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Figure 4 – The classification design loop 

Although the IML and the machine-learning component of 
Crayons are the primary discussion of this paper it is 
notable to mention that Crayons has profited from work 
done by Viola and Jones [19] and Jaimes and Chang 
[5,6,7].  Also a brief example of how Crayons can be used 
is illustrative.  The sequence of images in Figure 5 shows 
the process of creating a classifier using Crayons. 

 

 

 
Figure 5 – Crayons interaction process 

 
Figure 5 illustrates how the user initially paints very little 
data, views the feedback provided by the resulting 
classifier, corrects by painting additional class pixels and 
then iterates through the cycle.  As seen in the first image 
pair in Figure 5, only a little data can generate a classifier 
that roughly learns skin and background.  The classifier, 
however, over-generalizes in favor of background; 
therefore, in the second image pair you can see skin has 

been painted where the classifier previously did poorly at 
classifying skin.  The resulting classifier shown on the right 
of the second image pair shows the new classifier 
classifying most of the skin on the hand, but also 
classifying some of the background as skin.  The classifier 
is corrected again, and the resulting classifier is shown as 
the third image pair in the sequence.  Thus, in only a few 
iterations, a skin classifier is created. 
The simplicity of the example above shows the power that 
Crayons has due to the effectiveness of the IML model.  
The key issue in the creation of such a tool lies in quickly 
generating effective classifiers so the interactive design 
loop can be utilized. 

MACHINE LEARNING 
For the IML model to function, the classifier must be 
generated quickly and be able to generalize well.  As such 
we will first discuss the distinctions between IML and 
CML, followed by the problems IML must overcome 
because of its interactive setting, and lastly its 
implementation details including specific algorithms. 

CML vs. IML 
Classical machine learning generally has the following 
assumptions. 

x� There are relatively few carefully chosen features,  

x� There is limited training data,  

x� The classifier must amplify that limited training data 
into excellent performance on new training data,  

x� Time to train the classifier is relatively unimportant 
as long as it does not take too many days. 

None of these assumptions hold in our interactive situation.  
Our UI designers have no idea what features will be 
appropriate.  In fact, we are trying to insulate them from 
knowing such things.  In our current Crayons prototype 
there are more than 150 features per pixel.  To reach the 
breadth of application that we desire for Crayons we 
project over 1,000 features will be necessary. The 
additional features will handle texture, shape and motion 
over time.  For any given problem somewhere between 
three and fifteen of those features will actually be used, but 
the classifier algorithm must automatically make this 
selection.  The classifier we choose must therefore be able 
to accommodate such a large number of features, and/or 
select only the best features.  
In Crayons, when a designer begins to paint classes on an 
image a very large number of training examples is quickly 
generated.  With 77K pixels per image and 20 images one 
can rapidly generate over a million training examples.  In 
practice, the number stays in the 100K examples range 
because designers only paint pixels that they need to 
correct rather than all pixels in the image.  What this 
means, however, is that designers can generate a huge 
amount of training data very quickly.  CML generally 
focuses on the ability of a classifier to predict correct 
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Figure 1 shows how different cost matrices can result in 
different classification boundaries. The figures on the left 
depict the estimated probabilities over a 2-dimensional 
space for three different classes. These probabilities are 
derived from an underlying classification system that was 
built using a training corpus. We compute an expected cost 
of using the classifiers on the test sets by combining these 
probabilities with different cost matrices in order to produce 
different classification boundaries. We see that different 
settings of cost shift the boundary in order to minimize the 
classification risk. 

Unfortunately, specifying such fine-grained preferences via 
the cost matrix can be tedious. A c class classification prob-
lem requires the user to specify c2 parameters which be-
comes infeasible as c becomes even marginally large. 
Furthermore, setting these parameters by hand can be chal-
lenging as the classification model and the costs interact in 
complex, non-linear ways which is often unpredictable, 
even to expert users. In some scenarios, one might estimate 
such parameters using monetary considerations (such as 
direct profit or loss). However, such considerations are hard 
to make in various HCI settings where the cost of the mis-
classification can correspond to such outcomes as user an-
noyance, frustration, usability, and other subjective metrics.  

MANIMATRIX 
ManiMatrix is an interactive system that allows users to 
directly manipulate the confusion matrix in order to specify 
preferences and explore the classification space. The system 
consists of a visualization and control interface joined with 
an optimization algorithm that computes the global implica-
tions of a user’s local refinements, enabling users to make 
changes and to understand how the predictive model inte-
racts with their preferences (Figure 2).  

Interacting with the Confusion Matrix 
At the core of ManiMatrix is a confusion matrix, which 
represents classification results by aggregating instances 
within a grid. Each row in the matrix represents an in-
stance’s true class and each column an instance’s predicted 
class. For example, Figure 2a (see left-most cell in the mid-
dle row of the matrix) shows that 6 cloudy days were mis-
classified as rainy within a party location planning problem. 

The confusion matrix is a common visualization because it 
is easy to interpret and can be used with any classification 
algorithm. Other visualizations may also serve as the basis 
for building insights and encoding preferences about classi-
fication. We leave exploration of such visualizations as 
future work. 

Depending on their preferences, users can specify an in-
crease or decrease in the tolerance for numbers of cases 
classified into each cell. For example, if users want to pre-
vent the cloudy days from being classified as rainy, they 
want to have as small a number as possible in the middle 
left cell. ManiMatrix supports this by allowing them to spe-
cify this desire with a single click directly on the confusion 
matrix. When users move the mouse pointer over a cell, 
ManiMatrix shows a green up arrow and a red down arrow 
on the right side of the cell (Figure 2a). Each click corres-
ponds to the desire to increment or decrement the value in 
that cell by 1. When users click on either button, ManiMa-
trix recomputes the decision boundaries for all cases, work-
ing to satisfy the confusion matrix that accommodates the 
user request. This is done at interactive rates and users re-
ceive immediate feedback. 

If ManiMatrix successfully finds a feasible confusion ma-
trix, it updates the visualization; otherwise it notifies users 
that the request is not feasible. For example, Figure 2b 
shows the new confusion matrix after the user clicked on 
the down button from the middle left cell. To facilitate large 
desired value changes, ManiMatrix repeats this click inte-
raction if users press and hold the button. 

Operations, even on a single cell, typically lead to changes 
in other parts of the matrix. To show changes in each cell, 
ManiMatrix provides feedback by highlighting the cells 
whose values have changed; green represents an increase 
and red a decrease. The magnitude of change is represented 
by the opacity; the bigger the difference is, the more opaque.  

It is important to note that multiple solutions may be consis-
tent with a user's preferences. In the current version of Ma-
niMatrix, a solution of parameters is generated that 
maximizes the stability of the matrix, minimizing the over-
all change in value as much as possible. As a result, the up 

                 
                      (a)                                                    (b)                                                    (c)                                                     (d) 

Figure 2. Interacting with ManiMatrix. 
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  does	
  IML	
  deserve	
  its	
  own	
  focus?	
  

With	
  only	
  ML	
  exper(se,	
  the	
  human	
  becomes	
  a	
  
black	
  box.	
  
– Unrealis(c	
  assump(ons	
  about	
  the	
  human	
  are	
  
frequently	
  made	
  

	
  
With	
  only	
  HCI	
  exper(se,	
  the	
  machine	
  learning	
  
algorithm	
  becomes	
  a	
  black	
  box.	
  
– Opportuni(es	
  for	
  interac(on	
  channels	
  are	
  missed	
  
or	
  simply	
  can’t	
  be	
  implemented.	
  

– “I	
  tried	
  it	
  and	
  it	
  doesn’t	
  work.”	
  



Why	
  does	
  IML	
  deserve	
  its	
  own	
  focus?	
  

Much	
  of	
  applied	
  machine	
  learning	
  is	
  
interac(ve	
  anyway.	
  

	
  
We	
  should	
  understand	
  and	
  design	
  for	
  this	
  

interac(on.	
  



Who	
  is	
  here	
  



This	
  course:	
  resources	
  

website	
  with	
  syllabus	
  and	
  schedule	
  
hEps://stellar.mit.edu/S/course/MAS/fa13/MAS.S62/index.html	
  



This	
  course:	
  progression	
  of	
  topics	
  

1.  Supervised	
  learning	
  
2.  Evalua(on	
  by	
  techniques/standards	
  of	
  
– Machine	
  learning	
  
– Human-­‐computer	
  interac(on	
  

3.  (Maybe)	
  unsupervised	
  learning	
  (e.g.	
  clustering)	
  
4.  Sequen(al	
  decision	
  making	
  
– Learning	
  from	
  demonstra(on	
  
– Reinforcement	
  learning	
  

(We	
  will	
  be	
  looking	
  at	
  the	
  interac(ve	
  versions	
  of	
  each	
  of	
  these	
  ML	
  methods.)	
  



This	
  course:	
  goals	
  

•  Understand	
  the	
  current	
  literature	
  on	
  IML	
  

•  Iden(fy	
  unexplored	
  research	
  topics	
  

•  Prac(ce	
  finding	
  and	
  choosing	
  research	
  
problems	
  

•  Become	
  acquainted	
  with	
  sequen(al	
  decision-­‐
making	
  and	
  research	
  methods	
  in	
  ML	
  and	
  HCI	
  



This	
  course:	
  goals	
  

•  Iden(fy	
  common	
  themes	
  and	
  goals	
  within	
  IML	
  
research	
  
– especially	
  those	
  unique	
  to	
  the	
  intersec(on	
  of	
  HCI	
  
and	
  ML	
  	
  

•  Hands-­‐on	
  experience	
  crea(ng	
  interac(ve	
  
machine	
  learning	
  systems	
  

•  Conduct	
  novel	
  research	
  on	
  IML!	
  



This	
  course:	
  course	
  components	
  

•  Limited	
  pedagogical	
  lectures	
  
•  Guest	
  lectures	
  
•  Readings	
  with	
  responses	
  posted	
  and	
  class	
  
discussion	
  

•  Preliminary	
  research	
  assignments	
  
– Toolkit	
  presenta(ons	
  
– Small	
  hands-­‐on	
  projects	
  

•  Final	
  research	
  project	
  



This	
  course:	
  confirmed	
  guest	
  lecturers	
  

Nick	
  Gillian	
  (MIT)	
  
Rebecca	
  Fiebrink	
  (Princeton)	
  
Simone	
  Stumpf	
  (City	
  University	
  London)	
  
Kayur	
  Patel	
  (Google)	
  
Krzysztof	
  Gajos	
  (Harvard)	
  
Ashish	
  Kapoor	
  (MicrosoH	
  Research)	
  
Joe	
  Konstan	
  (Univ.	
  of	
  Minnesota)	
  
Henry	
  Lieberman	
  (MIT)	
  



Sipng	
  in 	
  	
  

People	
  are	
  welcome	
  to	
  sit	
  in,	
  but	
  they	
  must	
  
keep	
  up	
  with	
  the	
  reading	
  and	
  submit	
  reading	
  
responses	
  to	
  join	
  on	
  reading	
  discussion	
  days.	
  
	
  
To	
  join	
  for	
  lectures,	
  student	
  presenta(ons,	
  and	
  
guest	
  lectures,	
  no	
  prepara(on	
  is	
  required.	
  



First	
  reading	
  assignment	
  

Two	
  readings	
  and	
  a	
  response:	
  
	
  
A	
  Few	
  Useful	
  Things	
  to	
  Know	
  about	
  Machine	
  
Learning	
  by	
  Domingos	
  	
  
and	
  	
  
Machine	
  Learning	
  that	
  Ma@ers	
  by	
  Wagstaff	
  



Reading	
  responses:	
  What	
  to	
  write	
  

Full	
  instruc(ons	
  will	
  be	
  posted	
  by	
  tomorrow	
  
night	
  on	
  course	
  website.	
  
	
  
Mostly	
  free-­‐form,	
  with	
  credit	
  based	
  on	
  evidence	
  
that	
  you	
  have	
  done	
  the	
  readings	
  carefully.	
  
	
  
~1	
  page,	
  single-­‐spaced,	
  12pt	
  Times	
  font	
  



Reading	
  responses:	
  What	
  to	
  write	
  
Acceptable	
  responses	
  include:	
  
•  Insigh_ul	
  ques(ons;	
  
•  Clarifica(on	
  ques(ons	
  about	
  ambigui(es;	
  
•  Comments	
  about	
  the	
  rela(on	
  of	
  the	
  reading	
  to	
  previous	
  

readings;	
  
•  Solu(ons	
  to	
  problems	
  or	
  exercises	
  posed	
  in	
  the	
  readings;	
  
•  Cri(ques;	
  
•  Thoughts	
  on	
  what	
  you	
  would	
  like	
  to	
  learn	
  about	
  in	
  more	
  

detail;	
  
•  Possible	
  extensions	
  or	
  related	
  studies;	
  
•  Thoughts	
  on	
  the	
  paper's	
  importance;	
  and	
  
•  Summaries	
  of	
  the	
  most	
  important	
  things	
  you	
  learned.	
  



Reading	
  responses:	
  What	
  to	
  write	
  
There	
  is	
  one	
  specific	
  requirement	
  though,	
  crea(ng	
  
a	
  discussion	
  point	
  that	
  you	
  may	
  be	
  asked	
  to	
  bring	
  
up	
  in	
  class.	
  	
  
	
  
Possible	
  discussion	
  topics	
  (note	
  overlap	
  with	
  
previous	
  list):	
  
•  Controversial	
  ques(ons/answers	
  
•  Points	
  of	
  confusion	
  
•  Ideas	
  about	
  extensions	
  to	
  the	
  work	
  
•  Insights	
  on	
  broader	
  topics	
  that	
  are	
  relevant	
  to	
  
this	
  work	
  

	
  




