COT 3100: Spring 2012 Exam 1, **PROBLEM 1**.

Restate each premise and the conclusion of the following argument using logical notation. Give a list of each basic logical variable you define. Then determine whether the argument is valid. State each of your steps using logical notation, and explain each step carefully.

- 1. She is a Math Major or a Computer Science Major.
- 2. If she does not know discrete math, she is not a Math Major.
- 3. If she knows discrete math, she is smart.
- 4. She is not a Computer Science Major.
- 5. Therefore, she is smart.

Solution:	
She is a Math Major	m
She is a Computer Science Major	c
She knows discrete math	k
She is smart	s
1. She is a Math Major or a Computer Science Major.	$m \lor c$
2. If she does not know discrete math, she is not a Math Major.	$\neg k \rightarrow \neg m$
3. If she knows discrete math, she is smart.	$k \to s$
4. She is not a Computer Science Major.	$\neg c$
5. Therefore, she is smart.	s

Direct proof: starting with $\neg c$ and $m \lor c$ we can conclude m. From m and the contrapositive of $\neg k \to \neg m$ we can conclude k. From k and $k \to s$ we can conclude s.

Thus, the argument is valid.

- (part a) Determine whether the following propositions are true or false:
 - 1. 1 + 1 = 3 if and only if 2 + 2 = 3
 Solution: TRUE
 - 2. If it is raining, then it is raining. Solution: TRUE
 - If 1 < 0 then 3 = 4.
 Solution: TRUE
 - 4. If 1 + 1 = 2 or 1 + 1 = 3, then 2 + 2 = 3 and 2 + 2 = 4Solution: FALSE.
- (part b) Use logical equivalences to show that that $p \leftrightarrow q$ and $(p \wedge q) \lor (\neg p \wedge \neg q)$ are logically equivalent.

Solution: You don't need to state the reasons. This is done below just to explain to you what is happening at each step.

$$\begin{array}{l} p \leftrightarrow q \\ (p \rightarrow q) \wedge (q \rightarrow p) \\ [\neg p \lor q] \wedge [\neg q \lor p] \\ [(\neg p \lor q) \wedge \neg q] \lor [(\neg p \lor q) \wedge p] \\ [(\neg p \wedge \neg q) \lor (q \wedge \neg q)] \lor [(\neg p \wedge p) \lor (q \wedge p)] \\ [(\neg p \wedge \neg q) \lor F] \lor [F \lor (p \wedge q)] \\ (\neg p \wedge \neg q) \lor (p \wedge q) \end{array} \right)$$
 defn of \leftrightarrow defn of \rightarrow distribution distribution

COT 3100: Spring 2012 Exam 1, **PROBLEM 3**.

(part a) Write out the truth table for the proposition s ≡ ¬(r → ¬q) ∨ (p ∧ ¬r).
 Solution: intermediate steps are helpful as you do the problem, but they are not required.

p	q	r	$\neg q$	$\neg r$	$r \to \neg q$	$\neg(r \rightarrow \neg q)$	$p \wedge \neg r$	$\neg (r \to \neg q) \lor (p \land \neg r)$
Т	Т	Т	F	\mathbf{F}	F	Т	F	Т
Т	Т	F	F	Т	Т	F	Т	Т
Т	F	Т	Т	F	Т	F	F	F
Т	F	F	Т	Т	Т	F	Т	Т
F	Т	Т	F	F	F	Т	F	Т
F	Т	F	F	Т	Т	F	F	F
F	F	Т	Т	F	Т	F	F	F
F	F	F	Т	Т	Т	F	F	F

• (part b) Suppose you know that q and r in part (a) are both true. Can you conclude anything about the proposition s? Prove your result using two methods: with your truth table above, and by using a logical argument (or logical equivalences).

Solution: Yes, you can conclude that s is true. This corresponds to row 1 and 5 of the truth table, above. For the logical equivalences:

$$\begin{array}{c|c} \neg(r \to \neg q) \lor (p \land \neg r) \\ \neg(T \to \neg T) \lor (p \land \neg T) \\ \neg(T \to F) \lor (p \land F) \\ \neg F \lor F \\ T \lor F \\ T \end{array} \right| \text{ plug in } q \text{ and } r$$

COT 3100: Spring 2012 Exam 1, **PROBLEM 4**.

- (part a) Find all possible counterexamples, if any, to these universally quantified statements, where the domain for all variables consists of all real numbers.
 - 1. $\forall x(x^2 \neq x)$: Solution: x = 1 and x = 0 are the only counter-examples.
 - 2. $\forall x(x^2 \neq 2)$: Solution: $x = \sqrt{2}$ and $x = -\sqrt{2}$ are the only counter-examples.
 - 3. $\forall x(|x| > 0)$: Solution: x = 0 is the only counter-example.
- (part b) Determine the truth value of each of these statements if the domain of each variable consists of all real numbers. For the solution: only true / false required to be stated. No reason need be given. I give the reason for clarity.
 - 1. $\forall x \exists y (x^2 = y)$: Solution: this is true. For any given x, we can select the specific value y such that $y = x^2$.
 - 2. $\forall x \exists y (x = y^2)$: Solution: this is false, since no such y can exist if x < 0.
 - 3. $\exists x \forall y (xy = 0)$: Solution: this is true. We can let x = 0.
 - 4. $\exists x \forall y ((y \neq 0) \rightarrow (xy = 1))$: Solution: this is false. It attempts to say that there is an x that is the reciprocal of all nonzero values y, which does not exist.