?

§  Given optimal q-values Q*?

§  Lesson: actions are easier to select from Q’s!

24

a

s

s, a

T(s,a,s’)
s’

R(s,a,s’)

V*(s)

Q*(s,a)

V*(s’)

Policy Iteration

25

Why do we
compute V* or Q*,

if all we care
about is the best

policy π*?

Utilities for Fixed Policies
§  Another basic operation: compute

the utility of a state s under a fix
(general non-optimal) policy

§  Define the utility of a state s, under a
fixed policy π:
Vπ(s) = expected total discounted

rewards (return) starting in s and
following π

§  Recursive relation (one-step look-
ahead / Bellman equation):

26

a

s

s, a

T(s,a,s’)
s’

R(s,a,s’)

Vπ (s)

Q*(s,a)

a=π(s)

Policy Evaluation
§  How do we calculate the V’s for a fixed policy?

§  Idea one: modify Bellman updates

§  Idea two: Optimal solution is stationary point
(equality). Then it’s just a linear system, solve
with Matlab (or whatever)

27

Policy Iteration
§  Policy evaluation: with fixed current policy π, find values

with simplified Bellman updates:
§  Iterate until values converge

§  Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

28

Comparison
§  In value iteration:

§  Every pass (or “backup”) updates both utilities (explicitly, based on
current utilities) and policy (possibly implicitly, based on current
policy)

§  Policy might not change between updates (wastes computation) L

§  In policy iteration:
§  Several passes to update utilities with frozen policy
§  Occasional passes to update policies
§  Value update can be solved as linear system
§  Can be faster, if policy changes infequently

§  Hybrid approaches (asynchronous policy iteration):
§  Any sequences of partial updates to either policy entries or utilities

will converge if every state is visited infinitely often
29

Asynchronous Value Iteration
§  In value iteration, we update every state in each iteration

§  Actually, any sequences of Bellman updates will
converge if every state is visited infinitely often

§  In fact, we can update the policy as seldom or often as

we like, and we will still converge

§  Idea: Update states whose value we expect to change:

 If is large then update predecessors of s

