Quiz 7: MDPs

MDPs must have terminal states. False
Every MDP is also a search problem. False
Every search problem can be phrased as an MDP. True

“Markov” means the future is independent of the past, given
the present. True

There are many (>17) ways to define stationary utilities over
sequences of rewards. False

Discounting with 0<y<1 can lead to infinite sequence
rewards, even if every reward is bounded by some R. False

CS 511a: Artificial Intelligence
Fall 2013

Lecture 9: MEU / Markov Processes
10/10/2013

Kilian Weinberger

Many slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore

Announcements

HW 2 due Tuesday.
Project 3 out today!

Should we move Midterm to Oct 29t?

Read: Ch. 17.1-3, S&B Ch. 6.1,2,5

Recap: Defining MDPs

= Markov decision processes:
= States S
= Start state s, o
= Actions A
» Transitions P(s’ |s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount v)

= MDP quantities so far:
» Policy = Choice of action for each state
= Utility (or return) = sum of discounted rewards

» Quiz: What is different from our previous
definition of search problems?

Grid World

The agent lives in a grid

Walls block the agent’ s path

The agent’ s actions do not always
go as planned:

= 80% of the time, the action North
takes the agent North
(if there is no wall there)

= 10% of the time, North takes the
agent West; 10% East

= |f there is a wall in the direction the
agent would have been taken, the
agent stays put

Small (negative) “reward” each step
Big rewards come at the end
Goal: maximize sum of rewards”™

2

ok §
1

Discounting

= Typically discount
rewards by v < 1 i
each time step T\

= Sooner rewards

have higher utility
than later rewards TN

= Also helps the -
algorithms -
converge 2

Optimal Utilities

Fundamental operation: compute
the values (optimal expectimax
utilities) of states s

Why? Optimal values define
optimal policies!

Define the value of a state s:

V'(s) = expected utility starting in s
and acting optimally

Define the value of a g-state (s,a): Quiz: Define V* in terms of Q*
Q’(s,a) = expected utility starting in s, and vice versa!

taking action a and thereafter
acting optimally

3 0.812 0.868 0.912 3 — — —

Define the optimal policy: 2 | o762

ose0 | =17 2| |}
7 (s) = optimal action from state s

1 0.705 0.655 0.611 0.388 1 t — -

The Bellman Equations

= Definition of “optimal utility” leads to a
simple one-step lookahead relationship

amongst optimal utility values: V(s)

Optimal rewards = maximize over first B
action and then follow optimal policy Q'(s,2)@ s,

-

-
-
-

_R(s,a,s’ \T(s,a,s") -

V'(s')As’

= Formally: s
V*(s) = max Q*(s,a)

Q*(s,a) => T(s,a, s [R(s, a,s’) + 'yV*(s’)]

V*i(s) = mC?XZT(S’ a,s) {R(s, a,s’) + ’}/V*(S/)}

S

Solving MDPs

= We want to find the optimal policy =*

= Proposal 1: modified expectimax search, starting from
each state s:

7 (s) = argmaxQ*(s,a)

Q*(s,a) = ZT(S, a,s') [R(S, a,s’) + ’yV*(s’)}

Q's.2)Qs.
V*i(s) = max Q*(s,a)

_R(s,a,s’ \T(s,a,s") -

-

A

Why Not Search Trees?

= Why not solve with expectimax?

= Problems:
= This tree is usually infinite (why?) p
= Same states appear over and over (why?) *
= We would search once per state (why?)

= |dea: Value iteration

= Compute optimal values for all states all at
once using successive approximations

= Will be a bottom-up dynamic program
similar in cost to memoization o

= Do all planning offline, no replanning
needed!

10

Value lteration

Valoe function With Trajectory

11

Value Estimates

= Calculate estimates V, (s)

Not the optimal value of s!

The optimal value considering
only next k time steps (k
rewards)

As k — oo, it approaches the
optimal value
Why:
= |f discounting, distant rewards
become negligible

= |f terminal states reachable from
everywhere, fraction of episodes
not ending becomes negligible

= Otherwise, can get infinite
expected utility and then this
approach actually won’ t work

12

Quiz

1. What is V*y(s)?
2. Express V*,,,(s) in terms of V*, (s’).

13

Value lteration

» |dea:
= Start with V, (s) = 0, which we know is right (why?)
= Given V/, calculate the values for all states for depth i+1:

Vit1(s) «— mC?XZT(S, a,s) [R(S,CL, s + ’y‘/}(s/)}

S

» This is called a value update or Bellman update
= Repeat until convergence

= Theorem: will converge to unique optimal values
» Basic idea: approximations get refined towards optimal values
» Policy may converge long before values do

14

Warning: Quiz on next slide! Example: y=0.9, living
reward=0, noise=0.2

Example: Bellman Updates

Vig1(s) = mC?XZT(S, a,s') {R(s, a,s’) + 'y\/f,;(s/)}

S

12((3,3)) = Y T((3,3),right, s") |R((3,3)) + 0.9 V1 ()]

S
max happens for
sergn oner * © =0.8:[0+0.9-1]+0.1-[0+0.9-0]+0.1[0+0.9-0}
15

Quiz: Value lteration

+ 1

+ 1

* |Information propagates outward from terminal
states and eventually all states have correct

value estimates

16

Example: Value lteration

+ 1

+ 1

* |Information propagates outward from terminal
states and eventually all states have correct

value estimates

17

Gridworld

N\ Gridworld Display

VALUES AFTER 2 ITERATIONS

18

Gridworld

N\ Gridworld Display

VALUES AFTER 3 ITERATIONS

19

Gridworld

N\ Gridworld Display

VALUES AFTER 4 ITERATIONS

20

Gridworld

N\ Gridworld Display

.84 »|| 1.00

VALUES AFTER 5 ITERATIONS

21

Gridworld

N\ Gridworld Display

VALUES AFTER

100 ITERATIONS

22

Convergence”®

= Define the max-norm: ||U|| = maxs |[U(s)|

* Theorem: For any two approximations U and V
U — v <y Ut - V|

= |.e. any distinct approximations must get closer to each other,
S0, in particular, any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal

solution

= Theorem:
UL — Ul <€, = UL - U|| < 2ev/(1 —7)

= |.e. once the change in our approximation is small, it must also
be close to correct

23

Practice: Computing Actions

= \Which action should we chose from state s:
= Given optimal values V*?

arg max ZT(S, a,s)[R(s,a,s") +~V*(s)]

S

= Given optimal g-values Q*?

arg maxQ*(s,a)
a

» | esson: actions are easier to select from Q’ s!

24

Policy lteration

Utilities for Fixed Policies

Another basic operation: compute
the utility of a state s under a fix
(general non-optimal) policy

Define the utility of a state s, under a
fixed policy m:

V7(s) = expected total discounted
rewards (return) starting in s and
following &t

Recursive relation (one-step look-
ahead / Bellman equation):

V*i(s) = mC?XZT(S, a,s) {R(s, a,s’) + ’yV*(s’)}

a=mn(s)

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V()]

26

Policy Evaluation

= How do we calculate the V' s for a fixed policy?

* |dea one: modify

Vo (s) =0

Bellman updates

Tr1(s) = > T(s,m(s), s R(s,7(s),s') + 7V ()]

* |dea two: Optima

solution is stationary point

(equality). Then it’ s just a linear system, solve

with Matlab (or w

natever)

27

Policy lteration

= Policy evaluation: with fixed current policy r, find values
with simplified Bellman updates:
= [terate until values converge

ViE L (s) — D T(s,m(s), ") |R(s,m(s),s") 4+ v V™ ()]

= Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

Tp+1(s) = arg maXZT(s, a,s) {R(s, a,s) + vvﬂk(s’)}

S/

28

Comparison

= |n value iteration:

= Every pass (or “backup”) updates both utilities (explicitly, based on
current utilities) and policy (possibly implicitly, based on current

policy)
= Policy might not change between updates (wastes computation) ®

= |n policy iteration:
» Several passes to update utilities with frozen policy
= QOccasional passes to update policies
= Value update can be solved as linear system
» Can be faster, if policy changes infequently

= Hybrid approaches (asynchronous policy iteration):

* Any sequences of partial updates to either policy entries or utilities

will converge if every state is visited infinitely often 2

Asynchronous Value lteration

In value iteration, we update every state in each iteration

Actually, any sequences of Bellman updates will
converge if every state is visited infinitely often

In fact, we can update the policy as seldom or often as
we like, and we will still converge

|dea: Update states whose value we expect to change:
If [V,.(s)-V.(s)| is large then update predecessors of s

