Quiz 7: MDPs

- MDPs must have terminal states. False
- Every MDP is also a search problem. False
- Every search problem can be phrased as an MDP. **True**
- "Markov" means the future is independent of the past, given the present. True
- There are many (>17) ways to define stationary utilities over sequences of rewards. False
- Discounting with 0<γ<1 can lead to infinite sequence rewards, even if every reward is bounded by some R. False

CS 511a: Artificial Intelligence Fall 2013

Lecture 9: MEU / Markov Processes 10/10/2013

Kilian Weinberger

Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Announcements

- HW 2 due Tuesday.
- Project 3 out today!

Should we move Midterm to Oct 29th?

Read: Ch. 17.1-3, S&B Ch. 6.1,2,5

Recap: Defining MDPs

- Markov decision processes:
 - States S
 - Start state s₀
 - Actions A
 - Transitions P(s' |s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility (or return) = sum of discounted rewards
- Quiz: What is different from our previous definition of search problems?

Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small (negative) "reward" each step
- Big rewards come at the end
- Goal: maximize sum of rewards*

Discounting

- Typically discount rewards by γ < 1 each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge

Optimal Utilities

- Fundamental operation: compute the values (optimal expectimax utilities) of states s
- Why? Optimal values define optimal policies!
- Define the value of a state s: V*(s) = expected utility starting in s and acting optimally
- Define the value of a q-state (s,a):
 Q^{*}(s,a) = expected utility starting in s, taking action a and thereafter acting optimally
- Define the optimal policy:
 π^{*}(s) = optimal action from state s

Quiz: Define V* in terms of Q* and vice versa!

The Bellman Equations

 Definition of "optimal utility" leads to a simple one-step lookahead relationship amongst optimal utility values:

Optimal rewards = maximize over first action and then follow optimal policy

• Formally:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Solving MDPs

- We want to find the optimal policy π^*
- Proposal 1: modified expectimax search, starting from each state s:

$$\pi^{*}(s) = \arg \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$V^{*}(s') = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s') = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Why Not Search Trees?

- Why not solve with expectimax?
- Problems:
 - This tree is usually infinite (why?)
 - Same states appear over and over (why?)
 - We would search once per state (why?)

Idea: Value iteration

- Compute optimal values for all states all at once using successive approximations
- Will be a bottom-up dynamic program similar in cost to memoization
- Do all planning offline, no replanning needed!

Value Iteration

Value Estimates

- Calculate estimates V_k^{*}(s)
 - Not the optimal value of s!
 - The optimal value considering only next k time steps (k rewards)
 - As k → ∞, it approaches the optimal value
 - Why:
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and then this approach actually won't work

Quiz

1. What is $V_0^*(s)$? 2. Express $V_{k+1}^*(s)$ in terms of $V_k^*(s')$.

Value Iteration

- Idea:
 - Start with V₀^{*}(s) = 0, which we know is right (why?)
 - Given V^{*}_i, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Warning: Quiz on next slide!

Example: γ =0.9, living reward=0, noise=0.2

Example: Bellman Updates

Quiz: Value Iteration

 Information propagates outward from terminal states and eventually all states have correct value estimates

Example: Value Iteration

 Information propagates outward from terminal states and eventually all states have correct value estimates

G Gridworld Display					
	▲ 0.00	0.00 ≯	0.72 →	1.00	
	•		•	-1.00	
	•	•	•	0.00	
	VALUES AFTER 2 ITERATIONS				

C C Gridworld Display				
	0.00 →	0.52 →	0.78 ▶	1.00
	0.00		0.43	-1.00
	0.00	0.00	0.00	0.00
				•
VALUES AFTER 3 ITERATIONS				

00	Gridworld Display				
	0.37 →	0.66 →	0.83 →	1.00	
	0.00		• 0.51	-1.00	
	•	0.00 →	• 0.31	∢ 0.00	
	VALUES AFTER 4 ITERATIONS				

O O O 🔿 🖾 Gridworld Display				
	0.51 →	0.72 ≯	0.84 ≯	1.00
	•		• 0.55	-1.00
	•	0.22 →	• 0.37	∢ 0.13
VALUES AFTER 5 ITERATIONS				

Gridworld Display				
	0.64 →	0.74 ▶	0.85 →	1.00
	0.57		• 0.57	-1.00
	▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS				

Convergence*

- Define the max-norm: $||U|| = \max_{s} |U(s)|$
- Theorem: For any two approximations U and V

$$||U^{t+1} - V^{t+1}|| \le \gamma ||U^t - V^t||$$

 I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution

• Theorem: $||U^{t+1} - U^t|| < \epsilon, \Rightarrow ||U^{t+1} - U|| < 2\epsilon\gamma/(1-\gamma)$

 I.e. once the change in our approximation is small, it must also be close to correct

Practice: Computing Actions

- Which action should we chose from state s:
 - Given optimal values V*?

$$\arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Given optimal q-values Q*?

$$\arg\max_{a} Q^*(s,a)$$

Lesson: actions are easier to select from Q's!

Policy Iteration

Why do we compute V* or Q*, if all we care about is the best policy π*?

Utilities for Fixed Policies

- Another basic operation: compute the utility of a state s under a fix (general non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 - $V^{\pi}(s)$ = expected total discounted rewards (return) starting in s and following π

$$\nabla^{\pi}$$
 (s) s
a
Q^{*}(s,a) s, a
R(s,a,s') T(s,a,s')
s' γ

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

a=\pi(s)

 $V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$

Policy Evaluation

- How do we calculate the V's for a fixed policy?
- Idea one: modify Bellman updates

 $V_0^{\pi}(s) = 0$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Idea two: Optimal solution is stationary point (equality). Then it's just a linear system, solve with Matlab (or whatever)

Policy Iteration

- Policy evaluation: with fixed current policy π, find values with simplified Bellman updates:
 - Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

 Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

Comparison

- In value iteration:
 - Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)
 - Policy might not change between updates (wastes computation) ③
- In policy iteration:
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies
 - Value update can be solved as linear system
 - Can be faster, if policy changes infequently
- Hybrid approaches (asynchronous policy iteration):
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often

Asynchronous Value Iteration

- In value iteration, we update every state in each iteration
- Actually, any sequences of Bellman updates will converge if every state is visited infinitely often
- In fact, we can update the policy as seldom or often as we like, and we will still converge
- Idea: Update states whose value we expect to change:
 If $|V_{i+1}(s) V_i(s)|$ is large then update predecessors of s