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Abstract 
Intelligent systems that learn interactively from their end-users are quickly becoming widespread. 
Until recently, this progress has been mostly fueled by advances in machine learning; more and 
more researchers, however, are realizing the importance of studying users of these systems. In 
this article we promote this approach and demonstrate how it can result in better user 
experiences and more effective learning systems. We present a number of case studies that 
characterize the impact of interactivity, demonstrate ways in which existing systems fail to 
account for the user, and explore new ways for learning systems to interact with their users. We 
argue that the design process for interactive machine learning systems should involve users at 
all stages: explorations that reveal human interaction patterns and inspire novel interaction 
methods, as well as refinement stages to tune details of the interface and choose among 
alternatives. After giving a glimpse of the progress that has been made so far, we discuss the 
challenges that we face in moving the field forward. 

Introduction 
Designing machine learning systems is a complex process, requiring input and output 
identification, feature specification, model and algorithm selection, and parameter tuning. Due to 
these complexities, the ultimate consumers of machine learning systems (i.e., the end-users) 
have traditionally been shielded from this design process altogether. While this can hide the 
intricacies of the underlying process, it also limits the end-user’s ability to influence the learning 
system and can lead to undesired behaviors with little to no means for recourse. For example, 
an end-user may use a machine learning system in a situation or with data never anticipated by 
the original developer, potentially resulting in unexpected behaviors. In many of these cases, 
the only way to correct the behavior is to provide feedback to the original developer for the next 
round of development, which is inefficient and expensive. Moreover, relying on experts to drive 
such systems prevents end-users from creating their own machine learners to suit their needs 
and solve their problems. 

Take for example the events from the following case study. In 1998, Caruana and his 
collaborators began work with biochemists to cluster proteins based on their helical structure 
with the goal of revealing structural insights that could help define a protein taxonomy. While 
this endeavor helped to shed light on the structural characteristics of proteins, it also took 
substantially longer than originally anticipated. In his invited talk at the IUI 2013 Workshop on 
Interactive Machine Learning (Amershi et al. 2013), Caruana recounted this experience as 
involving a time-consuming cycle. First, machine learning experts would create a clustering and 
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accompanying visualizations to summarize that clustering. They would then meet with 
biochemists (i.e., the domain experts) to discuss the results. At this meeting, the domain experts 
would critique the clustering, creating constraints (e.g., “these two proteins should / should not 
be in the same cluster”, “this cluster is too small”). Following each meeting, the machine 
learning experts would carefully adjust the clustering distance metric to adhere to the given 
constraints and then re-compute the clusters for the next iteration. In this case study, the 
machine-learning experts were the only interface available for the domain experts to provide 
their expertise, resulting in lengthy interaction cycles. Incited by this experience, Caruana et al. 
went on to develop novel feedback techniques for more interactively incorporating domain 
expert knowledge into the distance metric used for clustering (Cohn et al. 2003, Caruana et al. 
2006).  
  
Motivated by similar needs and experiences, researchers have recently begun to employ 
interactive machine learning to better leverage end-user knowledge and capabilities during the 
machine learning process. In the interactive machine learning process, end-users can more 
directly assess and guide the underlying machine learner in a tighter interactive loop (Figure 1). 
For example, many commercial recommender systems now employ interactive machine 
learning to adapt recommendations based on user specified preferences for items (e.g., ‘liking’ 
or ‘disliking’ items). In each iteration, end-users can inspect new recommendations and then 
further guide the system by specifying additional preferences.  

However, while interactive machine learning is beginning to drive many user-facing applications, 
until recently much of the progress in this space has been fueled by advances in machine 
learning. This article advocates that it is equally important to study the users of interactive 
machine learning systems in order to create better user experiences and more effective 
machine learning. Through a series of case studies, we argue that explicit study of the 
interaction between humans and machine learners is critical to designing interfaces and 
machine learning algorithms that facilitate effective interactive machine learning. These case 
studies also paint a broad picture of the range of recent research on interactive machine 
learning, serving both as an introduction to the topic and a vehicle for considering the body of 
research altogether.  

We begin by providing a formal definition of interactive machine learning and then illustrate the 
learning process with archetypal examples that follow a common form of interactive machine 
learning, in which a user observes learned predictions and then provides further labeled 
examples informed by those observations. Next, we present research that examines (and often 
upends) assumptions about end-user interaction with machine learning systems. Concluding the 
case studies, we review research involving novel interfaces that move beyond the interactions 
afforded by the archetypal examples, finding that these new techniques often enable more 
powerful end-user interaction but must be carefully designed so as not to confuse the user or 
otherwise harm the learning. Finally, we discuss the current state of the field and identify 
opportunities and open challenges for future interactive machine learning research. 



 

Interactive Machine Learning 
We define interactive machine learning (IML) as a process that involves a tight interaction loop 
between a human and a machine learner, where the learner iteratively takes input from the 
human, promptly incorporates that input, and then provides the human with output impacted by 
the results of the iteration. This cyclical process is illustrated in Figure 1. In interactive machine 
learning systems, learning is interleaved with execution; i.e., the human uses or tests the 
system while he or she continues to train it. As a result, the output of the system influences the 
user’s subsequent input. An example is a recommendation system such as Pandora2, which 
takes labels on played songs as input, and provides new songs that are expected to fit the 
user’s preferences as output. Narrowing this definition further, for a system to be considered an 
example of interactive machine learning system, we require that the human is consciously 
interacting with the learner in order to improve it. For instance, if a website adapts its webpage 
presentation to a user’s click history without the user intending to improve the website through 
these clicks, this adaptation is not considered as interactive machine learning. 

Users of interactive machine learning systems vary. A particularly motivating class of users are 
domain experts who lack expertise in computer programming or machine learning. However, 
machine learning experts can also be end-users themselves. For instance, an interface that 
richly visualizes model error immediately after a change of features or learning parameters 
would increase interactivity for machine learning experts developing learning systems. 

The methods for interfacing with learning systems can also vary widely. Traditionally, the input 
to such systems has been in the form of labeled examples (e.g., a song labeled as liked or 
disliked in Pandora), while the output has been in the form of predicted labels or ratings on new 
samples (e.g., new songs presented to the user which have high predicted ratings). Recent 
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Figure 1: In the interactive machine learning process, a learning system iteratively presents output 
to a user who can provide new inputs to correct or refine the learning. The learner incorporates this 
input into its model, allowing the user another opportunity for correction and refinement. 



research, however, has started to explore new interfaces, including interfaces for letting users 
label parts of items (e.g., Fails & Olsen 2003), adjust model parameters and cost functions (e.g., 
Kapoor et al. 2010), and directly modify a classifier’s features (e.g., Kulesza et al. 2011). We 
describe some of these different forms of input and output in the “Novel Interfaces for Interactive 
Machine Learning” section later in this article. 

A key property of interactivity is that the tight interaction loop allows the output of the system to 
influence subsequent user inputs to the system. For example, after observing that labeling a 
song as liked results in recommendations from the same artist, the user may label more songs 
from other artists to diversify their recommendations. We next present two case studies that 
exemplify our definition of interactive machine learning. 

Interactive image segmentation 

Some of the earliest work in this area came from Fails and Olsen (2003), who introduced the 
term interactive machine learning. Similar to our definition, they highlighted the train-feedback-
correct cycle—a process in which the user iteratively provides corrective examples to the 
learner after viewing its output. Their system, called Crayons, allowed users to train a pixel 
classifier by iteratively marking pixels as foreground or background through brushstrokes on an 
image. After each user interaction, the system responded with an updated image segmentation 
for further review and corrective input by the user. Evaluations of the Crayons system via user 
studies revealed that this immediate output allowed users to instantly perceive misclassifications 
and correct them by adding new training data in the most problematic areas. As illustrated in 
Figure 2, after an initial classification, the user provides Crayons with more data at the edges of 
the hand where the classifier failed. When asked what they were thinking while interacting with 
the system, most users stated that they were focused on seeing parts of the image that were 
classified incorrectly. 
 

 
Figure 2: Interactive training of the Crayons system (Fails & Olsen 2003). The system takes pixels 
labeled as background/foreground as input (provided through brush strokes), and gives a fully segmented 
image as output (obtained through a classifier that labels each pixel as foreground/background). The 
user’s input is focused on areas where the classifier is failing in previous iterations. 
 

 
Figure 4 – The classification design loop 

Although the IML and the machine-learning component of 
Crayons are the primary discussion of this paper it is 
notable to mention that Crayons has profited from work 
done by Viola and Jones [19] and Jaimes and Chang 
[5,6,7].  Also a brief example of how Crayons can be used 
is illustrative.  The sequence of images in Figure 5 shows 
the process of creating a classifier using Crayons. 

 

 

 
Figure 5 – Crayons interaction process 

 
Figure 5 illustrates how the user initially paints very little 
data, views the feedback provided by the resulting 
classifier, corrects by painting additional class pixels and 
then iterates through the cycle.  As seen in the first image 
pair in Figure 5, only a little data can generate a classifier 
that roughly learns skin and background.  The classifier, 
however, over-generalizes in favor of background; 
therefore, in the second image pair you can see skin has 

been painted where the classifier previously did poorly at 
classifying skin.  The resulting classifier shown on the right 
of the second image pair shows the new classifier 
classifying most of the skin on the hand, but also 
classifying some of the background as skin.  The classifier 
is corrected again, and the resulting classifier is shown as 
the third image pair in the sequence.  Thus, in only a few 
iterations, a skin classifier is created. 
The simplicity of the example above shows the power that 
Crayons has due to the effectiveness of the IML model.  
The key issue in the creation of such a tool lies in quickly 
generating effective classifiers so the interactive design 
loop can be utilized. 

MACHINE LEARNING 
For the IML model to function, the classifier must be 
generated quickly and be able to generalize well.  As such 
we will first discuss the distinctions between IML and 
CML, followed by the problems IML must overcome 
because of its interactive setting, and lastly its 
implementation details including specific algorithms. 

CML vs. IML 
Classical machine learning generally has the following 
assumptions. 

x� There are relatively few carefully chosen features,  

x� There is limited training data,  

x� The classifier must amplify that limited training data 
into excellent performance on new training data,  

x� Time to train the classifier is relatively unimportant 
as long as it does not take too many days. 

None of these assumptions hold in our interactive situation.  
Our UI designers have no idea what features will be 
appropriate.  In fact, we are trying to insulate them from 
knowing such things.  In our current Crayons prototype 
there are more than 150 features per pixel.  To reach the 
breadth of application that we desire for Crayons we 
project over 1,000 features will be necessary. The 
additional features will handle texture, shape and motion 
over time.  For any given problem somewhere between 
three and fifteen of those features will actually be used, but 
the classifier algorithm must automatically make this 
selection.  The classifier we choose must therefore be able 
to accommodate such a large number of features, and/or 
select only the best features.  
In Crayons, when a designer begins to paint classes on an 
image a very large number of training examples is quickly 
generated.  With 77K pixels per image and 20 images one 
can rapidly generate over a million training examples.  In 
practice, the number stays in the 100K examples range 
because designers only paint pixels that they need to 
correct rather than all pixels in the image.  What this 
means, however, is that designers can generate a huge 
amount of training data very quickly.  CML generally 
focuses on the ability of a classifier to predict correct 
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Fails and Olsen’s work on Crayons demonstrated that users modify their behavior based on a 
learner’s outputs, which is an underlying premise for much of the following research on 
interactive machine learning. 

Musicians training instruments and instruments training musicians 
The realm of music composition and performance is naturally interactive—musicians are 
accustomed to receiving immediate auditory feedback when interacting with a musical 
instrument. Fiebrink and colleagues (2011) developed the Wekinator, a machine learning 
system for enabling people to interactively create novel gesture-based instruments. For 
example, moving an arm in front of a web cam could produce different sounds based on the 
arm’s position, speed, or rotation. In this system, a neural network receives paired gestures and 
sounds from the user as input and then learns how to interpolate from unobserved gesture 
positions to a range of sounds. Users evaluate their instruments directly by gesturing and 
assessing the produced sounds. 

While exploring the use of Wekinator by students in an interdisciplinary music and computer 
science course, the authors found that as the participants were training their respective learners, 
the learners were also training the participants. For example, participants learned how to 
recognize noise in their training samples and provide clearer examples to the learner. In some 
cases, participants even adjusted their goals to match the observed capabilities of the learner. 
In a follow-up investigation with a professional cellist (Fiebrink et al. 2011), the cellist identified 
long-standing flaws in her playing technique while trying to train a learner; the gesture 
recognizer revealed her bowing articulation was not as precise as she had believed it to be. By 
observing the outputs of the system in real-time, users were able to modify their behavior in 
ways that allowed them to create instruments to their satisfaction.  

Summary 

These two examples illustrate the interactive machine learning process, in which users observe 
the outputs of the learning system and then provide further input influenced by those 
observations. This observe-then-train cycle is fundamental to interactive machine learning. 
However, many of the case studies to follow will consider less traditional types of input and 
output, moving beyond labeled examples and observations of learner predictions. The case 
studies presented in this section also demonstrate the benefits of interactivity, which we will 
continue to highlight throughout this article.   

Studying User Interaction with Interactive Machine Learning 
The previous section described the general interactive machine learning process; in this section, 
we turn to case studies illustrating the importance of understanding how end-users can and do 
interact with interactive machine learning systems and how such understanding can ultimately 
lead to better-informed designs. First, we present two case studies that demonstrate how 
people may violate assumptions made by traditional machine learners about their input, 
resulting in unexpected outcomes and user frustration. The next two case studies indicate that 
people may want to interact with machine learning systems in richer ways than developers 
anticipated, suggesting changes to the input constraints that are built into the interface. Finally, 



we present a case study that shows that people may desire more transparency about how 
machine learning systems work—changing the output constraints of the interface—and that 
such transparency can improve both the user experience and the resulting models. 

People dislike being the oracle for active learning 
Active learning is a machine-learning paradigm in which the learner chooses the examples from 
which it will learn (Settles 2010). These examples are selected from a pool of unlabeled 
samples based on some selection criterion (e.g., examples for which the learner has maximum 
uncertainty). The learner then queries an oracle, requesting a label for each selected example. 
This method has had tremendous success in accelerating learning (i.e., requiring fewer labels to 
reach a target accuracy) in applications like text classification and object recognition, where 
multiple oracles are paid to provide labels over a long period of time. However, as Cakmak and 
colleagues (2010) discovered, when applied to interactive settings such as a person teaching a 
task to a robot by example, active learning can cause several problems. 

 

Figure 3: Users teaching new concepts to a robot by providing positive and negative examples. (Left) 
Passive learning: examples are chosen and presented by the user. (Right) Active learning: examples are 
requested by the learner. Although active learning results in faster convergence, users get frustrated from 
having to answer the learner’s long stream of questions and not having control over the interaction. 

Cakmak's study (Figure 3) found that the constant stream of questions from the robot learner 
during interaction was perceived by the user as imbalanced and annoying. The stream of 
questions also led to a decline in the user’s mental model of how the robot learned, causing 
some participants to "turn their brain off" or "lose track of what they were teaching" (according to 
their self report) (Cakmak et al. 2010). Similar findings were reported by Guillory and Bilmes 
(2011) for Netflix’s "active" recommendation system for movies. These studies reveal that 
humans are not necessarily willing to be simple oracles (i.e., repeatedly telling the computer 
whether it is right or wrong), breaking a fundamental assumption of active learning. Instead, 
these systems need to account for human factors such as interruptibility or frustration when 
employing methods like active learning.  

People are biased towards giving positive feedback to learning agents 
In reinforcement learning, a robot or agent senses and acts in a task environment and receives 
numeric reward values after each action. With this experience, the learning agent attempts to 
find behavioral policies that improve its expected accumulation of reward. A number of research 
projects have investigated the scenario in which this reward comes as feedback from a human 



user rather than a function predefined by an expert (Isbell et al. 2006, Thomaz and Breazeal 
2008, Knox and Stone 2012). In evaluating the feasibility of non-experts teaching through 
reward signals, these researchers aim to both leverage human knowledge to improve learning 
speed and permit people to customize an agent’s behavior to fit their own needs. 

            

Figure 4: Task domain containing reinforcement learning agents taught by human users. (Left) A cooking 
robot that must pick up and use the ingredients in an acceptable order (Thomaz and Breazeal, 2006). The 
green vertical bar displays positive feedback given by a click-and-drag interface. (Right) A simulated robot 
frog that users are asked to teach to go to the water (Knox and Stone, 2012). 

Thomaz and Breazeal (2008) observed that people have a strong tendency to give more 
positive rewards than negative rewards. Knox and Stone (2012) later confirmed this positive 
bias in their own experiments. They further demonstrated that such positive bias leads many 
agents to avoid the goal that trainers are teaching it to reach (e.g. the water in Figure 4). This 
undesirable consequence occurs with a common class of reinforcement learning algorithms: 
agents that value reward accrued over the long term and are being taught to complete so-called 
episodic tasks. This insight provided justification for the previously popular solution of making 
agents that hedonistically pursue only short-term human reward, and it led Knox and Stone to 
create the first reported algorithm that successfully learns by valuing human reward that can be 
gained in the long-term (2013). Agents trained through their novel approach were more robust 
to environmental changes and behaved more appropriately in unfamiliar states. These agents 
and the algorithmic design guidelines Knox and Stone created were the result of multiple 
iterations of user studies, which identified positive bias and then verified its hypothesized effects. 

People want to guide and demonstrate, not just provide feedback 
In the experiment by Thomaz and Breazeal (2008) users trained a simulated agent to bake a 
cake through a series of object manipulations. Users gave feedback to the learner by clicking 
and dragging a mouse. Longer drags gave larger-magnitude reward values and the drag 
direction determined the valence (+/-) of the reward value.  Further, users could click on specific 
objects to signal that the feedback was specific to that object, but they were told that they could 
not communicate which action the agent should take. 

Thomaz and Breazeal found evidence that people nonetheless gave positive feedback to 
objects that they wanted the agent to manipulate. These users violated their instructions by 
applying what could be considered an irrelevant degree of freedom—giving feedback to objects 
that had not been recently manipulated—to provide guidance to the agent. After Thomaz and 



Breazeal adapted the agent's interface and algorithm to incorporate guidance, the agent's 
learning performance significantly improved. 

Other researchers have reached similar conclusions. In a Wizard-of-Oz study (i.e., the agent’s 
outputs were secretly provided by a human) by Kaochar et al. (2011), users taught an agent to 
perform a complex task. These users could provide a demonstration, give feedback, teach a 
concept by example, or test the agent to see what it had learned. The authors found that users 
never taught exclusively by feedback, instead generally using it after teaching by other means. 
Together, these two studies provide insight into the design of natural interfaces for teaching 
agents.  

People may want to provide richer feedback 
Labeling data remains the most popular method for end-user input to interactive machine 
learning systems because of its simplicity and ease-of-use. However, as some of the previous 
case studies demonstrate, label-based input also has drawbacks (e.g., negative attitudes 
towards being treated as an oracle). In addition, emerging research suggests that in some 
circumstances users may desire richer control over machine learning systems than simply 
labeling data. 

For example, Stumpf et al. (2007) conducted an experiment to understand the types of input 
end-users might provide to machine learning systems if unrestricted by the interface. The 
authors generated three types of explanations for predictions from a text classification system 
operating over email messages. These explanations were presented to people in the form of 
paper-based mockups to avoid the impression of a finished system and to encourage people to 
provide more feedback. People then provided free-form feedback on the paper prototypes in 
attempts to correct the classifier’s mistakes.  

This experiment generated approximately 500 feedback instances from participants, which were 
then annotated and categorized. The authors found that people naturally provided a wide variety 
of input types to improve the classifier’s performance, including suggesting alternative features 
to use, adjusting the importance or weight given to different features, and modifying the 
information extracted from the text. These results present an opportunity to develop new 
machine learning algorithms that might better support the natural feedback people want to 
provide to learners, rather than forcing users to interact in limited, learner-centric ways. 

End users may value further transparency 
In addition to wanting richer controls, people sometimes desire more transparency about how 
their machine learning systems work. In a recent study, Kulesza et al. (2012) provided users of 
a content-based music recommender with a 15-minute tutorial discussing how the 
recommender worked and how the various feedback controls (e.g., rating songs, steering 
towards specific feature values, etc.) would impact the learner. Participants responded positively 
to learning these details about the system. In addition, the researchers found that the more 
participants learned about the recommender while they interacted with it, the more satisfied they 
were with the recommender’s output. This case study provides evidence that users do not 



always want “black box” learning systems—sometimes they want to provide nuanced feedback 
to steer the system, and they are willing and able to learn details about the system to do so. 

Transparency can help users label better 
Sometimes users make mistakes while labeling, thus providing false information to the learner. 
Although most learning systems are robust to the occasional human error, Rosenthal and Dey 
set out to solve this problem at the source. They sought to reduce user mistakes by providing 
targeted information when a label is requested in an active learning setting. The information 
provided to the user included a combination of contextual features of the sample to be labeled, 
explanations of those features, the learner's own prediction of the label for the sample, and its 
uncertainty in this prediction (Rosenthal & Dey, 2010). 

They conducted two studies to determine the subset of such information that is most effective in 
improving users' labeling accuracy. The first involved people labeling strangers’ emails into 
categories, as well as labeling the interruptability of strangers' activities; the second study 
involved people labeling sensory recordings of their own physical activity. Both studies found 
that the highest labeling accuracy occurred when the system provided sufficient contextual 
features and current predictions without uncertainty information. This line of research 
demonstrates that the way in which information is requested (e.g., with or without context) can 
greatly impact the quality of the response elicited from the user. The case study also shows that 
not all types of transparency improve the performance of an interactive machine learning 
system, and user studies can help determine the ideal combination of information to provide to 
users. 

 

Summary 
As these case studies illustrate, understanding how people do interact—and want to interact—
with machine learning systems is critical to designing systems that people can use effectively. 
Exploring preferred interaction techniques through user studies can reveal gaps in designers’ 
assumptions about their end users and may suggest new algorithmic solutions. In some of the 
cases we reviewed, people naturally violated the assumptions of the machine learning algorithm 
or were unwilling to comply with them. Other cases demonstrate that user studies can lead to 
helpful changes to the types of input and output supported by interfaces for interactive machine 
learning. In general, this type of research can produce design suggestions and considerations, 
not only for people building user interfaces and developing the overall user experience, but for 
the machine learning community as well. Moving from this section’s focus on research that 
questions the assumptions of interactive machine learning systems—some of which are 
assumptions built into the interface—the following section will detail a number of projects that 
involve novel interfaces, each attempting to incorporate new types of input or output into the 
interactive machine learning cycle. 

Novel Interfaces for Interactive Machine Learning 
End users are often assumed to have limited time, patience, and capacity to understand 
machine learning. Perhaps as a consequence of such assumptions, interactive machine 



learning systems have often been designed to receive only labeled examples as input and 
provide only predictions as output. However, as many of the case studies in the previous 
section showed, end users sometimes desire richer involvement in the interactive machine 
learning process. In addition, research on cost-benefit tradeoffs has shown that people will 
invest time and attention to something if they perceive their efforts to have greater benefits than 
costs (Blackwell 2002). For example, research on end-user programming has shown that end 
users program often (e.g., via spreadsheets, macros, mash-ups), but do so primarily to 
accomplish some larger goal (Blackwell 2002). Similarly, this theory suggests that people will 
invest time to improve their classifiers only if they view the task as more beneficial than 
costly/risky—i.e., when they perceive the benefits of producing an effective classifier as 
outweighing the costs of increased interaction. Therefore, we believe there is an opportunity to 
explore new interfaces that can better leverage human knowledge and capabilities, and 
demonstrate the value of doing so via interactive feedback.   

In this section, we present case studies that explore novel interfaces for interactive machine 
learning systems and demonstrate the feasibility of richer interactions. Interface novelty in these 
cases can come from new methods for receiving input or providing output. New input 
techniques can give users more control over the learning system, allowing them to move 
beyond simply labeling examples. Such input techniques include methods for feature creation, 
reweighting of features, adjusting cost matrices, or modifying model parameters. Novel output 
techniques can make the system’s state more transparent or understandable. For example, a 
system could group unlabeled data to help users label the most informative items, or it could 
communicate uncertainty about the system’s predictions.  

These case studies also reinforce our earlier argument that interactive machine learning 
systems should be evaluated with potential end-users. Such evaluations are needed both to 
validate that these systems perform well with real users and to gain critical insights for further 
improvement. Many of the novel interfaces detailed below were found to be beneficial, but as 
shown in the final two case studies, adding new types of input or output can sometimes lead to 
obstacles for the user or reduce the accuracy of the learner. Therefore, novel interfaces should 
be designed with care and appropriately evaluated before being deployed. 

Supporting data selection with novel ways of presenting data to users 
In many interactive machine learning processes, the user and machine iterate toward a shared 
understanding of a desired concept. In each iteration, the user typically assesses the quality of 
the current learner and then further guides the system with additional input. A common 
technique for conveying the quality of the current supervised learner is to present a person with 
all of the unlabeled data sorted by their predicted scores for one class (e.g., showing image-
classification probabilities or all search results ranked by relevance to a query). Then, after 
evaluating this presentation, a person can decide how to proceed in training (e.g., deciding 
which additional examples to provide for input). Although straightforward, this technique 
inefficiently illustrates the quality of the current concept and provides the user with no guidance 
for best improving the learner.  



Fogarty et al. (2008) investigated novel techniques for presenting unlabeled data to facilitate 
better training in CueFlik, an interactive machine learning system for image classification. Via a 
user study, the authors demonstrated that an alternative technique of presenting users with only 
the best- and worst-matching examples enabled people to train significantly better models than 
the standard technique of presenting the user with all of the data.  

 

Figure 5. Fogarty et al.’s work with CueFlik compared two methods of illustrating the current version of a 
machine-learned visual concept. The standard method (left) presented users with examples ranked by 
their likelihood of membership to the positive class. The best and worst matches method (right) instead 
showed examples predicted as positive or negative with high certainty by CueFlik.. A user study showed 
that the best- and worst-matches technique led users to train significantly better learners than the 
standard presentation. 

Fogarty et al.’s results demonstrate that presentation matters when designing end-user 
interaction with machine learning. They speculated that their performance improvement was 
due to the best-matching presentation better summarizing the machine’s current understanding, 
helping people to focus on whether the classifier was mostly correct rather than focusing on the 
uncertain middle of the standard list ranked by probability of relevance. However, because best 
and worst matches are extremely similar to already labeled examples, this technique constrains 
a person to label examples that provide little additional information to the machine learner.  

To address the limitations of the best-matching presentation technique, Amershi et al. (2009) 
explored alternative techniques for concisely summarizing the machine’s current understanding 
while providing people with high-information-content examples to choose from during training. 
These techniques involved presenting users with intuitive overviews of the positive and negative 
regions (taking advantage of a user’s ability to quickly assess similarity and variation across 
multiple images in a single viewing) by selecting representative examples that maximized the 
mutual information with the rest of the space (providing the machine learner with more 
information in each iteration). A follow-up user study demonstrated that these overview-based 
techniques led participants to train learners that performed significantly better than learners 
trained via the best-performing technique from previous work. This case study demonstrates 



that effective interactive machine learning systems must balance the needs of both the human 
and the machine within their design. 

 

Figure 6. Overview presentation techniques (middle and right) more accurately illustrates CueFlik’s 
currently learned concept while providing users with highly informative examples to choose from during 
interactive machine learning. Amershi et al showed that overview-based example presentation enabled 
end-users to train significantly better quality machine learners than the best-and-worst matches technique 
(which outperformed the standard presentation technique used by most interactive machine learning 
systems of this kind). 

Intermittently-active learning: do not make queries all the time 
As mentioned earlier, applying active learning to interactive settings can be undesirable from the 
user's point of view (e.g., users do not like to answer a constant stream of questions coming 
from a learning system). To address this problem, Cakmak & Thomaz (2010) proposed 
intermittently-active learning, where the learner makes queries only for a subset of the examples 
provided by the user. This brings a new challenge for the learner: deciding when to make a 
query. Cakmak & Thomaz explored two approaches. In the first, conditional queries were made 
only when certain conditions were met. This took into account how good the examples chosen 
by the user were and the probability that the user would randomly provide useful examples. In 
the second approach, teacher-triggered queries simply gave the decision of when the learner is 
allowed to ask a question of the teacher. A query was made only when the user said "do you 
have any questions?". 

A study comparing intermittently-active learning with fully active and fully passive learning 
demonstrated its advantage over these two extremes of the spectrum (Cakmak et al. 2010). The 
study showed that both intermittent approaches resulted in learning as fast as the fully active 
approach, while being subjectively preferred over fully active or fully passive approaches. The 
interactions with the intermittently-active learners were found to be more balanced, enjoyable, 
and less frustrating. When asked to choose between the two alternative approaches, users 
preferred the teacher-triggered queries, mentioning that they liked having full control over the 
learner's queries. As exemplified in this case study, building interactive learning systems that fit 
user preferences can sometimes require the modification of existing methods in fundamental 
ways. 

User feedback on system recommendations 



Some machine learning systems help users navigate an otherwise unnavigable search space. 
For example, recommender systems help people find specific items of interest, filtering out 
irrelevant items. Vig et al. (2011) studied a common problem in this domain—recommending 
results that are close, but not quite close enough, to what the user was looking for. Researchers 
developed a prototype to support tag-based “critiques” of movie recommendations. Users could 
respond to each recommendation with refinements such as “Like this, but less violent” or “Like 
this, but more cerebral”, where violent and cerebral are tags that users had applied to various 
movies. A k-nearest-neighbor approach was then used to find similar items that included the 
user-specified tags. 

This relatively simple addition to the MovieLens website garnered an overwhelmingly positive 
reaction, with 89% of participants in a user study saying that they liked it, and 79% requesting 
that it remain a permanent feature on the site. In the words of one user, “The best thing to come 
by in MovieLens (besides the product itself). Strongly recommended this to my friends and 
some picked MovieLens up just because of this addition. Love it!”’. This example helps illustrate 
both the latent desire among users for better control over machine learning systems, and that by 
supporting such control in an interactive fashion, user attitudes toward the learner can be 
greatly enhanced. 

Allowing users to specify preferences on errors 
People sometimes need to refine the decision boundaries of their learners. In particular, for 
some classifiers it might be critical to detect certain classes correctly, while tolerating errors in 
other classes (e.g., misclassifying spam as not spam is typically less costly than misclassifying 
regular email as spam). However, refining classifier decision boundaries is a complex process 
even for experts, involving iterative parameter tweaking, retraining, and evaluation. This is 
particularly difficult because there are often dependencies among parameters, which leads to 
complex mappings between parameter values and the behavior of the system. 

 

Figure 7: The ManiMatrix system displays the confusion matrix of the classifier and allows the user to 
directly increase or decrease the different types of errors using arrows on the matrix cells. ManiMatrix 
provides feedback to the user by highlighting cells that change value as a result of the user’s click (red 
indicates a decrease and green indicates an increase). 

To address these difficulties, Kapoor et al. (2010) created ManiMatrix, a tool for people to 
specify their preferences on decision boundaries via interactively manipulating a classifier’s 
confusion matrix (i.e., a breakdown of the correct and incorrect predictions it made for each 

 

Figure 1 shows how different cost matrices can result in 
different classification boundaries. The figures on the left 
depict the estimated probabilities over a 2-dimensional 
space for three different classes. These probabilities are 
derived from an underlying classification system that was 
built using a training corpus. We compute an expected cost 
of using the classifiers on the test sets by combining these 
probabilities with different cost matrices in order to produce 
different classification boundaries. We see that different 
settings of cost shift the boundary in order to minimize the 
classification risk. 

Unfortunately, specifying such fine-grained preferences via 
the cost matrix can be tedious. A c class classification prob-
lem requires the user to specify c2 parameters which be-
comes infeasible as c becomes even marginally large. 
Furthermore, setting these parameters by hand can be chal-
lenging as the classification model and the costs interact in 
complex, non-linear ways which is often unpredictable, 
even to expert users. In some scenarios, one might estimate 
such parameters using monetary considerations (such as 
direct profit or loss). However, such considerations are hard 
to make in various HCI settings where the cost of the mis-
classification can correspond to such outcomes as user an-
noyance, frustration, usability, and other subjective metrics.  

MANIMATRIX 
ManiMatrix is an interactive system that allows users to 
directly manipulate the confusion matrix in order to specify 
preferences and explore the classification space. The system 
consists of a visualization and control interface joined with 
an optimization algorithm that computes the global implica-
tions of a user’s local refinements, enabling users to make 
changes and to understand how the predictive model inte-
racts with their preferences (Figure 2).  

Interacting with the Confusion Matrix 
At the core of ManiMatrix is a confusion matrix, which 
represents classification results by aggregating instances 
within a grid. Each row in the matrix represents an in-
stance’s true class and each column an instance’s predicted 
class. For example, Figure 2a (see left-most cell in the mid-
dle row of the matrix) shows that 6 cloudy days were mis-
classified as rainy within a party location planning problem. 

The confusion matrix is a common visualization because it 
is easy to interpret and can be used with any classification 
algorithm. Other visualizations may also serve as the basis 
for building insights and encoding preferences about classi-
fication. We leave exploration of such visualizations as 
future work. 

Depending on their preferences, users can specify an in-
crease or decrease in the tolerance for numbers of cases 
classified into each cell. For example, if users want to pre-
vent the cloudy days from being classified as rainy, they 
want to have as small a number as possible in the middle 
left cell. ManiMatrix supports this by allowing them to spe-
cify this desire with a single click directly on the confusion 
matrix. When users move the mouse pointer over a cell, 
ManiMatrix shows a green up arrow and a red down arrow 
on the right side of the cell (Figure 2a). Each click corres-
ponds to the desire to increment or decrement the value in 
that cell by 1. When users click on either button, ManiMa-
trix recomputes the decision boundaries for all cases, work-
ing to satisfy the confusion matrix that accommodates the 
user request. This is done at interactive rates and users re-
ceive immediate feedback. 

If ManiMatrix successfully finds a feasible confusion ma-
trix, it updates the visualization; otherwise it notifies users 
that the request is not feasible. For example, Figure 2b 
shows the new confusion matrix after the user clicked on 
the down button from the middle left cell. To facilitate large 
desired value changes, ManiMatrix repeats this click inte-
raction if users press and hold the button. 

Operations, even on a single cell, typically lead to changes 
in other parts of the matrix. To show changes in each cell, 
ManiMatrix provides feedback by highlighting the cells 
whose values have changed; green represents an increase 
and red a decrease. The magnitude of change is represented 
by the opacity; the bigger the difference is, the more opaque.  

It is important to note that multiple solutions may be consis-
tent with a user's preferences. In the current version of Ma-
niMatrix, a solution of parameters is generated that 
maximizes the stability of the matrix, minimizing the over-
all change in value as much as possible. As a result, the up 
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Figure 2. Interacting with ManiMatrix. 



class) (Figure 7). Given these preferences, ManiMatrix employs Bayesian decision theory to 
compute decision boundaries that minimize the expected cost of different types of errors, and 
then visualizes the results for further user refinement. A user study with machine learning 
novices demonstrated that participants were able to quickly and effectively modify decision 
boundaries as desired with ManiMatrix. This case study demonstrates that non-experts can 
directly manipulate a model’s learning objective, a distinctly different form of input than choosing 
examples and labeling them. 

Combining classifiers to improve performance 
An ensemble classifier is a classifier that builds its prediction from the predictions of multiple 
sub-classifiers, each of which are functions over the same space as the ensemble classifier. 
Such ensembles often outperform all of their sub-classifiers and are a staple of applied machine 
learning (e.g., AdaBoost). A common workflow for creating ensemble classifiers is to experiment 
with different features, parameters, and algorithms via trial and error or hill-climbing through the 
model space. Even for machine learning experts, this approach can be inefficient and lead to 
suboptimal performance.   

To facilitate the creation of ensemble classifiers, Talbot et al. (2009) developed EnsembleMatrix, 
a novel tool for helping people interactively build, evaluate, and explore different ensembles 
(Figure 8). EnsembleMatrix visualizes the current ensemble of individual learners via a 
confusion matrix. The user can then experiment with and evaluate different linear combinations 
of individual learners by interactively adjusting the weights of all models via a single 2D 
interpolation widget (top right in Figure 8). EnsembleMatrix’s novel interface also allows people 
to make use of their visual processing capabilities to partition the confusion matrix according to 
its illustrated performance, effectively splitting the ensemble into sub-ensembles that can be 
further refined as necessary. 

 

Figure 8: EnsembleMatrix visualizes the current ensemble (left) of individual learners (bottom right) via a 
confusion matrix. Users can adjust the weights of individual models via a linear combination widget (top 



right) to experiment with different ensembles. Users can also partition the confusion matrix to split and 
refine sub-ensembles. 

A user study showed that EnsembleMatrix enabled people to not only create ensemble 
classifiers on par with the best published ensembles on the same data set—they managed to do 
so in a single, one-hour session. The study involved participants ranging from machine learning 
novices to experts. This case study illustrates that effectively combining human intuition and 
input with machine processing can enable people to create better classifiers in less time than 
standard approaches that ignore these powerful human capabilities. 

Allowing users to ask “Why?” 
In addition to the learner querying the user (e.g., active learning), sometimes the user may want 
to query the learner. Kulesza et al. (2011) developed an approach to let users ask a text 
classifier why it was behaving in a particular way (e.g., “Why was this classified as X instead of 
Y?”). The learner’s responses were interactive, thus providing a way for users to not only 
understand why the system had made a particular prediction, but to also adjust the learner’s 
reasoning if its prediction was wrong. 

While many participants exposed to this why-oriented approach significantly increased the 
accuracy of their naïve Bayes text classifier, every participant encountered a number of barriers 
while doing so. In particular, participants had trouble selecting features to modify from the 
thousands in the bag-of-words feature set, and once participants did select features to adjust, 
they had trouble understanding how changes to a single feature altered the learner’s predictions 
for apparently unrelated items. This study suggests that for learners with large feature sets or 
complex interactions between features, users will need additional support to make sense of 
which features are most responsible for an item’s classification. Conversely, these results may 
be interpreted as evidence that learning systems intended for interactive use must be designed 
such that only a comprehensible number of features are responsible for each prediction. 

Summary 
Whether a candidate interface change will improve a user’s experience or the system’s 
performance can only be assessed through evaluation with potential end-users. In the case 
studies above, adding richness or permitting user interaction with more than the training data 
was often beneficial, but not always so. Different users will have different needs and 
expectations of the systems they employ. Thus, conducting user studies of novel interactive 
machine learning systems is critical not only for discovering promising modes of interaction, but 
also to uncover obstacles that users may encounter and unspoken assumptions they might hold 
about the machine learner. In addition, the accumulation of such research can facilitate the 
development of design guidelines for building future interactive machine learning systems, much 
like those that exist for traditional software systems (Shneiderman et al. 2009).  

Discussion 
Interactive machine learning is a potentially powerful technique for improving human interaction 
with machine learning systems. As this article illustrates, studying how people interact with 
interactive machine learning systems and exploring new techniques for enabling those 



interactions can result in both better user experiences and more effective machine learners. 
However, research in this area has only just begun, and many opportunities remain to improve 
the interactive machine learning process. This section describes open challenges and 
opportunities for advancing the state-of-the-art in human interaction with interactive machine 
learning systems. 

As shown by the variety of case studies above, various fields of computer science already 
employ interactive machine learning to solve domain specific problems (e.g., search in 
information retrieval, filtering in recommender systems, task learning in human-robot interaction). 
However, different fields often refer to interactive machine learning in domain-specific terms 
(e.g., relevance feedback, programming by demonstration, debugging machine-learned 
programs, socially-guided machine learning). This diversity in terminology impedes awareness 
of progress in this common space, which can potentially lead to duplicate work. Seeking to 
facilitate the development of new interactive machine learning systems, some researchers have 
begun developing design spaces that abstract away domain-specific details from existing 
solutions to emphasize common dimensions that can be varied or manipulated when designing 
the interactive machine learning loop itself (e.g., Amershi 2012, Porter et al. 2013).  

For example, Amershi (2012) examined interactive machine learning systems across several 
fields (including information retrieval, context-aware computing, and adaptive and intelligent 
systems) and identified 16 key design factors influencing human interaction with machine 
learning systems (e.g., the expected duration of model use, the focus of a person’s attention 
during interaction, the source and type of data over which the machine will learn) and 18 design 
dimensions that can be varied to address these factors (e.g. the type and visibility of model 
feedback, the granularity and direction of user control, and the timing and memory of model 
input). In another example, Porter et al. (2013) breaks down the interactive machine learning 
process into three dimensions: task decomposition (defining the level of coordination and 
division of labor between the end-user and the machine learner), training vocabulary (defining 
the type of input end-users can provide the machine learner), and the training dialog (defining 
the level and frequency of interaction between the end-user and the learner). Design spaces 
such as these can help to form a common language for researchers and developers to 
communicate new interactive machine learning solutions and share ideas. However, there are 
many ways to dissect and describe the various interaction points between people and machine 
learners within the interactive machine learning process, so an important opportunity remains 
for converging on and adopting a common language across these fields to help accelerate 
research and development in this space. 

In addition to developing a common language, an opportunity remains for generalizing from 
existing solutions and distilling principles and guidelines for how we should design future human 
interaction with interactive machine learning, much like we have for designing traditional 
interfaces (e.g., Schneiderman et al. 2009; Moggridge & Smith 2007; Dix et al. 2004; Winograd, 
1996; Norman, 1988). For example, Schneiderman’s Golden Rules of interface design advocate 
for designating the users as the controllers of the system and offering them informative 
feedback after each interaction. Indeed, some of these principles can directly translate to the 
design of interactive machine learning—interactive machine learning systems inherently provide 



users with feedback about their actions and, as this article discusses, giving users more control 
of over machine learning systems can often improve a user’s experience.  

However, interactive machine learning systems also often inherently violate many existing 
interface design principles. For example, research has shown that traditional interfaces that 
support understandability (e.g., systems that are predictable or clear about how they work) and 
actionability (e.g., systems that make it clear how a person can accomplish their goals and give 
them the freedom to do so) are generally more usable than systems that do not support these 
principles. Many machine learning algorithms, however, are inherently difficult for end-users and 
experts to fully understand, which can result in unpredictable behaviors (Shneiderman and 
Maes, 1997). As another example, the goal of giving users control becomes less defined when 
the system autonomously acts or makes predictions. The concept of control may not be 
applicable. Thus, there is an opportunity to explore how current design principles apply to the 
human-computer partnership in interactive machine learning. New principles and guidelines 
may provide critical progress.  

Some researchers have started to suggest new principles for designing end-user interaction 
with general artificially intelligent systems, many of which could translate to end-user interaction 
with interactive machine learning (e.g., Norman, 1994; Höök, 2000; Horvitz, 1999; Jameson, 
2009). For example, Norman (1994) and Höök (2000) both identified safety and trust as key 
factors to consider when designing intelligent systems, referring to the assurance against and 
prevention of unwanted adaptations or actions. Others have stated that artificially intelligent and 
machine-learning-based systems should manage expectations to avoid misleading or frustrating 
the end user during interaction (e.g., Norman, 1994; Höök, 2000; Jameson, 2009). In Horvitz’s 
formative paper on mixed-initiative interfaces (1999), he proposed several principles for 
balancing artificial intelligence with traditional direct-manipulation constructs. For example, 
Horvitz emphasized consideration of the timing of interactive intelligent services, limiting the 
scope of adaptation or favoring direct control under severe uncertainty, and maintaining a 
working memory of recent interactions. While these suggestions can help guide the design of 
future systems, more work remains to develop a comprehensive set of guidelines and principles 
that work in various settings. Often such design principles are distilled from years of experience 
developing for such interactions. Alternatively, we may accelerate the development of such 
guidelines by extracting dimensions that can be manipulated to design interactive machine 
learning systems and systematically evaluating general solutions in varying settings. 

Although such systematic evaluation can facilitate generalization and transfer of ideas across 
fields, the interleaving of human interaction and machine learning algorithms makes reductive 
study of design elements difficult. For example, it is often difficult to tease apart whether failures 
of proposed solutions are due to limitations of the particular interface or interaction strategies 
used, the particular algorithm chosen, or the combination of the interaction strategy with the 
particular algorithm used. Likewise, inappropriately attributing success or failure to individual 
attributes of interactive machine learning solutions can be misleading. Therefore, new 
evaluation techniques may be necessary to appropriately gauge the effectiveness of new 
interactive machine learning systems. 



Most of the case studies in this article focused on a single end-user interacting with a machine 
learning system. However, the increasing proliferation of networked communities and crowd-
powered systems provides evidence of the power of the masses to collaborate and produce 
content. An important opportunity exists to investigate how crowds of people might 
collaboratively drive interactive machine learning systems, potentially scaling up the impact of 
such systems. For example, as interactive machine learning becomes more prevalent in our 
everyday applications, people should be able to share and re-use machine learners rather than 
starting from scratch. Moreover, people should be able to bootstrap, build upon, and combine 
learners to configure more sophisticated data processing and manipulation. A few have started 
to explore such opportunities (e.g., Hoffman et al. 2009; Kamar et al. 2012; Law and von Ahn 
2009), but more work remains to fully understand the potential of multiple end-users interacting 
with machine learning systems. For example, work remains in understanding how people can 
meaningfully describe, compare, and search for existing machine learners in order to build upon 
them, in understanding how learners can be generalized or transformed for new situations and 
purposes, in understanding how we can create composable learners to enable more powerful 
automation, and in understanding how we can coordinate the efforts of multiple people 
interacting with machine learning systems. 

Finally, the inherent coupling of the human and machine in these systems underscores the need 
for collaboration across the fields of human-computer interaction and machine learning. For 
example, as some of the case studies described in this article showed, users may desire to 
interact with machine learning systems in ways unanticipated by the developers of those 
systems. This presents an opportunity to develop new machine learning algorithms to support 
natural user interactions. When dealing with noisy systems, for example, machine learning 
researchers have often attempted to develop algorithms that work despite the noise, whereas 
human-computer interaction researchers often try to develop interaction techniques to reduce 
the noise end-users provide. Collaboration between these two communities could leverage the 
benefits of both solutions. 

Conclusion 
The case studies described in this paper support three key points. First, interactive machine 
learning differs from traditional machine learning. Interactivity creates a loop whereby the output 
of the learning system impacts the subsequent input from the user. This interactivity creates a 
partnership in which both the end user and the machine learner can learn from one another. 

Second, explicitly studying the users of learning systems is important. Formative user studies 
can inspire new ways in which users could interact with learning systems and characterize user 
needs and desires. User studies that evaluate interactive learning systems can reveal false 
assumptions about potential users and common patterns in their interaction with the system. 
They also allow identifying difficulties commonly faced by users when novel interfaces are 
introduced.  

Finally, the interaction between learning systems and their users need not be limited. We can 
build powerful interactive machine learning systems by giving more control to end-users than 
the ability to label instances and by providing users with more transparency than just the 



learner’s predicted outputs. However, more control for the user and more transparency from the 
learner do not automatically result in better systems—we must continue to evaluate novel 
interaction methods with real users to understand whether they help or hinder users’ goals. 

In addition to demonstrating the importance and potential of research in interactive machine 
learning, we characterized some of the challenges and opportunities that currently confront this 
field.  By acknowledging and embracing these challenges, we can move the field of interactive 
machine learning forward toward more beneficial human-computer partnerships. Such 
partnerships, we believe, will lead to not only more capable machine learners, but more capable 
end-users as well.  
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