
Interac(ve	
 Machine	
 Learning	

MAS.S62	

Brad	
 Knox:	
 the	
 brief	
 story	

•  Undergrad:	
 psychology,	
 pre-­‐med,	
 and	
 a	
 liEle	

philosophy	
 at	
 Texas	
 A&M	

•  The	
 year	
 aHer:	
 quarter-­‐life	
 crisis	

•  Post-­‐bacc	
 and	
 Robocup	
 at	
 UT	
 Aus(n	

•  PhD	
 with	
 Peter	
 Stone	
 at	
 UT	
 Aus(n	

– Disserta(on:	
 Learning	
 from	
 human-­‐generated	

reward	

•  Postdoc	
 in	
 MIT	
 Media	
 Lab	
 with	
 Cynthia	

Breazeal	

Interac(ve	
 Machine	
 Learning	
 (IML)	

Course	
 defini(on	
 -­‐	
 machine	
 learning	
 such	
 that	

1.  a	
 human	
 is	
 in	
 a	
 (ght	
 machine	
 learning	
 loop,	

observing	
 the	
 result	
 of	
 learning	
 and	
 providing	

input	
 that	
 affects	
 further	
 learning,	
 and	

2.  the	
 human	
 inten(onally	
 provides	
 input,	

fulfilling	
 a	
 teaching	
 role.	

Output

Human user

Input

Learning
system

IML	
 examples	

Interac(ve	
 image	
 segmenta(on	

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Input data

Segmentation

Iteration 1 Iteration 2 Iteration 3

Fails	
 and	
 Olsen	
 (2003)	

IML	
 examples	

ManiMatrix	
 –	
 user	
 can	
 manipulate	
 confusion	

matrix,	
 affec(ng	
 the	
 cost	
 of	
 different	
 errors	

Kapoor	
 et	
 al.	
 (2010)	
 	

Figure 1 shows how different cost matrices can result in
different classification boundaries. The figures on the left
depict the estimated probabilities over a 2-dimensional
space for three different classes. These probabilities are
derived from an underlying classification system that was
built using a training corpus. We compute an expected cost
of using the classifiers on the test sets by combining these
probabilities with different cost matrices in order to produce
different classification boundaries. We see that different
settings of cost shift the boundary in order to minimize the
classification risk.

Unfortunately, specifying such fine-grained preferences via
the cost matrix can be tedious. A c class classification prob-
lem requires the user to specify c2 parameters which be-
comes infeasible as c becomes even marginally large.
Furthermore, setting these parameters by hand can be chal-
lenging as the classification model and the costs interact in
complex, non-linear ways which is often unpredictable,
even to expert users. In some scenarios, one might estimate
such parameters using monetary considerations (such as
direct profit or loss). However, such considerations are hard
to make in various HCI settings where the cost of the mis-
classification can correspond to such outcomes as user an-
noyance, frustration, usability, and other subjective metrics.

MANIMATRIX
ManiMatrix is an interactive system that allows users to
directly manipulate the confusion matrix in order to specify
preferences and explore the classification space. The system
consists of a visualization and control interface joined with
an optimization algorithm that computes the global implica-
tions of a user’s local refinements, enabling users to make
changes and to understand how the predictive model inte-
racts with their preferences (Figure 2).

Interacting with the Confusion Matrix
At the core of ManiMatrix is a confusion matrix, which
represents classification results by aggregating instances
within a grid. Each row in the matrix represents an in-
stance’s true class and each column an instance’s predicted
class. For example, Figure 2a (see left-most cell in the mid-
dle row of the matrix) shows that 6 cloudy days were mis-
classified as rainy within a party location planning problem.

The confusion matrix is a common visualization because it
is easy to interpret and can be used with any classification
algorithm. Other visualizations may also serve as the basis
for building insights and encoding preferences about classi-
fication. We leave exploration of such visualizations as
future work.

Depending on their preferences, users can specify an in-
crease or decrease in the tolerance for numbers of cases
classified into each cell. For example, if users want to pre-
vent the cloudy days from being classified as rainy, they
want to have as small a number as possible in the middle
left cell. ManiMatrix supports this by allowing them to spe-
cify this desire with a single click directly on the confusion
matrix. When users move the mouse pointer over a cell,
ManiMatrix shows a green up arrow and a red down arrow
on the right side of the cell (Figure 2a). Each click corres-
ponds to the desire to increment or decrement the value in
that cell by 1. When users click on either button, ManiMa-
trix recomputes the decision boundaries for all cases, work-
ing to satisfy the confusion matrix that accommodates the
user request. This is done at interactive rates and users re-
ceive immediate feedback.

If ManiMatrix successfully finds a feasible confusion ma-
trix, it updates the visualization; otherwise it notifies users
that the request is not feasible. For example, Figure 2b
shows the new confusion matrix after the user clicked on
the down button from the middle left cell. To facilitate large
desired value changes, ManiMatrix repeats this click inte-
raction if users press and hold the button.

Operations, even on a single cell, typically lead to changes
in other parts of the matrix. To show changes in each cell,
ManiMatrix provides feedback by highlighting the cells
whose values have changed; green represents an increase
and red a decrease. The magnitude of change is represented
by the opacity; the bigger the difference is, the more opaque.

It is important to note that multiple solutions may be consis-
tent with a user's preferences. In the current version of Ma-
niMatrix, a solution of parameters is generated that
maximizes the stability of the matrix, minimizing the over-
all change in value as much as possible. As a result, the up

 (a) (b) (c) (d)

Figure 2. Interacting with ManiMatrix.

IML	
 examples	

Interac(ve	
 reinforcement	
 learning	

Thomaz	
 and	
 Breazeal	
 (2008)	

IML	
 examples	

Interac(ve	
 reinforcement	
 learning	
 (demo)	

Knox	
 and	
 Stone	
 (2009,	
 2012)	

Knox,	
 Breazeal,	
 and	
 Stone	
 (2013)	

IML	
 examples	

Interac(ve	
 training	
 of	
 musical	
 instruments	
 (demo)	

Fiebrink	
 et	
 al.	
 (2009)	

•  Ne_lix’s	
 recommender	
 system	

•  Pandora’s	
 recommender	
 system	

•  [Borderline]	
 Spam	
 filters	
 that	
 allow	
 you	
 to	

label	
 and	
 unlabel	
 spam	

IML	
 in	
 the	
 wild	

What’s	
 not	
 IML?	

Human	
 detec(on	
 for	
 surveillance	

Possibly	
 interac(ve,	
 but	
 no	
 teaching	
 role	

Photo	
 from	
 Bo	

Wang’s	
 (USC)	

website	

What’s	
 not	
 IML?	

Credit	
 card	
 fraud	
 detec(on	

Possibly	
 interac(ve	
 and	
 may	
 have	

a	
 teaching	
 role,	
 but	
 no	
 (ght	
 loop	

What’s	
 not	
 IML?	

A	
 reinforcement	
 learning	
 agent	
 interac(ng	
 with	

its	
 environment	
 under	
 typical	
 circumstances.	

If	
 there’s	
 a	
 human,	
 he	
 or	
 she	
 is	
 generally	
 not	
 in	
 a	
 teaching	
 role.	

What’s	
 not	
 IML?	

Clever	
 and	
 interac(ve	
 labeling	
 systems	

Von	
 Ahn	
 (2006)	

Interac(on	
 is	

meant	
 to	
 teach	
 a	

learner,	
 but	

interac(on	
 occurs	

before	
 learning.	

Interac(ve	
 Machine	
 Learning	
 (IML)	

Course	
 defini(on	
 revisited	
 and	
 simplified	

ML	
 such	
 that	

1.  a	
 human	
 is	
 in	
 a	
 (ght	
 machine	
 learning	
 loop	

2.  the	
 human’s	
 input	
 is	
 meant	
 to	
 teach	

Output

Human user

Input

Learning
system

Why	
 does	
 IML	
 deserve	
 its	
 own	
 focus?	

With	
 only	
 ML	
 exper(se,	
 the	
 human	
 becomes	
 a	

black	
 box.	

– Unrealis(c	
 assump(ons	
 about	
 the	
 human	
 are	

frequently	
 made	

	

With	
 only	
 HCI	
 exper(se,	
 the	
 machine	
 learning	

algorithm	
 becomes	
 a	
 black	
 box.	

– Opportuni(es	
 for	
 interac(on	
 channels	
 are	
 missed	

or	
 simply	
 can’t	
 be	
 implemented.	

– “I	
 tried	
 it	
 and	
 it	
 doesn’t	
 work.”	

Why	
 does	
 IML	
 deserve	
 its	
 own	
 focus?	

Much	
 of	
 applied	
 machine	
 learning	
 is	

interac(ve	
 anyway.	

	

We	
 should	
 understand	
 and	
 design	
 for	
 this	

interac(on.	

Who	
 is	
 here	

This	
 course:	
 resources	

website	
 with	
 syllabus	
 and	
 schedule	

hEps://stellar.mit.edu/S/course/MAS/fa13/MAS.S62/index.html	

This	
 course:	
 progression	
 of	
 topics	

1.  Supervised	
 learning	

2.  Evalua(on	
 by	
 techniques/standards	
 of	

– Machine	
 learning	

– Human-­‐computer	
 interac(on	

3.  (Maybe)	
 unsupervised	
 learning	
 (e.g.	
 clustering)	

4.  Sequen(al	
 decision	
 making	

– Learning	
 from	
 demonstra(on	

– Reinforcement	
 learning	

(We	
 will	
 be	
 looking	
 at	
 the	
 interac(ve	
 versions	
 of	
 each	
 of	
 these	
 ML	
 methods.)	

This	
 course:	
 goals	

•  Understand	
 the	
 current	
 literature	
 on	
 IML	

•  Iden(fy	
 unexplored	
 research	
 topics	

•  Prac(ce	
 finding	
 and	
 choosing	
 research	

problems	

•  Become	
 acquainted	
 with	
 sequen(al	
 decision-­‐
making	
 and	
 research	
 methods	
 in	
 ML	
 and	
 HCI	

This	
 course:	
 goals	

•  Iden(fy	
 common	
 themes	
 and	
 goals	
 within	
 IML	

research	

– especially	
 those	
 unique	
 to	
 the	
 intersec(on	
 of	
 HCI	

and	
 ML	
 	

•  Hands-­‐on	
 experience	
 crea(ng	
 interac(ve	

machine	
 learning	
 systems	

•  Conduct	
 novel	
 research	
 on	
 IML!	

This	
 course:	
 course	
 components	

•  Limited	
 pedagogical	
 lectures	

•  Guest	
 lectures	

•  Readings	
 with	
 responses	
 posted	
 and	
 class	

discussion	

•  Preliminary	
 research	
 assignments	

– Toolkit	
 presenta(ons	

– Small	
 hands-­‐on	
 projects	

•  Final	
 research	
 project	

This	
 course:	
 confirmed	
 guest	
 lecturers	

Nick	
 Gillian	
 (MIT)	

Rebecca	
 Fiebrink	
 (Princeton)	

Simone	
 Stumpf	
 (City	
 University	
 London)	

Kayur	
 Patel	
 (Google)	

Krzysztof	
 Gajos	
 (Harvard)	

Ashish	
 Kapoor	
 (MicrosoH	
 Research)	

Joe	
 Konstan	
 (Univ.	
 of	
 Minnesota)	

Henry	
 Lieberman	
 (MIT)	

Sipng	
 in 	
 	

People	
 are	
 welcome	
 to	
 sit	
 in,	
 but	
 they	
 must	

keep	
 up	
 with	
 the	
 reading	
 and	
 submit	
 reading	

responses	
 to	
 join	
 on	
 reading	
 discussion	
 days.	

	

To	
 join	
 for	
 lectures,	
 student	
 presenta(ons,	
 and	

guest	
 lectures,	
 no	
 prepara(on	
 is	
 required.	

First	
 reading	
 assignment	

Two	
 readings	
 and	
 a	
 response:	

	

A	
 Few	
 Useful	
 Things	
 to	
 Know	
 about	
 Machine	

Learning	
 by	
 Domingos	
 	

and	
 	

Machine	
 Learning	
 that	
 Ma@ers	
 by	
 Wagstaff	

Reading	
 responses:	
 What	
 to	
 write	

Full	
 instruc(ons	
 will	
 be	
 posted	
 by	
 tomorrow	

night	
 on	
 course	
 website.	

	

Mostly	
 free-­‐form,	
 with	
 credit	
 based	
 on	
 evidence	

that	
 you	
 have	
 done	
 the	
 readings	
 carefully.	

	

~1	
 page,	
 single-­‐spaced,	
 12pt	
 Times	
 font	

Reading	
 responses:	
 What	
 to	
 write	

Acceptable	
 responses	
 include:	

•  Insigh_ul	
 ques(ons;	

•  Clarifica(on	
 ques(ons	
 about	
 ambigui(es;	

•  Comments	
 about	
 the	
 rela(on	
 of	
 the	
 reading	
 to	
 previous	

readings;	

•  Solu(ons	
 to	
 problems	
 or	
 exercises	
 posed	
 in	
 the	
 readings;	

•  Cri(ques;	

•  Thoughts	
 on	
 what	
 you	
 would	
 like	
 to	
 learn	
 about	
 in	
 more	

detail;	

•  Possible	
 extensions	
 or	
 related	
 studies;	

•  Thoughts	
 on	
 the	
 paper's	
 importance;	
 and	

•  Summaries	
 of	
 the	
 most	
 important	
 things	
 you	
 learned.	

Reading	
 responses:	
 What	
 to	
 write	

There	
 is	
 one	
 specific	
 requirement	
 though,	
 crea(ng	

a	
 discussion	
 point	
 that	
 you	
 may	
 be	
 asked	
 to	
 bring	

up	
 in	
 class.	
 	

	

Possible	
 discussion	
 topics	
 (note	
 overlap	
 with	

previous	
 list):	

•  Controversial	
 ques(ons/answers	

•  Points	
 of	
 confusion	

•  Ideas	
 about	
 extensions	
 to	
 the	
 work	

•  Insights	
 on	
 broader	
 topics	
 that	
 are	
 relevant	
 to	

this	
 work	

	

