
Interac(ve	 Machine	 Learning	
MAS.S62	

Brad	 Knox:	 the	 brief	 story	

•  Undergrad:	 psychology,	 pre-‐med,	 and	 a	 liEle	
philosophy	 at	 Texas	 A&M	

•  The	 year	 aHer:	 quarter-‐life	 crisis	
•  Post-‐bacc	 and	 Robocup	 at	 UT	 Aus(n	
•  PhD	 with	 Peter	 Stone	 at	 UT	 Aus(n	
– Disserta(on:	 Learning	 from	 human-‐generated	
reward	

•  Postdoc	 in	 MIT	 Media	 Lab	 with	 Cynthia	
Breazeal	

Interac(ve	 Machine	 Learning	 (IML)	

Course	 defini(on	 -‐	 machine	 learning	 such	 that	
1.  a	 human	 is	 in	 a	 (ght	 machine	 learning	 loop,	

observing	 the	 result	 of	 learning	 and	 providing	
input	 that	 affects	 further	 learning,	 and	

2.  the	 human	 inten(onally	 provides	 input,	
fulfilling	 a	 teaching	 role.	

Output

Human user

Input

Learning
system

IML	 examples	

Interac(ve	 image	 segmenta(on	

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Input data

Segmentation

Iteration 1 Iteration 2 Iteration 3

Fails	 and	 Olsen	 (2003)	

IML	 examples	
ManiMatrix	 –	 user	 can	 manipulate	 confusion	
matrix,	 affec(ng	 the	 cost	 of	 different	 errors	

Kapoor	 et	 al.	 (2010)	 	

Figure 1 shows how different cost matrices can result in
different classification boundaries. The figures on the left
depict the estimated probabilities over a 2-dimensional
space for three different classes. These probabilities are
derived from an underlying classification system that was
built using a training corpus. We compute an expected cost
of using the classifiers on the test sets by combining these
probabilities with different cost matrices in order to produce
different classification boundaries. We see that different
settings of cost shift the boundary in order to minimize the
classification risk.

Unfortunately, specifying such fine-grained preferences via
the cost matrix can be tedious. A c class classification prob-
lem requires the user to specify c2 parameters which be-
comes infeasible as c becomes even marginally large.
Furthermore, setting these parameters by hand can be chal-
lenging as the classification model and the costs interact in
complex, non-linear ways which is often unpredictable,
even to expert users. In some scenarios, one might estimate
such parameters using monetary considerations (such as
direct profit or loss). However, such considerations are hard
to make in various HCI settings where the cost of the mis-
classification can correspond to such outcomes as user an-
noyance, frustration, usability, and other subjective metrics.

MANIMATRIX
ManiMatrix is an interactive system that allows users to
directly manipulate the confusion matrix in order to specify
preferences and explore the classification space. The system
consists of a visualization and control interface joined with
an optimization algorithm that computes the global implica-
tions of a user’s local refinements, enabling users to make
changes and to understand how the predictive model inte-
racts with their preferences (Figure 2).

Interacting with the Confusion Matrix
At the core of ManiMatrix is a confusion matrix, which
represents classification results by aggregating instances
within a grid. Each row in the matrix represents an in-
stance’s true class and each column an instance’s predicted
class. For example, Figure 2a (see left-most cell in the mid-
dle row of the matrix) shows that 6 cloudy days were mis-
classified as rainy within a party location planning problem.

The confusion matrix is a common visualization because it
is easy to interpret and can be used with any classification
algorithm. Other visualizations may also serve as the basis
for building insights and encoding preferences about classi-
fication. We leave exploration of such visualizations as
future work.

Depending on their preferences, users can specify an in-
crease or decrease in the tolerance for numbers of cases
classified into each cell. For example, if users want to pre-
vent the cloudy days from being classified as rainy, they
want to have as small a number as possible in the middle
left cell. ManiMatrix supports this by allowing them to spe-
cify this desire with a single click directly on the confusion
matrix. When users move the mouse pointer over a cell,
ManiMatrix shows a green up arrow and a red down arrow
on the right side of the cell (Figure 2a). Each click corres-
ponds to the desire to increment or decrement the value in
that cell by 1. When users click on either button, ManiMa-
trix recomputes the decision boundaries for all cases, work-
ing to satisfy the confusion matrix that accommodates the
user request. This is done at interactive rates and users re-
ceive immediate feedback.

If ManiMatrix successfully finds a feasible confusion ma-
trix, it updates the visualization; otherwise it notifies users
that the request is not feasible. For example, Figure 2b
shows the new confusion matrix after the user clicked on
the down button from the middle left cell. To facilitate large
desired value changes, ManiMatrix repeats this click inte-
raction if users press and hold the button.

Operations, even on a single cell, typically lead to changes
in other parts of the matrix. To show changes in each cell,
ManiMatrix provides feedback by highlighting the cells
whose values have changed; green represents an increase
and red a decrease. The magnitude of change is represented
by the opacity; the bigger the difference is, the more opaque.

It is important to note that multiple solutions may be consis-
tent with a user's preferences. In the current version of Ma-
niMatrix, a solution of parameters is generated that
maximizes the stability of the matrix, minimizing the over-
all change in value as much as possible. As a result, the up

 (a) (b) (c) (d)

Figure 2. Interacting with ManiMatrix.

IML	 examples	

Interac(ve	 reinforcement	 learning	

Thomaz	 and	 Breazeal	 (2008)	

IML	 examples	

Interac(ve	 reinforcement	 learning	 (demo)	

Knox	 and	 Stone	 (2009,	 2012)	

Knox,	 Breazeal,	 and	 Stone	 (2013)	

IML	 examples	

Interac(ve	 training	 of	 musical	 instruments	 (demo)	

Fiebrink	 et	 al.	 (2009)	

•  Ne_lix’s	 recommender	 system	
•  Pandora’s	 recommender	 system	
•  [Borderline]	 Spam	 filters	 that	 allow	 you	 to	
label	 and	 unlabel	 spam	

IML	 in	 the	 wild	

What’s	 not	 IML?	

Human	 detec(on	 for	 surveillance	

Possibly	 interac(ve,	 but	 no	 teaching	 role	

Photo	 from	 Bo	
Wang’s	 (USC)	
website	

What’s	 not	 IML?	

Credit	 card	 fraud	 detec(on	

Possibly	 interac(ve	 and	 may	 have	
a	 teaching	 role,	 but	 no	 (ght	 loop	

What’s	 not	 IML?	

A	 reinforcement	 learning	 agent	 interac(ng	 with	
its	 environment	 under	 typical	 circumstances.	

If	 there’s	 a	 human,	 he	 or	 she	 is	 generally	 not	 in	 a	 teaching	 role.	

What’s	 not	 IML?	
Clever	 and	 interac(ve	 labeling	 systems	

Von	 Ahn	 (2006)	

Interac(on	 is	
meant	 to	 teach	 a	
learner,	 but	
interac(on	 occurs	
before	 learning.	

Interac(ve	 Machine	 Learning	 (IML)	

Course	 defini(on	 revisited	 and	 simplified	
ML	 such	 that	
1.  a	 human	 is	 in	 a	 (ght	 machine	 learning	 loop	
2.  the	 human’s	 input	 is	 meant	 to	 teach	

Output

Human user

Input

Learning
system

Why	 does	 IML	 deserve	 its	 own	 focus?	

With	 only	 ML	 exper(se,	 the	 human	 becomes	 a	
black	 box.	
– Unrealis(c	 assump(ons	 about	 the	 human	 are	
frequently	 made	

	
With	 only	 HCI	 exper(se,	 the	 machine	 learning	
algorithm	 becomes	 a	 black	 box.	
– Opportuni(es	 for	 interac(on	 channels	 are	 missed	
or	 simply	 can’t	 be	 implemented.	

– “I	 tried	 it	 and	 it	 doesn’t	 work.”	

Why	 does	 IML	 deserve	 its	 own	 focus?	

Much	 of	 applied	 machine	 learning	 is	
interac(ve	 anyway.	

	
We	 should	 understand	 and	 design	 for	 this	

interac(on.	

Who	 is	 here	

This	 course:	 resources	

website	 with	 syllabus	 and	 schedule	
hEps://stellar.mit.edu/S/course/MAS/fa13/MAS.S62/index.html	

This	 course:	 progression	 of	 topics	

1.  Supervised	 learning	
2.  Evalua(on	 by	 techniques/standards	 of	
– Machine	 learning	
– Human-‐computer	 interac(on	

3.  (Maybe)	 unsupervised	 learning	 (e.g.	 clustering)	
4.  Sequen(al	 decision	 making	
– Learning	 from	 demonstra(on	
– Reinforcement	 learning	

(We	 will	 be	 looking	 at	 the	 interac(ve	 versions	 of	 each	 of	 these	 ML	 methods.)	

This	 course:	 goals	

•  Understand	 the	 current	 literature	 on	 IML	

•  Iden(fy	 unexplored	 research	 topics	

•  Prac(ce	 finding	 and	 choosing	 research	
problems	

•  Become	 acquainted	 with	 sequen(al	 decision-‐
making	 and	 research	 methods	 in	 ML	 and	 HCI	

This	 course:	 goals	

•  Iden(fy	 common	 themes	 and	 goals	 within	 IML	
research	
– especially	 those	 unique	 to	 the	 intersec(on	 of	 HCI	
and	 ML	 	

•  Hands-‐on	 experience	 crea(ng	 interac(ve	
machine	 learning	 systems	

•  Conduct	 novel	 research	 on	 IML!	

This	 course:	 course	 components	

•  Limited	 pedagogical	 lectures	
•  Guest	 lectures	
•  Readings	 with	 responses	 posted	 and	 class	
discussion	

•  Preliminary	 research	 assignments	
– Toolkit	 presenta(ons	
– Small	 hands-‐on	 projects	

•  Final	 research	 project	

This	 course:	 confirmed	 guest	 lecturers	

Nick	 Gillian	 (MIT)	
Rebecca	 Fiebrink	 (Princeton)	
Simone	 Stumpf	 (City	 University	 London)	
Kayur	 Patel	 (Google)	
Krzysztof	 Gajos	 (Harvard)	
Ashish	 Kapoor	 (MicrosoH	 Research)	
Joe	 Konstan	 (Univ.	 of	 Minnesota)	
Henry	 Lieberman	 (MIT)	

Sipng	 in 	 	

People	 are	 welcome	 to	 sit	 in,	 but	 they	 must	
keep	 up	 with	 the	 reading	 and	 submit	 reading	
responses	 to	 join	 on	 reading	 discussion	 days.	
	
To	 join	 for	 lectures,	 student	 presenta(ons,	 and	
guest	 lectures,	 no	 prepara(on	 is	 required.	

First	 reading	 assignment	

Two	 readings	 and	 a	 response:	
	
A	 Few	 Useful	 Things	 to	 Know	 about	 Machine	
Learning	 by	 Domingos	 	
and	 	
Machine	 Learning	 that	 Ma@ers	 by	 Wagstaff	

Reading	 responses:	 What	 to	 write	

Full	 instruc(ons	 will	 be	 posted	 by	 tomorrow	
night	 on	 course	 website.	
	
Mostly	 free-‐form,	 with	 credit	 based	 on	 evidence	
that	 you	 have	 done	 the	 readings	 carefully.	
	
~1	 page,	 single-‐spaced,	 12pt	 Times	 font	

Reading	 responses:	 What	 to	 write	
Acceptable	 responses	 include:	
•  Insigh_ul	 ques(ons;	
•  Clarifica(on	 ques(ons	 about	 ambigui(es;	
•  Comments	 about	 the	 rela(on	 of	 the	 reading	 to	 previous	

readings;	
•  Solu(ons	 to	 problems	 or	 exercises	 posed	 in	 the	 readings;	
•  Cri(ques;	
•  Thoughts	 on	 what	 you	 would	 like	 to	 learn	 about	 in	 more	

detail;	
•  Possible	 extensions	 or	 related	 studies;	
•  Thoughts	 on	 the	 paper's	 importance;	 and	
•  Summaries	 of	 the	 most	 important	 things	 you	 learned.	

Reading	 responses:	 What	 to	 write	
There	 is	 one	 specific	 requirement	 though,	 crea(ng	
a	 discussion	 point	 that	 you	 may	 be	 asked	 to	 bring	
up	 in	 class.	 	
	
Possible	 discussion	 topics	 (note	 overlap	 with	
previous	 list):	
•  Controversial	 ques(ons/answers	
•  Points	 of	 confusion	
•  Ideas	 about	 extensions	 to	 the	 work	
•  Insights	 on	 broader	 topics	 that	 are	 relevant	 to	
this	 work	

	

