
Power to the People: The Role of Humans
in Interactive Machine Learning

Saleema Amershi, Maya Cakmak, W. Bradley Knox, Todd Kulesza1

Abstract
Intelligent systems that learn interactively from their end-users are quickly becoming widespread.
Until recently, this progress has been mostly fueled by advances in machine learning; more and
more researchers, however, are realizing the importance of studying users of these systems. In
this article we promote this approach and demonstrate how it can result in better user
experiences and more effective learning systems. We present a number of case studies that
characterize the impact of interactivity, demonstrate ways in which existing systems fail to
account for the user, and explore new ways for learning systems to interact with their users. We
argue that the design process for interactive machine learning systems should involve users at
all stages: explorations that reveal human interaction patterns and inspire novel interaction
methods, as well as refinement stages to tune details of the interface and choose among
alternatives. After giving a glimpse of the progress that has been made so far, we discuss the
challenges that we face in moving the field forward.

Introduction
Designing machine learning systems is a complex process, requiring input and output
identification, feature specification, model and algorithm selection, and parameter tuning. Due to
these complexities, the ultimate consumers of machine learning systems (i.e., the end-users)
have traditionally been shielded from this design process altogether. While this can hide the
intricacies of the underlying process, it also limits the end-user’s ability to influence the learning
system and can lead to undesired behaviors with little to no means for recourse. For example,
an end-user may use a machine learning system in a situation or with data never anticipated by
the original developer, potentially resulting in unexpected behaviors. In many of these cases,
the only way to correct the behavior is to provide feedback to the original developer for the next
round of development, which is inefficient and expensive. Moreover, relying on experts to drive
such systems prevents end-users from creating their own machine learners to suit their needs
and solve their problems.

Take for example the events from the following case study. In 1998, Caruana and his
collaborators began work with biochemists to cluster proteins based on their helical structure
with the goal of revealing structural insights that could help define a protein taxonomy. While
this endeavor helped to shed light on the structural characteristics of proteins, it also took
substantially longer than originally anticipated. In his invited talk at the IUI 2013 Workshop on
Interactive Machine Learning (Amershi et al. 2013), Caruana recounted this experience as
involving a time-consuming cycle. First, machine learning experts would create a clustering and

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 All authors contributed equally.

accompanying visualizations to summarize that clustering. They would then meet with
biochemists (i.e., the domain experts) to discuss the results. At this meeting, the domain experts
would critique the clustering, creating constraints (e.g., “these two proteins should / should not
be in the same cluster”, “this cluster is too small”). Following each meeting, the machine
learning experts would carefully adjust the clustering distance metric to adhere to the given
constraints and then re-compute the clusters for the next iteration. In this case study, the
machine-learning experts were the only interface available for the domain experts to provide
their expertise, resulting in lengthy interaction cycles. Incited by this experience, Caruana et al.
went on to develop novel feedback techniques for more interactively incorporating domain
expert knowledge into the distance metric used for clustering (Cohn et al. 2003, Caruana et al.
2006).

Motivated by similar needs and experiences, researchers have recently begun to employ
interactive machine learning to better leverage end-user knowledge and capabilities during the
machine learning process. In the interactive machine learning process, end-users can more
directly assess and guide the underlying machine learner in a tighter interactive loop (Figure 1).
For example, many commercial recommender systems now employ interactive machine
learning to adapt recommendations based on user specified preferences for items (e.g., ‘liking’
or ‘disliking’ items). In each iteration, end-users can inspect new recommendations and then
further guide the system by specifying additional preferences.

However, while interactive machine learning is beginning to drive many user-facing applications,
until recently much of the progress in this space has been fueled by advances in machine
learning. This article advocates that it is equally important to study the users of interactive
machine learning systems in order to create better user experiences and more effective
machine learning. Through a series of case studies, we argue that explicit study of the
interaction between humans and machine learners is critical to designing interfaces and
machine learning algorithms that facilitate effective interactive machine learning. These case
studies also paint a broad picture of the range of recent research on interactive machine
learning, serving both as an introduction to the topic and a vehicle for considering the body of
research altogether.

We begin by providing a formal definition of interactive machine learning and then illustrate the
learning process with archetypal examples that follow a common form of interactive machine
learning, in which a user observes learned predictions and then provides further labeled
examples informed by those observations. Next, we present research that examines (and often
upends) assumptions about end-user interaction with machine learning systems. Concluding the
case studies, we review research involving novel interfaces that move beyond the interactions
afforded by the archetypal examples, finding that these new techniques often enable more
powerful end-user interaction but must be carefully designed so as not to confuse the user or
otherwise harm the learning. Finally, we discuss the current state of the field and identify
opportunities and open challenges for future interactive machine learning research.

Interactive Machine Learning
We define interactive machine learning (IML) as a process that involves a tight interaction loop
between a human and a machine learner, where the learner iteratively takes input from the
human, promptly incorporates that input, and then provides the human with output impacted by
the results of the iteration. This cyclical process is illustrated in Figure 1. In interactive machine
learning systems, learning is interleaved with execution; i.e., the human uses or tests the
system while he or she continues to train it. As a result, the output of the system influences the
user’s subsequent input. An example is a recommendation system such as Pandora2, which
takes labels on played songs as input, and provides new songs that are expected to fit the
user’s preferences as output. Narrowing this definition further, for a system to be considered an
example of interactive machine learning system, we require that the human is consciously
interacting with the learner in order to improve it. For instance, if a website adapts its webpage
presentation to a user’s click history without the user intending to improve the website through
these clicks, this adaptation is not considered as interactive machine learning.

Users of interactive machine learning systems vary. A particularly motivating class of users are
domain experts who lack expertise in computer programming or machine learning. However,
machine learning experts can also be end-users themselves. For instance, an interface that
richly visualizes model error immediately after a change of features or learning parameters
would increase interactivity for machine learning experts developing learning systems.

The methods for interfacing with learning systems can also vary widely. Traditionally, the input
to such systems has been in the form of labeled examples (e.g., a song labeled as liked or
disliked in Pandora), while the output has been in the form of predicted labels or ratings on new
samples (e.g., new songs presented to the user which have high predicted ratings). Recent

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2	 www.pandora.com

	

Figure 1: In the interactive machine learning process, a learning system iteratively presents output
to a user who can provide new inputs to correct or refine the learning. The learner incorporates this
input into its model, allowing the user another opportunity for correction and refinement.

research, however, has started to explore new interfaces, including interfaces for letting users
label parts of items (e.g., Fails & Olsen 2003), adjust model parameters and cost functions (e.g.,
Kapoor et al. 2010), and directly modify a classifier’s features (e.g., Kulesza et al. 2011). We
describe some of these different forms of input and output in the “Novel Interfaces for Interactive
Machine Learning” section later in this article.

A key property of interactivity is that the tight interaction loop allows the output of the system to
influence subsequent user inputs to the system. For example, after observing that labeling a
song as liked results in recommendations from the same artist, the user may label more songs
from other artists to diversify their recommendations. We next present two case studies that
exemplify our definition of interactive machine learning.

Interactive image segmentation

Some of the earliest work in this area came from Fails and Olsen (2003), who introduced the
term interactive machine learning. Similar to our definition, they highlighted the train-feedback-
correct cycle—a process in which the user iteratively provides corrective examples to the
learner after viewing its output. Their system, called Crayons, allowed users to train a pixel
classifier by iteratively marking pixels as foreground or background through brushstrokes on an
image. After each user interaction, the system responded with an updated image segmentation
for further review and corrective input by the user. Evaluations of the Crayons system via user
studies revealed that this immediate output allowed users to instantly perceive misclassifications
and correct them by adding new training data in the most problematic areas. As illustrated in
Figure 2, after an initial classification, the user provides Crayons with more data at the edges of
the hand where the classifier failed. When asked what they were thinking while interacting with
the system, most users stated that they were focused on seeing parts of the image that were
classified incorrectly.

Figure 2: Interactive training of the Crayons system (Fails & Olsen 2003). The system takes pixels
labeled as background/foreground as input (provided through brush strokes), and gives a fully segmented
image as output (obtained through a classifier that labels each pixel as foreground/background). The
user’s input is focused on areas where the classifier is failing in previous iterations.

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Figure 4 – The classification design loop

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is
notable to mention that Crayons has profited from work
done by Viola and Jones [19] and Jaimes and Chang
[5,6,7]. Also a brief example of how Crayons can be used
is illustrative. The sequence of images in Figure 5 shows
the process of creating a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting
classifier, corrects by painting additional class pixels and
then iterates through the cycle. As seen in the first image
pair in Figure 5, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, over-generalizes in favor of background;
therefore, in the second image pair you can see skin has

been painted where the classifier previously did poorly at
classifying skin. The resulting classifier shown on the right
of the second image pair shows the new classifier
classifying most of the skin on the hand, but also
classifying some of the background as skin. The classifier
is corrected again, and the resulting classifier is shown as
the third image pair in the sequence. Thus, in only a few
iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model.
The key issue in the creation of such a tool lies in quickly
generating effective classifiers so the interactive design
loop can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such
we will first discuss the distinctions between IML and
CML, followed by the problems IML must overcome
because of its interactive setting, and lastly its
implementation details including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

x� There are relatively few carefully chosen features,

x� There is limited training data,

x� The classifier must amplify that limited training data
into excellent performance on new training data,

x� Time to train the classifier is relatively unimportant
as long as it does not take too many days.

None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype
there are more than 150 features per pixel. To reach the
breadth of application that we desire for Crayons we
project over 1,000 features will be necessary. The
additional features will handle texture, shape and motion
over time. For any given problem somewhere between
three and fifteen of those features will actually be used, but
the classifier algorithm must automatically make this
selection. The classifier we choose must therefore be able
to accommodate such a large number of features, and/or
select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. CML generally
focuses on the ability of a classifier to predict correct

Input data

Segmentation

Iteration 1 Iteration 2 Iteration 3

Fails and Olsen’s work on Crayons demonstrated that users modify their behavior based on a
learner’s outputs, which is an underlying premise for much of the following research on
interactive machine learning.

Musicians training instruments and instruments training musicians
The realm of music composition and performance is naturally interactive—musicians are
accustomed to receiving immediate auditory feedback when interacting with a musical
instrument. Fiebrink and colleagues (2011) developed the Wekinator, a machine learning
system for enabling people to interactively create novel gesture-based instruments. For
example, moving an arm in front of a web cam could produce different sounds based on the
arm’s position, speed, or rotation. In this system, a neural network receives paired gestures and
sounds from the user as input and then learns how to interpolate from unobserved gesture
positions to a range of sounds. Users evaluate their instruments directly by gesturing and
assessing the produced sounds.

While exploring the use of Wekinator by students in an interdisciplinary music and computer
science course, the authors found that as the participants were training their respective learners,
the learners were also training the participants. For example, participants learned how to
recognize noise in their training samples and provide clearer examples to the learner. In some
cases, participants even adjusted their goals to match the observed capabilities of the learner.
In a follow-up investigation with a professional cellist (Fiebrink et al. 2011), the cellist identified
long-standing flaws in her playing technique while trying to train a learner; the gesture
recognizer revealed her bowing articulation was not as precise as she had believed it to be. By
observing the outputs of the system in real-time, users were able to modify their behavior in
ways that allowed them to create instruments to their satisfaction.

Summary

These two examples illustrate the interactive machine learning process, in which users observe
the outputs of the learning system and then provide further input influenced by those
observations. This observe-then-train cycle is fundamental to interactive machine learning.
However, many of the case studies to follow will consider less traditional types of input and
output, moving beyond labeled examples and observations of learner predictions. The case
studies presented in this section also demonstrate the benefits of interactivity, which we will
continue to highlight throughout this article.

Studying User Interaction with Interactive Machine Learning
The previous section described the general interactive machine learning process; in this section,
we turn to case studies illustrating the importance of understanding how end-users can and do
interact with interactive machine learning systems and how such understanding can ultimately
lead to better-informed designs. First, we present two case studies that demonstrate how
people may violate assumptions made by traditional machine learners about their input,
resulting in unexpected outcomes and user frustration. The next two case studies indicate that
people may want to interact with machine learning systems in richer ways than developers
anticipated, suggesting changes to the input constraints that are built into the interface. Finally,

we present a case study that shows that people may desire more transparency about how
machine learning systems work—changing the output constraints of the interface—and that
such transparency can improve both the user experience and the resulting models.

People dislike being the oracle for active learning
Active learning is a machine-learning paradigm in which the learner chooses the examples from
which it will learn (Settles 2010). These examples are selected from a pool of unlabeled
samples based on some selection criterion (e.g., examples for which the learner has maximum
uncertainty). The learner then queries an oracle, requesting a label for each selected example.
This method has had tremendous success in accelerating learning (i.e., requiring fewer labels to
reach a target accuracy) in applications like text classification and object recognition, where
multiple oracles are paid to provide labels over a long period of time. However, as Cakmak and
colleagues (2010) discovered, when applied to interactive settings such as a person teaching a
task to a robot by example, active learning can cause several problems.

Figure 3: Users teaching new concepts to a robot by providing positive and negative examples. (Left)
Passive learning: examples are chosen and presented by the user. (Right) Active learning: examples are
requested by the learner. Although active learning results in faster convergence, users get frustrated from
having to answer the learner’s long stream of questions and not having control over the interaction.

Cakmak's study (Figure 3) found that the constant stream of questions from the robot learner
during interaction was perceived by the user as imbalanced and annoying. The stream of
questions also led to a decline in the user’s mental model of how the robot learned, causing
some participants to "turn their brain off" or "lose track of what they were teaching" (according to
their self report) (Cakmak et al. 2010). Similar findings were reported by Guillory and Bilmes
(2011) for Netflix’s "active" recommendation system for movies. These studies reveal that
humans are not necessarily willing to be simple oracles (i.e., repeatedly telling the computer
whether it is right or wrong), breaking a fundamental assumption of active learning. Instead,
these systems need to account for human factors such as interruptibility or frustration when
employing methods like active learning.

People are biased towards giving positive feedback to learning agents
In reinforcement learning, a robot or agent senses and acts in a task environment and receives
numeric reward values after each action. With this experience, the learning agent attempts to
find behavioral policies that improve its expected accumulation of reward. A number of research
projects have investigated the scenario in which this reward comes as feedback from a human

user rather than a function predefined by an expert (Isbell et al. 2006, Thomaz and Breazeal
2008, Knox and Stone 2012). In evaluating the feasibility of non-experts teaching through
reward signals, these researchers aim to both leverage human knowledge to improve learning
speed and permit people to customize an agent’s behavior to fit their own needs.

Figure 4: Task domain containing reinforcement learning agents taught by human users. (Left) A cooking
robot that must pick up and use the ingredients in an acceptable order (Thomaz and Breazeal, 2006). The
green vertical bar displays positive feedback given by a click-and-drag interface. (Right) A simulated robot
frog that users are asked to teach to go to the water (Knox and Stone, 2012).

Thomaz and Breazeal (2008) observed that people have a strong tendency to give more
positive rewards than negative rewards. Knox and Stone (2012) later confirmed this positive
bias in their own experiments. They further demonstrated that such positive bias leads many
agents to avoid the goal that trainers are teaching it to reach (e.g. the water in Figure 4). This
undesirable consequence occurs with a common class of reinforcement learning algorithms:
agents that value reward accrued over the long term and are being taught to complete so-called
episodic tasks. This insight provided justification for the previously popular solution of making
agents that hedonistically pursue only short-term human reward, and it led Knox and Stone to
create the first reported algorithm that successfully learns by valuing human reward that can be
gained in the long-term (2013). Agents trained through their novel approach were more robust
to environmental changes and behaved more appropriately in unfamiliar states. These agents
and the algorithmic design guidelines Knox and Stone created were the result of multiple
iterations of user studies, which identified positive bias and then verified its hypothesized effects.

People want to guide and demonstrate, not just provide feedback
In the experiment by Thomaz and Breazeal (2008) users trained a simulated agent to bake a
cake through a series of object manipulations. Users gave feedback to the learner by clicking
and dragging a mouse. Longer drags gave larger-magnitude reward values and the drag
direction determined the valence (+/-) of the reward value. Further, users could click on specific
objects to signal that the feedback was specific to that object, but they were told that they could
not communicate which action the agent should take.

Thomaz and Breazeal found evidence that people nonetheless gave positive feedback to
objects that they wanted the agent to manipulate. These users violated their instructions by
applying what could be considered an irrelevant degree of freedom—giving feedback to objects
that had not been recently manipulated—to provide guidance to the agent. After Thomaz and

Breazeal adapted the agent's interface and algorithm to incorporate guidance, the agent's
learning performance significantly improved.

Other researchers have reached similar conclusions. In a Wizard-of-Oz study (i.e., the agent’s
outputs were secretly provided by a human) by Kaochar et al. (2011), users taught an agent to
perform a complex task. These users could provide a demonstration, give feedback, teach a
concept by example, or test the agent to see what it had learned. The authors found that users
never taught exclusively by feedback, instead generally using it after teaching by other means.
Together, these two studies provide insight into the design of natural interfaces for teaching
agents.

People may want to provide richer feedback
Labeling data remains the most popular method for end-user input to interactive machine
learning systems because of its simplicity and ease-of-use. However, as some of the previous
case studies demonstrate, label-based input also has drawbacks (e.g., negative attitudes
towards being treated as an oracle). In addition, emerging research suggests that in some
circumstances users may desire richer control over machine learning systems than simply
labeling data.

For example, Stumpf et al. (2007) conducted an experiment to understand the types of input
end-users might provide to machine learning systems if unrestricted by the interface. The
authors generated three types of explanations for predictions from a text classification system
operating over email messages. These explanations were presented to people in the form of
paper-based mockups to avoid the impression of a finished system and to encourage people to
provide more feedback. People then provided free-form feedback on the paper prototypes in
attempts to correct the classifier’s mistakes.

This experiment generated approximately 500 feedback instances from participants, which were
then annotated and categorized. The authors found that people naturally provided a wide variety
of input types to improve the classifier’s performance, including suggesting alternative features
to use, adjusting the importance or weight given to different features, and modifying the
information extracted from the text. These results present an opportunity to develop new
machine learning algorithms that might better support the natural feedback people want to
provide to learners, rather than forcing users to interact in limited, learner-centric ways.

End users may value further transparency
In addition to wanting richer controls, people sometimes desire more transparency about how
their machine learning systems work. In a recent study, Kulesza et al. (2012) provided users of
a content-based music recommender with a 15-minute tutorial discussing how the
recommender worked and how the various feedback controls (e.g., rating songs, steering
towards specific feature values, etc.) would impact the learner. Participants responded positively
to learning these details about the system. In addition, the researchers found that the more
participants learned about the recommender while they interacted with it, the more satisfied they
were with the recommender’s output. This case study provides evidence that users do not

always want “black box” learning systems—sometimes they want to provide nuanced feedback
to steer the system, and they are willing and able to learn details about the system to do so.

Transparency can help users label better
Sometimes users make mistakes while labeling, thus providing false information to the learner.
Although most learning systems are robust to the occasional human error, Rosenthal and Dey
set out to solve this problem at the source. They sought to reduce user mistakes by providing
targeted information when a label is requested in an active learning setting. The information
provided to the user included a combination of contextual features of the sample to be labeled,
explanations of those features, the learner's own prediction of the label for the sample, and its
uncertainty in this prediction (Rosenthal & Dey, 2010).

They conducted two studies to determine the subset of such information that is most effective in
improving users' labeling accuracy. The first involved people labeling strangers’ emails into
categories, as well as labeling the interruptability of strangers' activities; the second study
involved people labeling sensory recordings of their own physical activity. Both studies found
that the highest labeling accuracy occurred when the system provided sufficient contextual
features and current predictions without uncertainty information. This line of research
demonstrates that the way in which information is requested (e.g., with or without context) can
greatly impact the quality of the response elicited from the user. The case study also shows that
not all types of transparency improve the performance of an interactive machine learning
system, and user studies can help determine the ideal combination of information to provide to
users.

Summary
As these case studies illustrate, understanding how people do interact—and want to interact—
with machine learning systems is critical to designing systems that people can use effectively.
Exploring preferred interaction techniques through user studies can reveal gaps in designers’
assumptions about their end users and may suggest new algorithmic solutions. In some of the
cases we reviewed, people naturally violated the assumptions of the machine learning algorithm
or were unwilling to comply with them. Other cases demonstrate that user studies can lead to
helpful changes to the types of input and output supported by interfaces for interactive machine
learning. In general, this type of research can produce design suggestions and considerations,
not only for people building user interfaces and developing the overall user experience, but for
the machine learning community as well. Moving from this section’s focus on research that
questions the assumptions of interactive machine learning systems—some of which are
assumptions built into the interface—the following section will detail a number of projects that
involve novel interfaces, each attempting to incorporate new types of input or output into the
interactive machine learning cycle.

Novel Interfaces for Interactive Machine Learning
End users are often assumed to have limited time, patience, and capacity to understand
machine learning. Perhaps as a consequence of such assumptions, interactive machine

learning systems have often been designed to receive only labeled examples as input and
provide only predictions as output. However, as many of the case studies in the previous
section showed, end users sometimes desire richer involvement in the interactive machine
learning process. In addition, research on cost-benefit tradeoffs has shown that people will
invest time and attention to something if they perceive their efforts to have greater benefits than
costs (Blackwell 2002). For example, research on end-user programming has shown that end
users program often (e.g., via spreadsheets, macros, mash-ups), but do so primarily to
accomplish some larger goal (Blackwell 2002). Similarly, this theory suggests that people will
invest time to improve their classifiers only if they view the task as more beneficial than
costly/risky—i.e., when they perceive the benefits of producing an effective classifier as
outweighing the costs of increased interaction. Therefore, we believe there is an opportunity to
explore new interfaces that can better leverage human knowledge and capabilities, and
demonstrate the value of doing so via interactive feedback.

In this section, we present case studies that explore novel interfaces for interactive machine
learning systems and demonstrate the feasibility of richer interactions. Interface novelty in these
cases can come from new methods for receiving input or providing output. New input
techniques can give users more control over the learning system, allowing them to move
beyond simply labeling examples. Such input techniques include methods for feature creation,
reweighting of features, adjusting cost matrices, or modifying model parameters. Novel output
techniques can make the system’s state more transparent or understandable. For example, a
system could group unlabeled data to help users label the most informative items, or it could
communicate uncertainty about the system’s predictions.

These case studies also reinforce our earlier argument that interactive machine learning
systems should be evaluated with potential end-users. Such evaluations are needed both to
validate that these systems perform well with real users and to gain critical insights for further
improvement. Many of the novel interfaces detailed below were found to be beneficial, but as
shown in the final two case studies, adding new types of input or output can sometimes lead to
obstacles for the user or reduce the accuracy of the learner. Therefore, novel interfaces should
be designed with care and appropriately evaluated before being deployed.

Supporting data selection with novel ways of presenting data to users
In many interactive machine learning processes, the user and machine iterate toward a shared
understanding of a desired concept. In each iteration, the user typically assesses the quality of
the current learner and then further guides the system with additional input. A common
technique for conveying the quality of the current supervised learner is to present a person with
all of the unlabeled data sorted by their predicted scores for one class (e.g., showing image-
classification probabilities or all search results ranked by relevance to a query). Then, after
evaluating this presentation, a person can decide how to proceed in training (e.g., deciding
which additional examples to provide for input). Although straightforward, this technique
inefficiently illustrates the quality of the current concept and provides the user with no guidance
for best improving the learner.

Fogarty et al. (2008) investigated novel techniques for presenting unlabeled data to facilitate
better training in CueFlik, an interactive machine learning system for image classification. Via a
user study, the authors demonstrated that an alternative technique of presenting users with only
the best- and worst-matching examples enabled people to train significantly better models than
the standard technique of presenting the user with all of the data.

Figure 5. Fogarty et al.’s work with CueFlik compared two methods of illustrating the current version of a
machine-learned visual concept. The standard method (left) presented users with examples ranked by
their likelihood of membership to the positive class. The best and worst matches method (right) instead
showed examples predicted as positive or negative with high certainty by CueFlik.. A user study showed
that the best- and worst-matches technique led users to train significantly better learners than the
standard presentation.

Fogarty et al.’s results demonstrate that presentation matters when designing end-user
interaction with machine learning. They speculated that their performance improvement was
due to the best-matching presentation better summarizing the machine’s current understanding,
helping people to focus on whether the classifier was mostly correct rather than focusing on the
uncertain middle of the standard list ranked by probability of relevance. However, because best
and worst matches are extremely similar to already labeled examples, this technique constrains
a person to label examples that provide little additional information to the machine learner.

To address the limitations of the best-matching presentation technique, Amershi et al. (2009)
explored alternative techniques for concisely summarizing the machine’s current understanding
while providing people with high-information-content examples to choose from during training.
These techniques involved presenting users with intuitive overviews of the positive and negative
regions (taking advantage of a user’s ability to quickly assess similarity and variation across
multiple images in a single viewing) by selecting representative examples that maximized the
mutual information with the rest of the space (providing the machine learner with more
information in each iteration). A follow-up user study demonstrated that these overview-based
techniques led participants to train learners that performed significantly better than learners
trained via the best-performing technique from previous work. This case study demonstrates

that effective interactive machine learning systems must balance the needs of both the human
and the machine within their design.

Figure 6. Overview presentation techniques (middle and right) more accurately illustrates CueFlik’s
currently learned concept while providing users with highly informative examples to choose from during
interactive machine learning. Amershi et al showed that overview-based example presentation enabled
end-users to train significantly better quality machine learners than the best-and-worst matches technique
(which outperformed the standard presentation technique used by most interactive machine learning
systems of this kind).

Intermittently-active learning: do not make queries all the time
As mentioned earlier, applying active learning to interactive settings can be undesirable from the
user's point of view (e.g., users do not like to answer a constant stream of questions coming
from a learning system). To address this problem, Cakmak & Thomaz (2010) proposed
intermittently-active learning, where the learner makes queries only for a subset of the examples
provided by the user. This brings a new challenge for the learner: deciding when to make a
query. Cakmak & Thomaz explored two approaches. In the first, conditional queries were made
only when certain conditions were met. This took into account how good the examples chosen
by the user were and the probability that the user would randomly provide useful examples. In
the second approach, teacher-triggered queries simply gave the decision of when the learner is
allowed to ask a question of the teacher. A query was made only when the user said "do you
have any questions?".

A study comparing intermittently-active learning with fully active and fully passive learning
demonstrated its advantage over these two extremes of the spectrum (Cakmak et al. 2010). The
study showed that both intermittent approaches resulted in learning as fast as the fully active
approach, while being subjectively preferred over fully active or fully passive approaches. The
interactions with the intermittently-active learners were found to be more balanced, enjoyable,
and less frustrating. When asked to choose between the two alternative approaches, users
preferred the teacher-triggered queries, mentioning that they liked having full control over the
learner's queries. As exemplified in this case study, building interactive learning systems that fit
user preferences can sometimes require the modification of existing methods in fundamental
ways.

User feedback on system recommendations

Some machine learning systems help users navigate an otherwise unnavigable search space.
For example, recommender systems help people find specific items of interest, filtering out
irrelevant items. Vig et al. (2011) studied a common problem in this domain—recommending
results that are close, but not quite close enough, to what the user was looking for. Researchers
developed a prototype to support tag-based “critiques” of movie recommendations. Users could
respond to each recommendation with refinements such as “Like this, but less violent” or “Like
this, but more cerebral”, where violent and cerebral are tags that users had applied to various
movies. A k-nearest-neighbor approach was then used to find similar items that included the
user-specified tags.

This relatively simple addition to the MovieLens website garnered an overwhelmingly positive
reaction, with 89% of participants in a user study saying that they liked it, and 79% requesting
that it remain a permanent feature on the site. In the words of one user, “The best thing to come
by in MovieLens (besides the product itself). Strongly recommended this to my friends and
some picked MovieLens up just because of this addition. Love it!”’. This example helps illustrate
both the latent desire among users for better control over machine learning systems, and that by
supporting such control in an interactive fashion, user attitudes toward the learner can be
greatly enhanced.

Allowing users to specify preferences on errors
People sometimes need to refine the decision boundaries of their learners. In particular, for
some classifiers it might be critical to detect certain classes correctly, while tolerating errors in
other classes (e.g., misclassifying spam as not spam is typically less costly than misclassifying
regular email as spam). However, refining classifier decision boundaries is a complex process
even for experts, involving iterative parameter tweaking, retraining, and evaluation. This is
particularly difficult because there are often dependencies among parameters, which leads to
complex mappings between parameter values and the behavior of the system.

Figure 7: The ManiMatrix system displays the confusion matrix of the classifier and allows the user to
directly increase or decrease the different types of errors using arrows on the matrix cells. ManiMatrix
provides feedback to the user by highlighting cells that change value as a result of the user’s click (red
indicates a decrease and green indicates an increase).

To address these difficulties, Kapoor et al. (2010) created ManiMatrix, a tool for people to
specify their preferences on decision boundaries via interactively manipulating a classifier’s
confusion matrix (i.e., a breakdown of the correct and incorrect predictions it made for each

Figure 1 shows how different cost matrices can result in
different classification boundaries. The figures on the left
depict the estimated probabilities over a 2-dimensional
space for three different classes. These probabilities are
derived from an underlying classification system that was
built using a training corpus. We compute an expected cost
of using the classifiers on the test sets by combining these
probabilities with different cost matrices in order to produce
different classification boundaries. We see that different
settings of cost shift the boundary in order to minimize the
classification risk.

Unfortunately, specifying such fine-grained preferences via
the cost matrix can be tedious. A c class classification prob-
lem requires the user to specify c2 parameters which be-
comes infeasible as c becomes even marginally large.
Furthermore, setting these parameters by hand can be chal-
lenging as the classification model and the costs interact in
complex, non-linear ways which is often unpredictable,
even to expert users. In some scenarios, one might estimate
such parameters using monetary considerations (such as
direct profit or loss). However, such considerations are hard
to make in various HCI settings where the cost of the mis-
classification can correspond to such outcomes as user an-
noyance, frustration, usability, and other subjective metrics.

MANIMATRIX
ManiMatrix is an interactive system that allows users to
directly manipulate the confusion matrix in order to specify
preferences and explore the classification space. The system
consists of a visualization and control interface joined with
an optimization algorithm that computes the global implica-
tions of a user’s local refinements, enabling users to make
changes and to understand how the predictive model inte-
racts with their preferences (Figure 2).

Interacting with the Confusion Matrix
At the core of ManiMatrix is a confusion matrix, which
represents classification results by aggregating instances
within a grid. Each row in the matrix represents an in-
stance’s true class and each column an instance’s predicted
class. For example, Figure 2a (see left-most cell in the mid-
dle row of the matrix) shows that 6 cloudy days were mis-
classified as rainy within a party location planning problem.

The confusion matrix is a common visualization because it
is easy to interpret and can be used with any classification
algorithm. Other visualizations may also serve as the basis
for building insights and encoding preferences about classi-
fication. We leave exploration of such visualizations as
future work.

Depending on their preferences, users can specify an in-
crease or decrease in the tolerance for numbers of cases
classified into each cell. For example, if users want to pre-
vent the cloudy days from being classified as rainy, they
want to have as small a number as possible in the middle
left cell. ManiMatrix supports this by allowing them to spe-
cify this desire with a single click directly on the confusion
matrix. When users move the mouse pointer over a cell,
ManiMatrix shows a green up arrow and a red down arrow
on the right side of the cell (Figure 2a). Each click corres-
ponds to the desire to increment or decrement the value in
that cell by 1. When users click on either button, ManiMa-
trix recomputes the decision boundaries for all cases, work-
ing to satisfy the confusion matrix that accommodates the
user request. This is done at interactive rates and users re-
ceive immediate feedback.

If ManiMatrix successfully finds a feasible confusion ma-
trix, it updates the visualization; otherwise it notifies users
that the request is not feasible. For example, Figure 2b
shows the new confusion matrix after the user clicked on
the down button from the middle left cell. To facilitate large
desired value changes, ManiMatrix repeats this click inte-
raction if users press and hold the button.

Operations, even on a single cell, typically lead to changes
in other parts of the matrix. To show changes in each cell,
ManiMatrix provides feedback by highlighting the cells
whose values have changed; green represents an increase
and red a decrease. The magnitude of change is represented
by the opacity; the bigger the difference is, the more opaque.

It is important to note that multiple solutions may be consis-
tent with a user's preferences. In the current version of Ma-
niMatrix, a solution of parameters is generated that
maximizes the stability of the matrix, minimizing the over-
all change in value as much as possible. As a result, the up

 (a) (b) (c) (d)

Figure 2. Interacting with ManiMatrix.

class) (Figure 7). Given these preferences, ManiMatrix employs Bayesian decision theory to
compute decision boundaries that minimize the expected cost of different types of errors, and
then visualizes the results for further user refinement. A user study with machine learning
novices demonstrated that participants were able to quickly and effectively modify decision
boundaries as desired with ManiMatrix. This case study demonstrates that non-experts can
directly manipulate a model’s learning objective, a distinctly different form of input than choosing
examples and labeling them.

Combining classifiers to improve performance
An ensemble classifier is a classifier that builds its prediction from the predictions of multiple
sub-classifiers, each of which are functions over the same space as the ensemble classifier.
Such ensembles often outperform all of their sub-classifiers and are a staple of applied machine
learning (e.g., AdaBoost). A common workflow for creating ensemble classifiers is to experiment
with different features, parameters, and algorithms via trial and error or hill-climbing through the
model space. Even for machine learning experts, this approach can be inefficient and lead to
suboptimal performance.

To facilitate the creation of ensemble classifiers, Talbot et al. (2009) developed EnsembleMatrix,
a novel tool for helping people interactively build, evaluate, and explore different ensembles
(Figure 8). EnsembleMatrix visualizes the current ensemble of individual learners via a
confusion matrix. The user can then experiment with and evaluate different linear combinations
of individual learners by interactively adjusting the weights of all models via a single 2D
interpolation widget (top right in Figure 8). EnsembleMatrix’s novel interface also allows people
to make use of their visual processing capabilities to partition the confusion matrix according to
its illustrated performance, effectively splitting the ensemble into sub-ensembles that can be
further refined as necessary.

Figure 8: EnsembleMatrix visualizes the current ensemble (left) of individual learners (bottom right) via a
confusion matrix. Users can adjust the weights of individual models via a linear combination widget (top

right) to experiment with different ensembles. Users can also partition the confusion matrix to split and
refine sub-ensembles.

A user study showed that EnsembleMatrix enabled people to not only create ensemble
classifiers on par with the best published ensembles on the same data set—they managed to do
so in a single, one-hour session. The study involved participants ranging from machine learning
novices to experts. This case study illustrates that effectively combining human intuition and
input with machine processing can enable people to create better classifiers in less time than
standard approaches that ignore these powerful human capabilities.

Allowing users to ask “Why?”
In addition to the learner querying the user (e.g., active learning), sometimes the user may want
to query the learner. Kulesza et al. (2011) developed an approach to let users ask a text
classifier why it was behaving in a particular way (e.g., “Why was this classified as X instead of
Y?”). The learner’s responses were interactive, thus providing a way for users to not only
understand why the system had made a particular prediction, but to also adjust the learner’s
reasoning if its prediction was wrong.

While many participants exposed to this why-oriented approach significantly increased the
accuracy of their naïve Bayes text classifier, every participant encountered a number of barriers
while doing so. In particular, participants had trouble selecting features to modify from the
thousands in the bag-of-words feature set, and once participants did select features to adjust,
they had trouble understanding how changes to a single feature altered the learner’s predictions
for apparently unrelated items. This study suggests that for learners with large feature sets or
complex interactions between features, users will need additional support to make sense of
which features are most responsible for an item’s classification. Conversely, these results may
be interpreted as evidence that learning systems intended for interactive use must be designed
such that only a comprehensible number of features are responsible for each prediction.

Summary
Whether a candidate interface change will improve a user’s experience or the system’s
performance can only be assessed through evaluation with potential end-users. In the case
studies above, adding richness or permitting user interaction with more than the training data
was often beneficial, but not always so. Different users will have different needs and
expectations of the systems they employ. Thus, conducting user studies of novel interactive
machine learning systems is critical not only for discovering promising modes of interaction, but
also to uncover obstacles that users may encounter and unspoken assumptions they might hold
about the machine learner. In addition, the accumulation of such research can facilitate the
development of design guidelines for building future interactive machine learning systems, much
like those that exist for traditional software systems (Shneiderman et al. 2009).

Discussion
Interactive machine learning is a potentially powerful technique for improving human interaction
with machine learning systems. As this article illustrates, studying how people interact with
interactive machine learning systems and exploring new techniques for enabling those

interactions can result in both better user experiences and more effective machine learners.
However, research in this area has only just begun, and many opportunities remain to improve
the interactive machine learning process. This section describes open challenges and
opportunities for advancing the state-of-the-art in human interaction with interactive machine
learning systems.

As shown by the variety of case studies above, various fields of computer science already
employ interactive machine learning to solve domain specific problems (e.g., search in
information retrieval, filtering in recommender systems, task learning in human-robot interaction).
However, different fields often refer to interactive machine learning in domain-specific terms
(e.g., relevance feedback, programming by demonstration, debugging machine-learned
programs, socially-guided machine learning). This diversity in terminology impedes awareness
of progress in this common space, which can potentially lead to duplicate work. Seeking to
facilitate the development of new interactive machine learning systems, some researchers have
begun developing design spaces that abstract away domain-specific details from existing
solutions to emphasize common dimensions that can be varied or manipulated when designing
the interactive machine learning loop itself (e.g., Amershi 2012, Porter et al. 2013).

For example, Amershi (2012) examined interactive machine learning systems across several
fields (including information retrieval, context-aware computing, and adaptive and intelligent
systems) and identified 16 key design factors influencing human interaction with machine
learning systems (e.g., the expected duration of model use, the focus of a person’s attention
during interaction, the source and type of data over which the machine will learn) and 18 design
dimensions that can be varied to address these factors (e.g. the type and visibility of model
feedback, the granularity and direction of user control, and the timing and memory of model
input). In another example, Porter et al. (2013) breaks down the interactive machine learning
process into three dimensions: task decomposition (defining the level of coordination and
division of labor between the end-user and the machine learner), training vocabulary (defining
the type of input end-users can provide the machine learner), and the training dialog (defining
the level and frequency of interaction between the end-user and the learner). Design spaces
such as these can help to form a common language for researchers and developers to
communicate new interactive machine learning solutions and share ideas. However, there are
many ways to dissect and describe the various interaction points between people and machine
learners within the interactive machine learning process, so an important opportunity remains
for converging on and adopting a common language across these fields to help accelerate
research and development in this space.

In addition to developing a common language, an opportunity remains for generalizing from
existing solutions and distilling principles and guidelines for how we should design future human
interaction with interactive machine learning, much like we have for designing traditional
interfaces (e.g., Schneiderman et al. 2009; Moggridge & Smith 2007; Dix et al. 2004; Winograd,
1996; Norman, 1988). For example, Schneiderman’s Golden Rules of interface design advocate
for designating the users as the controllers of the system and offering them informative
feedback after each interaction. Indeed, some of these principles can directly translate to the
design of interactive machine learning—interactive machine learning systems inherently provide

users with feedback about their actions and, as this article discusses, giving users more control
of over machine learning systems can often improve a user’s experience.

However, interactive machine learning systems also often inherently violate many existing
interface design principles. For example, research has shown that traditional interfaces that
support understandability (e.g., systems that are predictable or clear about how they work) and
actionability (e.g., systems that make it clear how a person can accomplish their goals and give
them the freedom to do so) are generally more usable than systems that do not support these
principles. Many machine learning algorithms, however, are inherently difficult for end-users and
experts to fully understand, which can result in unpredictable behaviors (Shneiderman and
Maes, 1997). As another example, the goal of giving users control becomes less defined when
the system autonomously acts or makes predictions. The concept of control may not be
applicable. Thus, there is an opportunity to explore how current design principles apply to the
human-computer partnership in interactive machine learning. New principles and guidelines
may provide critical progress.

Some researchers have started to suggest new principles for designing end-user interaction
with general artificially intelligent systems, many of which could translate to end-user interaction
with interactive machine learning (e.g., Norman, 1994; Höök, 2000; Horvitz, 1999; Jameson,
2009). For example, Norman (1994) and Höök (2000) both identified safety and trust as key
factors to consider when designing intelligent systems, referring to the assurance against and
prevention of unwanted adaptations or actions. Others have stated that artificially intelligent and
machine-learning-based systems should manage expectations to avoid misleading or frustrating
the end user during interaction (e.g., Norman, 1994; Höök, 2000; Jameson, 2009). In Horvitz’s
formative paper on mixed-initiative interfaces (1999), he proposed several principles for
balancing artificial intelligence with traditional direct-manipulation constructs. For example,
Horvitz emphasized consideration of the timing of interactive intelligent services, limiting the
scope of adaptation or favoring direct control under severe uncertainty, and maintaining a
working memory of recent interactions. While these suggestions can help guide the design of
future systems, more work remains to develop a comprehensive set of guidelines and principles
that work in various settings. Often such design principles are distilled from years of experience
developing for such interactions. Alternatively, we may accelerate the development of such
guidelines by extracting dimensions that can be manipulated to design interactive machine
learning systems and systematically evaluating general solutions in varying settings.

Although such systematic evaluation can facilitate generalization and transfer of ideas across
fields, the interleaving of human interaction and machine learning algorithms makes reductive
study of design elements difficult. For example, it is often difficult to tease apart whether failures
of proposed solutions are due to limitations of the particular interface or interaction strategies
used, the particular algorithm chosen, or the combination of the interaction strategy with the
particular algorithm used. Likewise, inappropriately attributing success or failure to individual
attributes of interactive machine learning solutions can be misleading. Therefore, new
evaluation techniques may be necessary to appropriately gauge the effectiveness of new
interactive machine learning systems.

Most of the case studies in this article focused on a single end-user interacting with a machine
learning system. However, the increasing proliferation of networked communities and crowd-
powered systems provides evidence of the power of the masses to collaborate and produce
content. An important opportunity exists to investigate how crowds of people might
collaboratively drive interactive machine learning systems, potentially scaling up the impact of
such systems. For example, as interactive machine learning becomes more prevalent in our
everyday applications, people should be able to share and re-use machine learners rather than
starting from scratch. Moreover, people should be able to bootstrap, build upon, and combine
learners to configure more sophisticated data processing and manipulation. A few have started
to explore such opportunities (e.g., Hoffman et al. 2009; Kamar et al. 2012; Law and von Ahn
2009), but more work remains to fully understand the potential of multiple end-users interacting
with machine learning systems. For example, work remains in understanding how people can
meaningfully describe, compare, and search for existing machine learners in order to build upon
them, in understanding how learners can be generalized or transformed for new situations and
purposes, in understanding how we can create composable learners to enable more powerful
automation, and in understanding how we can coordinate the efforts of multiple people
interacting with machine learning systems.

Finally, the inherent coupling of the human and machine in these systems underscores the need
for collaboration across the fields of human-computer interaction and machine learning. For
example, as some of the case studies described in this article showed, users may desire to
interact with machine learning systems in ways unanticipated by the developers of those
systems. This presents an opportunity to develop new machine learning algorithms to support
natural user interactions. When dealing with noisy systems, for example, machine learning
researchers have often attempted to develop algorithms that work despite the noise, whereas
human-computer interaction researchers often try to develop interaction techniques to reduce
the noise end-users provide. Collaboration between these two communities could leverage the
benefits of both solutions.

Conclusion
The case studies described in this paper support three key points. First, interactive machine
learning differs from traditional machine learning. Interactivity creates a loop whereby the output
of the learning system impacts the subsequent input from the user. This interactivity creates a
partnership in which both the end user and the machine learner can learn from one another.

Second, explicitly studying the users of learning systems is important. Formative user studies
can inspire new ways in which users could interact with learning systems and characterize user
needs and desires. User studies that evaluate interactive learning systems can reveal false
assumptions about potential users and common patterns in their interaction with the system.
They also allow identifying difficulties commonly faced by users when novel interfaces are
introduced.

Finally, the interaction between learning systems and their users need not be limited. We can
build powerful interactive machine learning systems by giving more control to end-users than
the ability to label instances and by providing users with more transparency than just the

learner’s predicted outputs. However, more control for the user and more transparency from the
learner do not automatically result in better systems—we must continue to evaluate novel
interaction methods with real users to understand whether they help or hinder users’ goals.

In addition to demonstrating the importance and potential of research in interactive machine
learning, we characterized some of the challenges and opportunities that currently confront this
field. By acknowledging and embracing these challenges, we can move the field of interactive
machine learning forward toward more beneficial human-computer partnerships. Such
partnerships, we believe, will lead to not only more capable machine learners, but more capable
end-users as well.

Acknowledgements
This work was partially supported by XX and YY.

References

Amershi, S. 2012. Designing for Effective End-User Interaction with Machine Learning. Ph.D.
Dissertation. University of Washington, Seattle, WA.

Amershi, S., Cakmak, M., Knox, W. B., Kulesza, T., & Lau, T. 2013. IUI workshop on interactive
machine learning. In Proceedings of the 2013 International Conference on Intelligent User
Interfaces companion (pp. 121-124). ACM.

Amershi, S., Fogarty, J., Kapoor., A. and Tan, D. 2009. Overview-Based Example Selection in
Mixed-Initiative Concept Learning. In Proceedings of the ACM Symposium on User Interface
Software and Technology, 2009 (UIST 2009), pp. 247-256.

Blackwell, A. F. 2002. First steps in programming: A rationale for attention investment models.
In Human Centric Computing Languages and Environments, 2002. Proceedings. IEEE 2002
Symposia on (pp. 2-10). IEEE.

Cakmak, M., Chao, C., & Thomaz, A. L. 2010. Designing interactions for robot active
learners. Autonomous Mental Development, IEEE Transactions on, 2(2), 108-118.

Cakmak, M., & Thomaz, A. L. 2010. Optimality of human teachers for robot learners.
In Development and Learning (ICDL), 2010 IEEE 9th International Conference on (pp. 64-69).
IEEE.

Caruana, R., Elhaway, M., Nguyen, N., & Smith, C. 2006. Meta clustering. In Sixth IEEE
International Conference on Data Mining, 2006. (ICDM'06).(pp. 107-118)

Cohn, D., Caruana, R., & McCallum, A. 2003. Semi-supervised clustering with user
feedback. Constrained Clustering: Advances in Algorithms, Theory, and Applications, 4(1), 17-
32.

Dix, A., Finlay, J., Abowd, G.D and Beal, R. (2004) Interaction Design Basics. Ch. 5 in human
computer interaction (3rd ed). Harlow, England: Pearson Education Ltd, pp. 189-224.

Fails, J. A., & Olsen Jr, D. R. 2003. Interactive machine learning. In Proceedings of the 8th
international conference on Intelligent user interfaces (pp. 39-45). ACM.

Fiebrink, R., Cook, P. R., & Trueman, D. 2011. Human model evaluation in interactive
supervised learning. In Proceedings of the Conference on Human Factors in Computing
Systems (CHI 2011), 147–156. ACM Press.Fogarty, J., Tan, D., Kapoor, A., & Winder, S. 2008.
CueFlik: interactive concept learning in image search. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 29-38). ACM.

Guillory, A., & Bilmes, J. A. 2011. Simultaneous learning and covering with adversarial noise.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11) (pp. 369-
376).

Hoffman R., Amershi, S., Patel, K., Wu, F., Fogarty, J., and Weld, D.S. 2009. Amplifying
Community Content Creation with Mixed-Initiative Information Extraction. . In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI 2009), pp. 1849-1858.

Höök, K. 2000. Steps to take before intelligent user interfaces become real. Interacting with
computers, 12(4), 409-426.

Horvitz, E. 1999. Principles of mixed-initiative user interfaces. In Proceedings of the SIGCHI
conference on Human factors in computing systems (pp. 159-166). ACM.

Isbell Jr., C. L., Kearns, M., Singh, S., Shelton, C. R., Stone, P., & Kormann, D. 2006. Cobot in
LambdaMOO: An adaptive social statistics agent. Autonomous Agents and Multi-Agent
Systems, 13(3), 327-354.

Jameson, A. 2009. Adaptive interfaces and agents. Human-Computer Interaction: Design
Issues, Solutions, and Applications, 105.

Kaochar, T., Peralta, R. T., Morrison, C. T., Fasel, I. R., Walsh, T. J., & Cohen, P. R. 2011.
Towards understanding how humans teach robots. In User modeling, adaption and
personalization (pp. 347-352). Springer Berlin Heidelberg.

Kamar, E., Hacker, S., & Horvitz, E. 2012. Combining Human and Machine Intelligence in
Large-scale Crowdsourcing. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2012).

Kapoor, A., Lee, B., Tan, D., & Horvitz, E. 2010. Interactive optimization for steering machine
classification. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 1343-1352). ACM.

Knox, W. B., & Stone, P. 2012. Reinforcement learning from human reward: Discounting in
episodic tasks. In RO-MAN, 2012 IEEE (pp. 878-885). IEEE.

Knox, W. B., & Stone, P. 2013. Learning non-myopically from human-generated reward.
In Proceedings of the 2013 International Conference on Intelligent User Interfaces (pp. 191-
202). ACM.

Kulesza, T., Stumpf, S., Wong, W. K., Burnett, M. M., Perona, S., Ko, A., & Oberst, I. 2011.
Why-oriented end-user debugging of naive Bayes text classification. ACM Transactions on
Interactive Intelligent Systems (TiiS), 1(1), 2.

Kulesza, T., Stumpf, S., Burnett, M., & Kwan, I. 2012. Tell me more?: the effects of mental
model soundness on personalizing an intelligent agent. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 1-10). ACM.

Law, E. & von Ahn, R. 2009. Input-agreement: A New Mechanism for Data Collection Using
Human Computation Games. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI 2009).

Moggridge, B., & Smith, G. C. 2007. Designing interactions (Vol. 17). Cambridge: MIT press.

Norman, D. A. 1988. The Design of Everyday Things. New York: Basic books.

Norman, D. A. 1994. How might people interact with agents. Communications of the
ACM, 37(7), 68-71.

Porter, R., Theiler, J., & Hush, D. 2013. Interactive Machine Learning in Data Exploitation.
Technical Report. Los Alamos National Lab.

Rosenthal, S. L., & Dey, A. K. 2010. Towards maximizing the accuracy of human-labeled sensor
data. In Proceedings of the 15th international conference on Intelligent user interfaces (pp. 259-
268). ACM.

Settles, B. 2010. Active learning literature survey. University of Wisconsin, Madison.

Shneiderman, B., & Maes, P. 1997. Direct manipulation vs. interface agents. Interactions, 4(6),
42-61.

Shneiderman, B., Plaisant, C., Cohen, M., & Jacobs, S. 2009. Designing the User Interface:
Strategies for Effective Human-Computer Interaction, 5th Edition. Addison-Wesley.

Stumpf, S., Rajaram, V., Li, L., Burnett, M., Dietterich, T., Sullivan, E., Drummond, R., &
Herlocker, J. 2007. Toward harnessing user feedback for machine learning. In Proceedings of
the 12th international conference on Intelligent user interfaces (pp. 82-91). ACM.

Talbot, J., Lee, B., Kapoor, A., & Tan, D. S. 2009. EnsembleMatrix: interactive visualization to
support machine learning with multiple classifiers. In Proceedings of the 27th international
conference on Human factors in computing systems (pp. 1283-1292). ACM.

Thomaz, A. L., & Breazeal, C. 2008. Teachable robots: Understanding human teaching
behavior to build more effective robot learners. Artificial Intelligence, 172(6), 716-737.

Vig, J., Sen, S., & Riedl, J. 2011. Navigating the tag genome. In Proceedings of the 16th
international conference on Intelligent user interfaces (pp. 93-102). ACM.

Winograd, T. 1996. Bringing Design to Software. ACM Press.	

