Prof. Aephraim Steinberg

Physics 356F: Problem Set #1 assigned 18 September 2013 (due the week of October 1, at the start of your tutorial section)

- 1. An arbitrary polarization state of a photon may be written $|\psi\rangle = \alpha |H\rangle + \beta |V\rangle \equiv \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$. Since an overall phase has no measurable effect, we can take $\alpha = a$ and $\beta = be^{i\phi}$, where $a, b, and \phi$ (and hence α) are all real.
 - (a) Suppose that the probability P_R of this photon being transmitted by a rightcircular polarizer is equal to the probability P_L of it being transmitted by a left-circular polarizer:

$$|\langle R|\psi\rangle|^2 = |\langle L|\psi\rangle|^2 \text{, or}$$

$$\left| \left(\begin{array}{cc} 1/\sqrt{2} & -i/\sqrt{2} \end{array} \right) \left(\begin{array}{c} a \\ be^{i\phi} \end{array} \right) \right|^2 = \left| \left(\begin{array}{cc} 1/\sqrt{2} & i/\sqrt{2} \end{array} \right) \left(\begin{array}{c} a \\ be^{i\phi} \end{array} \right) \right|^2$$

What can you conclude about $a, b, and \phi$?

(b) Suppose *additionally* that the probability P_{45} of this photon being transmitted by a 45° polarizer is equal to the probability P_{-45} of it being transmitted by a -45° polarizer:

$$\left| \langle 45^{\circ} | \psi \rangle \right|^2 = \left| \langle -45^{\circ} | \psi \rangle \right|^2 , \text{ or }$$
$$\left| \left(\begin{array}{cc} 1/\sqrt{2} & 1/\sqrt{2} \end{array} \right) \left(\begin{array}{c} a \\ be^{i\phi} \end{array} \right) \right|^2 = \left| \left(\begin{array}{cc} 1/\sqrt{2} & -1/\sqrt{2} \end{array} \right) \left(\begin{array}{c} a \\ be^{i\phi} \end{array} \right) \right|^2$$

What more can you conclude about $a, b, and \phi$?

- (c) What can you say about the polarization of the photon?
- 2. Problem 1.7 from the textbook
- 3. Problem 1.8 from the textbook
- 4. Problem 2.9 from the textbook
- 5. Problem 2.10 from the textbook

- 6. Suppose an interferometer has two interfering paths to a given final event, and the probability of taking path 1 is P_1 , while the probability of taking path 2 is P_2 . Assume that the two paths are indistinguishable.
 - (a) What can you say in general about the probability *amplitudes* for path 1 and path 2 (making no assumptions about phase)?
 - (b) Show that the probability $P_{1\text{or}2}$ of the final event occuring depends on P_1 and P_2 and on the *relative* phase of the two amplitudes but not on their *absolute* phases.
 - (c) Find the *average* value of $P_{1or2}(\Delta \phi)$, averaged over all possible values of the phase difference $\Delta \phi$:

$$\overline{P_{\rm lor2}(\Delta\phi)} = \int_0^{2\pi} \frac{d\Delta\phi}{2\pi} P_{\rm lor2}(\Delta\phi) \ . \tag{1}$$

- 7. Consider a Mach-Zehnder interferometer as described in class, but with beam-splitters whose reflectivities are 36% and whose transmissivities are 64% (instead of the 50-50 case we discussed).
 - (a) What are the *probability amplitudes* for reflection and transmission at these beam splitters?
 - (b) Suppose that the path-length difference between the two arms of the interferometer is some fixed ΔL . Calculate the probability of reaching output port 1 (which can be reached if there is one reflection and one transmission, in either order), as a function of the wavelength λ .
 - (c) Calculate the probability of reaching output port 2 (which requires either two transmissions or two reflections), as a function of λ .
 - (d) Sketch P_1 and P_2 over the range of wavelengths from $\Delta L/4$ to ΔL , labelling the relevant points on the sketches (i.e., the positions and values of the minima and maxima).
- 8. Suppose we have constructed a *three*-path interferometer, i.e., a system where a photon can take any of three different paths to reach our detector. The probability amplitude of this detection event occurring via path 1 is $\frac{1}{3}e^{i\phi_1}$; via path 2 it is $\frac{1}{3}e^{i\phi_2}$; and via path 3 it is $\frac{1}{3}e^{i\phi_3}$.

Further suppose that some evil spy has measured whether or not our photon takes path 3 (e.g., by inserting a bomb which would be triggered by path 3, although without absorbing the photon). On the other hand, there is no possible way for any one to tell whether path 1 or path 2 is followed.

What is the probability of us detecting the photon, as a function of ϕ_1 , ϕ_2 , and ϕ_3 ? Sketch this as a function of the relevant phase variable(s).