Physics 356F: Problem Set #4 assigned 14 November 2013 (due the week of 27 November at the start of tutorial)

Note: although you have two weeks to complete this, I recommend you start early, as I plan to assign one final problem set next week.

- 1. Two energy-eigenstates of the harmonic oscillator, $|m\rangle$ and $|n\rangle$, have a nonvanishing matrix element of X^2 , i.e., $\langle m|X^2|n\rangle \neq 0$.
 - (a) Write down how to express this fact in the position basis, in terms of $\psi_m(x)$ and $\psi_n(x)$. (You do not need to solve the resulting equation!)
 - (b) Expanding X^2 in terms of a and a^{\dagger} (*instead* of working in the position basis), what can you conclude about m and n?
- 2. If two potential wells are separated by a repulsive delta-function barrier, the two lowest energy states can be shown to be symmetric and antisymmetric superpositions of the ground states $|L\rangle$ and $|R\rangle$ of the left and right wells, $|S\rangle \equiv \frac{1}{\sqrt{2}} (|L\rangle + |R\rangle)$ and $|A\rangle \equiv \frac{1}{\sqrt{2}} (|L\rangle |R\rangle)$. Suppose that

$$\mathcal{H}|S\rangle = E_S|S\rangle$$
 and
 $\mathcal{H}|A\rangle = E_A|A\rangle$. (1)

If at t = 0 the particle is in state $|L\rangle$, solve for the state as a function of time. Calculate $|\langle L|\Psi(t)\rangle|^2$.

- 3. Consider two spin-1/2 particles in a Hamiltonian $\mathcal{H} = aS_{x1}S_{x2}$. At t = 0, they are in the state $|\Psi(0)\rangle = |\uparrow\rangle|\uparrow\rangle$.
 - (a) Write down four orthogonal eigenstates of \mathcal{H} and the corresponding eigenvalues. Hint: since the Hamiltonian commutes with S_{x1} and S_{x2} , which also commute with one another, all three operators may be simultaneously diagonalized.
 - (b) Write down $|\Psi(0)\rangle$ in terms of these eigenstates.
 - (c) Given your knowledge of the time evolution of the stationary states, you can write down $|\Psi(t)\rangle$ easily now, using the superposition principle. (Do so.)
 - (d) At time t, suppose particle 1 is found in state $|+x\rangle$. What is the state of particle 2? Describe what this means (physically, in what direction is particle 2 pointing?).

- (e) At time t, suppose particle 1 is found in state $|-x\rangle$. What is the state of particle 2? Describe what this means (physically, in what direction is particle 2 pointing?).
- (f) Given your knowledge of how particle 2 would behave in a static magnetic field (section 4.3), explain the results of d and e in one or two sentences.
- (g) Use the fact that $\frac{d}{dt}\langle A \rangle = \frac{i}{\hbar}\langle [\mathcal{H}, A] \rangle$ for operators without explicit time-dependence (equation 4.16 from the text) to calculate how $\langle S_{z1} \rangle$ and $\langle S_{y1} \rangle$ vary as a function of time for a given value of S_{x2} (for this part alone, do not use the initial state provided for the other parts of the problem).
- (h) Calculate the probabilities of finding the spins in $|\uparrow\rangle|\uparrow\rangle$, $|\downarrow\rangle|\downarrow\rangle$, and $|\uparrow\rangle|\downarrow\rangle$ as a function of time.
- (i) What quantity is conserved according to the results of part h? (Hint: it is bilinear in spin operators.)
- (i) Demonstrate from the commutation laws that you should have expected this conservation law from the start.
- 4. For each of the following potentials U(x, y), explain whether they are separable in Cartesian coordinates, cylindrical coordinates, both, or neither.
 - (a) x + y

(b)
$$e^{-(x^2+y^2)/2r^2}$$

- (c) 0 iff |x| < r and |y| < r; V_0 otherwise.
- (d) $\sqrt{x^2 + y^2}$
- 5. Consider a two-dimensional harmonic oscillator (the three-dimensional case is treated in section 10.5). We can write the state $\psi(x,y) = \psi_1(x)\psi_2(y)$ or $|\Psi\rangle = |\psi_1\rangle_x |\psi_2\rangle_y$. The Hamiltonian is $\mathcal{H} = (P_x^2 + P_y^2)/2m + (X^2 + Y^2)m\omega^2/2$, which can be separated into $\mathcal{H} = H_x + H_y$ in the obvious way. We define our x- and y-eigenstates as usual, by $H_i|n\rangle_i = (n+1/2)\hbar\omega|n\rangle_i$, where $i = \{x, y\}$. We define 1D lowering operators $a_y = \sqrt{\frac{m\omega}{2\hbar}} \left(Y + \frac{i}{m\omega}P_y\right)$ and the same for x.

This allows us to write $H_x = \hbar \omega \left(a_x^{\dagger} a_x + 1/2 \right)$ and the same for y.

- (a) What are the energies of the states $|0\rangle_x |0\rangle_y$, $|0\rangle_x |1\rangle_y$, and $|1\rangle_x |1\rangle_y$?
- (b) Use the commutators to find $d\langle a_x\rangle/dt$ and $d\langle a_y\rangle/dt$ (although the lowering operators are not Hermitian observables, one may still calculate their time dependence in this way).
- (c) At what frequenc(y) (ies) can observables evolve if the system is initially prepared in state $(|01\rangle - |10\rangle)/\sqrt{2?}$

- (d) Let us define new operators $a_{\pm 45} = (a_x \pm a_y)/\sqrt{2}$ to separate the potential along the 45 and -45 axes instead of x and y. Rewrite the Hamiltonian in terms of these operators.
- (e) What is the action of these operators on the state $(|01\rangle |10\rangle)/\sqrt{2}$? What do you conclude about the physical meaning of this state?