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Course	  defini(on	  -‐	  machine	  learning	  such	  that	  
1.  a	  human	  is	  in	  a	  (ght	  machine	  learning	  loop,	  
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Figure 4 – The classification design loop 

Although the IML and the machine-learning component of 
Crayons are the primary discussion of this paper it is 
notable to mention that Crayons has profited from work 
done by Viola and Jones [19] and Jaimes and Chang 
[5,6,7].  Also a brief example of how Crayons can be used 
is illustrative.  The sequence of images in Figure 5 shows 
the process of creating a classifier using Crayons. 

 

 

 
Figure 5 – Crayons interaction process 

 
Figure 5 illustrates how the user initially paints very little 
data, views the feedback provided by the resulting 
classifier, corrects by painting additional class pixels and 
then iterates through the cycle.  As seen in the first image 
pair in Figure 5, only a little data can generate a classifier 
that roughly learns skin and background.  The classifier, 
however, over-generalizes in favor of background; 
therefore, in the second image pair you can see skin has 

been painted where the classifier previously did poorly at 
classifying skin.  The resulting classifier shown on the right 
of the second image pair shows the new classifier 
classifying most of the skin on the hand, but also 
classifying some of the background as skin.  The classifier 
is corrected again, and the resulting classifier is shown as 
the third image pair in the sequence.  Thus, in only a few 
iterations, a skin classifier is created. 
The simplicity of the example above shows the power that 
Crayons has due to the effectiveness of the IML model.  
The key issue in the creation of such a tool lies in quickly 
generating effective classifiers so the interactive design 
loop can be utilized. 

MACHINE LEARNING 
For the IML model to function, the classifier must be 
generated quickly and be able to generalize well.  As such 
we will first discuss the distinctions between IML and 
CML, followed by the problems IML must overcome 
because of its interactive setting, and lastly its 
implementation details including specific algorithms. 

CML vs. IML 
Classical machine learning generally has the following 
assumptions. 

x� There are relatively few carefully chosen features,  

x� There is limited training data,  

x� The classifier must amplify that limited training data 
into excellent performance on new training data,  

x� Time to train the classifier is relatively unimportant 
as long as it does not take too many days. 

None of these assumptions hold in our interactive situation.  
Our UI designers have no idea what features will be 
appropriate.  In fact, we are trying to insulate them from 
knowing such things.  In our current Crayons prototype 
there are more than 150 features per pixel.  To reach the 
breadth of application that we desire for Crayons we 
project over 1,000 features will be necessary. The 
additional features will handle texture, shape and motion 
over time.  For any given problem somewhere between 
three and fifteen of those features will actually be used, but 
the classifier algorithm must automatically make this 
selection.  The classifier we choose must therefore be able 
to accommodate such a large number of features, and/or 
select only the best features.  
In Crayons, when a designer begins to paint classes on an 
image a very large number of training examples is quickly 
generated.  With 77K pixels per image and 20 images one 
can rapidly generate over a million training examples.  In 
practice, the number stays in the 100K examples range 
because designers only paint pixels that they need to 
correct rather than all pixels in the image.  What this 
means, however, is that designers can generate a huge 
amount of training data very quickly.  CML generally 
focuses on the ability of a classifier to predict correct 
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IML	  examples	  
ManiMatrix	  –	  user	  can	  manipulate	  confusion	  
matrix,	  affec(ng	  the	  cost	  of	  different	  errors	  

Kapoor	  et	  al.	  (2010)	  	  

 

Figure 1 shows how different cost matrices can result in 
different classification boundaries. The figures on the left 
depict the estimated probabilities over a 2-dimensional 
space for three different classes. These probabilities are 
derived from an underlying classification system that was 
built using a training corpus. We compute an expected cost 
of using the classifiers on the test sets by combining these 
probabilities with different cost matrices in order to produce 
different classification boundaries. We see that different 
settings of cost shift the boundary in order to minimize the 
classification risk. 

Unfortunately, specifying such fine-grained preferences via 
the cost matrix can be tedious. A c class classification prob-
lem requires the user to specify c2 parameters which be-
comes infeasible as c becomes even marginally large. 
Furthermore, setting these parameters by hand can be chal-
lenging as the classification model and the costs interact in 
complex, non-linear ways which is often unpredictable, 
even to expert users. In some scenarios, one might estimate 
such parameters using monetary considerations (such as 
direct profit or loss). However, such considerations are hard 
to make in various HCI settings where the cost of the mis-
classification can correspond to such outcomes as user an-
noyance, frustration, usability, and other subjective metrics.  

MANIMATRIX 
ManiMatrix is an interactive system that allows users to 
directly manipulate the confusion matrix in order to specify 
preferences and explore the classification space. The system 
consists of a visualization and control interface joined with 
an optimization algorithm that computes the global implica-
tions of a user’s local refinements, enabling users to make 
changes and to understand how the predictive model inte-
racts with their preferences (Figure 2).  

Interacting with the Confusion Matrix 
At the core of ManiMatrix is a confusion matrix, which 
represents classification results by aggregating instances 
within a grid. Each row in the matrix represents an in-
stance’s true class and each column an instance’s predicted 
class. For example, Figure 2a (see left-most cell in the mid-
dle row of the matrix) shows that 6 cloudy days were mis-
classified as rainy within a party location planning problem. 

The confusion matrix is a common visualization because it 
is easy to interpret and can be used with any classification 
algorithm. Other visualizations may also serve as the basis 
for building insights and encoding preferences about classi-
fication. We leave exploration of such visualizations as 
future work. 

Depending on their preferences, users can specify an in-
crease or decrease in the tolerance for numbers of cases 
classified into each cell. For example, if users want to pre-
vent the cloudy days from being classified as rainy, they 
want to have as small a number as possible in the middle 
left cell. ManiMatrix supports this by allowing them to spe-
cify this desire with a single click directly on the confusion 
matrix. When users move the mouse pointer over a cell, 
ManiMatrix shows a green up arrow and a red down arrow 
on the right side of the cell (Figure 2a). Each click corres-
ponds to the desire to increment or decrement the value in 
that cell by 1. When users click on either button, ManiMa-
trix recomputes the decision boundaries for all cases, work-
ing to satisfy the confusion matrix that accommodates the 
user request. This is done at interactive rates and users re-
ceive immediate feedback. 

If ManiMatrix successfully finds a feasible confusion ma-
trix, it updates the visualization; otherwise it notifies users 
that the request is not feasible. For example, Figure 2b 
shows the new confusion matrix after the user clicked on 
the down button from the middle left cell. To facilitate large 
desired value changes, ManiMatrix repeats this click inte-
raction if users press and hold the button. 

Operations, even on a single cell, typically lead to changes 
in other parts of the matrix. To show changes in each cell, 
ManiMatrix provides feedback by highlighting the cells 
whose values have changed; green represents an increase 
and red a decrease. The magnitude of change is represented 
by the opacity; the bigger the difference is, the more opaque.  

It is important to note that multiple solutions may be consis-
tent with a user's preferences. In the current version of Ma-
niMatrix, a solution of parameters is generated that 
maximizes the stability of the matrix, minimizing the over-
all change in value as much as possible. As a result, the up 

                 
                      (a)                                                    (b)                                                    (c)                                                     (d) 

Figure 2. Interacting with ManiMatrix. 



IML	  examples	  

Interac(ve	  reinforcement	  learning	  

Thomaz	  and	  Breazeal	  (2008)	  



IML	  examples	  

Interac(ve	  reinforcement	  learning	  (demo)	  

Knox	  and	  Stone	  (2009,	  2012)	  



Knox,	  Breazeal,	  and	  Stone	  (2013)	  



IML	  examples	  

Interac(ve	  training	  of	  musical	  instruments	  (demo)	  

Fiebrink	  et	  al.	  (2009)	  





•  Ne_lix’s	  recommender	  system	  
•  Pandora’s	  recommender	  system	  
•  [Borderline]	  Spam	  filters	  that	  allow	  you	  to	  
label	  and	  unlabel	  spam	  

IML	  in	  the	  wild	  



What’s	  not	  IML?	  

Human	  detec(on	  for	  surveillance	  

Possibly	  interac(ve,	  but	  no	  teaching	  role	  

Photo	  from	  Bo	  
Wang’s	  (USC)	  
website	  



What’s	  not	  IML?	  

Credit	  card	  fraud	  detec(on	  

Possibly	  interac(ve	  and	  may	  have	  
a	  teaching	  role,	  but	  no	  (ght	  loop	  



What’s	  not	  IML?	  

A	  reinforcement	  learning	  agent	  interac(ng	  with	  
its	  environment	  under	  typical	  circumstances.	  

If	  there’s	  a	  human,	  he	  or	  she	  is	  generally	  not	  in	  a	  teaching	  role.	  



What’s	  not	  IML?	  
Clever	  and	  interac(ve	  labeling	  systems	  

Von	  Ahn	  (2006)	  

Interac(on	  is	  
meant	  to	  teach	  a	  
learner,	  but	  
interac(on	  occurs	  
before	  learning.	  



Interac(ve	  Machine	  Learning	  (IML)	  

Course	  defini(on	  revisited	  and	  simplified	  
ML	  such	  that	  
1.  a	  human	  is	  in	  a	  (ght	  machine	  learning	  loop	  
2.  the	  human’s	  input	  is	  meant	  to	  teach	  

Output 

Human user 

Input 

Learning 
system 



Why	  does	  IML	  deserve	  its	  own	  focus?	  

With	  only	  ML	  exper(se,	  the	  human	  becomes	  a	  
black	  box.	  
– Unrealis(c	  assump(ons	  about	  the	  human	  are	  
frequently	  made	  

	  
With	  only	  HCI	  exper(se,	  the	  machine	  learning	  
algorithm	  becomes	  a	  black	  box.	  
– Opportuni(es	  for	  interac(on	  channels	  are	  missed	  
or	  simply	  can’t	  be	  implemented.	  

– “I	  tried	  it	  and	  it	  doesn’t	  work.”	  



Why	  does	  IML	  deserve	  its	  own	  focus?	  

Much	  of	  applied	  machine	  learning	  is	  
interac(ve	  anyway.	  

	  
We	  should	  understand	  and	  design	  for	  this	  

interac(on.	  



Who	  is	  here	  



This	  course:	  resources	  

website	  with	  syllabus	  and	  schedule	  
hEps://stellar.mit.edu/S/course/MAS/fa13/MAS.S62/index.html	  



This	  course:	  progression	  of	  topics	  

1.  Supervised	  learning	  
2.  Evalua(on	  by	  techniques/standards	  of	  
– Machine	  learning	  
– Human-‐computer	  interac(on	  

3.  (Maybe)	  unsupervised	  learning	  (e.g.	  clustering)	  
4.  Sequen(al	  decision	  making	  
– Learning	  from	  demonstra(on	  
– Reinforcement	  learning	  

(We	  will	  be	  looking	  at	  the	  interac(ve	  versions	  of	  each	  of	  these	  ML	  methods.)	  



This	  course:	  goals	  

•  Understand	  the	  current	  literature	  on	  IML	  

•  Iden(fy	  unexplored	  research	  topics	  

•  Prac(ce	  finding	  and	  choosing	  research	  
problems	  

•  Become	  acquainted	  with	  sequen(al	  decision-‐
making	  and	  research	  methods	  in	  ML	  and	  HCI	  



This	  course:	  goals	  

•  Iden(fy	  common	  themes	  and	  goals	  within	  IML	  
research	  
– especially	  those	  unique	  to	  the	  intersec(on	  of	  HCI	  
and	  ML	  	  

•  Hands-‐on	  experience	  crea(ng	  interac(ve	  
machine	  learning	  systems	  

•  Conduct	  novel	  research	  on	  IML!	  



This	  course:	  course	  components	  

•  Limited	  pedagogical	  lectures	  
•  Guest	  lectures	  
•  Readings	  with	  responses	  posted	  and	  class	  
discussion	  

•  Preliminary	  research	  assignments	  
– Toolkit	  presenta(ons	  
– Small	  hands-‐on	  projects	  

•  Final	  research	  project	  



This	  course:	  confirmed	  guest	  lecturers	  

Nick	  Gillian	  (MIT)	  
Rebecca	  Fiebrink	  (Princeton)	  
Simone	  Stumpf	  (City	  University	  London)	  
Kayur	  Patel	  (Google)	  
Krzysztof	  Gajos	  (Harvard)	  
Ashish	  Kapoor	  (MicrosoH	  Research)	  
Joe	  Konstan	  (Univ.	  of	  Minnesota)	  
Henry	  Lieberman	  (MIT)	  



Sipng	  in 	  	  

People	  are	  welcome	  to	  sit	  in,	  but	  they	  must	  
keep	  up	  with	  the	  reading	  and	  submit	  reading	  
responses	  to	  join	  on	  reading	  discussion	  days.	  
	  
To	  join	  for	  lectures,	  student	  presenta(ons,	  and	  
guest	  lectures,	  no	  prepara(on	  is	  required.	  



First	  reading	  assignment	  

Two	  readings	  and	  a	  response:	  
	  
A	  Few	  Useful	  Things	  to	  Know	  about	  Machine	  
Learning	  by	  Domingos	  	  
and	  	  
Machine	  Learning	  that	  Ma@ers	  by	  Wagstaff	  



Reading	  responses:	  What	  to	  write	  

Full	  instruc(ons	  will	  be	  posted	  by	  tomorrow	  
night	  on	  course	  website.	  
	  
Mostly	  free-‐form,	  with	  credit	  based	  on	  evidence	  
that	  you	  have	  done	  the	  readings	  carefully.	  
	  
~1	  page,	  single-‐spaced,	  12pt	  Times	  font	  



Reading	  responses:	  What	  to	  write	  
Acceptable	  responses	  include:	  
•  Insigh_ul	  ques(ons;	  
•  Clarifica(on	  ques(ons	  about	  ambigui(es;	  
•  Comments	  about	  the	  rela(on	  of	  the	  reading	  to	  previous	  

readings;	  
•  Solu(ons	  to	  problems	  or	  exercises	  posed	  in	  the	  readings;	  
•  Cri(ques;	  
•  Thoughts	  on	  what	  you	  would	  like	  to	  learn	  about	  in	  more	  

detail;	  
•  Possible	  extensions	  or	  related	  studies;	  
•  Thoughts	  on	  the	  paper's	  importance;	  and	  
•  Summaries	  of	  the	  most	  important	  things	  you	  learned.	  



Reading	  responses:	  What	  to	  write	  
There	  is	  one	  specific	  requirement	  though,	  crea(ng	  
a	  discussion	  point	  that	  you	  may	  be	  asked	  to	  bring	  
up	  in	  class.	  	  
	  
Possible	  discussion	  topics	  (note	  overlap	  with	  
previous	  list):	  
•  Controversial	  ques(ons/answers	  
•  Points	  of	  confusion	  
•  Ideas	  about	  extensions	  to	  the	  work	  
•  Insights	  on	  broader	  topics	  that	  are	  relevant	  to	  
this	  work	  

	  




