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Abstract--New industrial robotic systems that operate 

in the same physical space as people highlight the emerging 

need for robots that can integrate seamlessly into human 

group dynamics. In this paper we build on our prior 

investigation, which evaluates the convergence of a robot 

computational teaming model and a human teammate’s 

mental model, by computing the entropy rate of the 

Markov chain. We present and analyze the six out of 

thirty-six human trials where the human participant 

switched execution strategies while working with the 

robot. We conduct a post-hoc analysis of this dataset and 

show that the entropy rate appears to be sensitive t o 

changes in the human strategy and reflects the resulting 

increase in uncertainty about the human next actions. 

We propose that these results provide first support that 

entropy rate may be used as a component of dynamic risk 

assessment, to generate risk-aware robot motions and 

action selections. 

 
Index Term—entropy rate, human-robot joint action, 

robot teaming model 

I.  INTRODUCTION 

When humans work in teams, it is crucial for the 

members to develop fluent team behavior. We believe 

that the same holds for robot teammates, if they are 

to perform in a similarly fluent manner as members  

of a human-robot team. New industrial robotic systems  

that operate in the same physical space as people 

highlight the emerging need for robots that can integrate 

seamlessly into human group dynamics. Learning from 

demonstration [3] is one technique for robot training 

that has received significant attention. In this approach, 

the human explicitly teaches the robot a skill or 

specific task [4], [1], [11], [6], [2]. However, the 

focus is on one-way skill transfer from a human to a 

robot, rather than a mutual adaptation process for 

learning fluency in joint action. In many other works, 

the human interacts with the robot by providing high-

level feedback or guidance [5], [9], [7], [16], but this 

kind of interaction does not resemble the teamwork 

processes naturally observed when human teams train 

together on interdependent tasks [10]. 

In this paper we build on our prior investigation, 

which presents a human-inspired technique for 

programming flexible human-robot coordinated work, 

and validates the objective and subjective performance 

benefits of this approach through large-scale human 

subject experimentation [12]. The contribution of  this  

prior art is a computational teaming model that is 

empirically validated and shown to be quantitatively 

comparable to the human mental model using standard 

human factors elicitation techniques [10]. In this work, 

we present a post-hoc analysis of these experiments to 

provide support that these computationally-derived 

teaming models may be used to quantify a robot’s 

uncertainty in its human teammates’ next actions and 

generate risk-aware robot behavior. 
 

 
 
Fig. 1.   (Left) Snapshop of human-robot task execution from human 
subject experiments, (Right) RobotStudio point-and-click simulation 
environment for robot training used in our prior investigation. 

II.  QUANTITATIVE MODELS FOR COLLABORATIVE 

PHYSICAL INTERACTION 

In our ongoing research we utilize a Markov Decision 

Process (MDP) to computationally encode a teaming 

model that captures knowledge about the roles of the 

robot and the human team member [12]. The 

computational teaming model is generated using a 

human-robot interactive planning method. In our prior 

work, we perform interactive planning through cross-

training, a training strategy widely used in human 

teams [10]. 

Human-robot cross-training has been compared to a 

prior state-of-the-art interactive reinforcement learning 

algorithm [16] through large-scale experimentation with 

36 human subjects. Results indicated that the human-

inspired training technique improved quantitative 

measures of team model convergence (p = 0.04) and 

mental model similarity (p < 0.01). Additionally, a 

post-experimental survey indicated statistically 

significant improvements in subjective measures of 



 

human-robot team performance; participants agreed more 

strongly that the robot performed its role effectively, and 

agreed more strongly that they trusted the robot (p < 

0.01). Finally, significant improvements in team 

fluency metrics were reported, including an increase of 

71% in concurrent motion (p = 0.02) and a decrease of 

41% in human idle time (p = 0.04), during the actual 

human-robot task execution phase that succeeded the 

human-robot interactive training process. These prior 

results provide the first evidence that human-robot 

teamwork is improved when a human and robot train 

together in a manner similar to effective human team 

training practices [12]. 

In this paper, we present a post-hoc analysis of these 

experiments indicating that a quantitative assessment of 

the computational teaming model may be used to 

generate risk-aware robot motions and action selections.  

III.  ROBOT TEAMING MODEL FORMULATED AS MDP  

We describe how the robot teaming model is 

computationally encoded as a Markov Decision Process. 

A Markov decision process is a tuple {S, A, T, R}, 
where: 

 S is a finite set of states of the world; it models 

the set of world environment configurations 

 A is a finite set of actions; this is the set of actions 

the robot can execute 

 T : S × A → Π(S) is the state-transition function, 

which, for each world state and action, gives a 

probability distribution over world states; the 

state transition function models the variability in 

human action. For a given robot action a, the 

human’s next choice of action yields a stochastic 

transition from state s to a state s’. We write the 

probability of this transition as T(s, a, s’). In this 

formulation, human behavior is the cause of 

randomness in our model, although this can be 

extended to include stochasticity from the 

environment or the robot actions, as well. 

 R : S × A → R is the reward function, giving the 

expected immediate reward gained by taking 

each action in each state. We write R(s, a) for the 

expected reward of taking action a in state s.  

The policy π of the robot is the assignment of an action 

π(s) at every state s. The optimal policy π* can be 

calculated using dynamic programming [14]. Under this 

formulation, the role of the robot is represented by 

the optimal policy π*, whereas the robot’s knowledge of 

the role of the human co-worker is represented by the 

transition probabilities T.  

IV.  QUANTITATIVE EVALUATION OF PREDICTABLE, 

CONVERGENT JOINT ACTION 

  As the mental model of human and robots converge, 

we describe the human and robot to perform similar 

patterns of actions. This means that the same states will 

be visited frequently and the robot’s uncertainty about the 

human’s action selection will decrease.  

   To evaluate the convergence of the robot’s 

computational teaming model and the human mental 

model, we assume a uniform prior and compute the 

entropy rate [8] of the Markov chain (Eq. 1). The Markov 

chain is induced by specifying a policy π in the MDP 

framework. For the policy π we use the robot actions that 

match human preference, as it is elicited by the human 

after training with the robot. Additionally, we use the 

states s in S that match the preferred sequence of 

configurations to task completion. For a finite state 

Markov chain X with initial state s0 and transition 

probability matrix T the entropy rate is always well 

defined [8]. It is equal to the sum of the entropies of the 

transition probabilities T(s, π(s), s’), for all s in S, 

weighted by the probability of occurrence of each state 

according to the stationary distribution μ of the chain: 
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The entropy rate measure has also been shown to 

produce different results (of statistical significance) for 

various interactive planning techniques, and to correlate 

to objective and subjective measures of team 

performance [12]. This measure can be generalized to 

encode situations where the human has multiple 

preferences or acts stochastically. In this work, we 

present and analyze the six out of thirty-six human trials 

where the human participant switched execution 

strategies while working with the robot. We conduct a 

post-hoc experiment analysis on this small data set and 

show that the entropy rate appears to be a sensitive to 

changes in the human’s strategy and reflects the 

resulting increase in uncertainty about the human’s next 

actions. We propose that these results provide intriguing 

first support that entropy rate may be used as a 

component of a dynamic assessment of risk, and may be 

used to generate risk-aware robot motions and action 

selections. Interestingly, the conditional entropy, given 

by Eq. (1), also represents the robot’s uncertainty about 

the human’s action selection. Post-hoc analysis of the 

human subject experiments verifies that this measure 

decreases as the human and robot train together, and 

increases when the human deviates from the robot’s 

probabilistic model of human action-intent (Fig.2). 

V.  EXPERIMENT PROTOCOL 

A. Experiment Setting 

   In each experiment, one team of one human and one 

robot were tasked to perform a simple place-and-drill task. 

The human’s role was to place screws in one of three 

available positions. The robot’s role was to drill each 

screw. Although this task is simple, we observed a 

sufficient variety of different preferences for 

accomplishing the task. For example, some participants 

preferred to place all screws in a sequence from right-to-

left and then drill them in the same sequence. Others 

preferred to place and drill each screw before moving on 



 

to the next. The participants consisted of 36 subjects 

recruited from MIT. Videos of the experiment 

can be found at: http://tinyurl.com/9prt3hb 

 
Fig. 2.  From prior human subject experiments [12] - in this trial the 
participant changed strategies for working with the robot from training 

to execution. The entropy rate decreases over all three rounds of 

interactive training, and then sharply increases at execution as the 
person acts out a different strategy than planned. 

B. Human-Robot Interactive Planning 

  Before starting the training, all participants were asked 

to describe both verbally and in written form their 

preferred way of executing the task. We then initialized 

the robot policy from a set of prespecified policies so that 

it was clearly different from the participant’s preference. 

For example, if the user preferred to “have the robot drill 

all screws as soon as they are placed, starting from left to 

right,” we initialized the MDP teaming model so that the 

starting robot policy was to wait until all screws were 

placed before drilling. We did this to avoid the trivial 

case where the initial policy of the robot matches the 

preferred policy of the user, and to evaluate mental model 

convergence starting from different human and robot 

mental models. 

  The participants were randomly assigned to two groups, 

Group A and Group B. Each participant then did a 

training session in the ABB RobotStudio virtual 

environment with an industrial robot which we call 

“Abbie” (Figure 3). Depending on the assigned group, the 

participant participated in the following training session: 

1) Cross-training session (Group A): The 

participant iteratively switches positions with the 

virtual robot, placing the screws at the forward 

phase and drilling at the rotation phase. 

2) Reinforcement learning with human reward 

assignment session (Group B): This is the 

standard reinforcement learning approach, where 

the participant places screws and the robot drills 

at all iterations, with the participant assigning a 

positive, zero, or negative reward after each 

robot action [7]. 

  For the cross-training session, the MDP policy update 

was performed using value iteration with a discount 

factor of 0.9, as described in [12]. The policy update for 

the reinforcement learning condition was performed 

using the Sarsa(λ) algorithms, where parameters in the 

standard notation of Sarsa [15] were empirically tuned (λ 

= 0.9, μ = 0.9, α = 0.3) for best performance on this task.  

 
 

Fig. 3. Human-Robot Interactive Planning Using ABB RobotStudio 
Virtual Environment. The human controls the white anthropomorphic 

“Frida” robot on the left, to work with the orange industrial robot, 

“Abbie,” on the right. 

After the training session, the mental model of all 

participants was assessed as follows: for each workbench 

configuration through task completion, participants were 

asked to choose a human placing action and their 

preference for an accompanying robot drilling action, 

based on the training they had together (Figure 4). 

 

 
 

Fig. 4. Human-Robot Mental Model Elicitation Tool 

C. Human-Robot Task Execution 

We then asked all participants to perform the place-

and-drill task with the actual robot, Abbie. To recognize 

the actions of the human we used a PhaseSpace motion 

capture system of eight cameras [13], which tracked the 

motion of a Phasespace glove worn by the participant 

(Figure 5). Abbie executed the policy learned from the 

training sessions. The task execution was videotaped and 

later analyzed for team fluency metrics. Finally, all 

participants were asked to answer a post-experiment 

survey. 

VI.  EXPERIMENT ANALYSIS 

In this section, we present and analyze the six out of 

thirty-six human trials where the human participants 

changed strategies or otherwise demonstrated 

inconsistencies in execution. We conduct a post-hoc 

experiment analysis on this small data set and show that 

the entropy rate appears to be sensitive to changes in the 

human’s strategy. 

 



 

 
Fig. 5.  Human-Robot Task Execution 

A.  Calculation of Entropy Rate 

  We calculate entropy rate taking into account only the 

states that appear in the sequence annotated by the user as 

his or her preferred action sequence. As the robot learns 

the user’s preference (for example, “drill as soon as a 

screw is placed”), some of these states, but not 

necessarily all, appear in the sequence executed during 

training and task execution. A change in the observed 

sequence results in an increase in the entropy rate. For 

example, if the users preference is to drill as soon as a 

screw is placed in the order A-B-C, the states that matter 

for the calculation of the entropy are: “no screw placed”, 

“screw A placed”, “screw A drilled and screw B placed,” 

etc. However, if the robot has not yet learned that it 

should drill after the user places a screw, most of these 

states are not reached. That is, after the state “screw A 

placed”, the robot waits and the state “screw A drilled 

and screw B placed” is not reached during training with 

the robot. Instead, the state evolves to “screw A placed 

and screw B placed,” since the robot does not drill and so 

instead the user places another screw. Note that even if 

the user changes the sequence of placement from A-B-C 

to, say, B-C-A, the change mostly affects states that are 

irrelevant to the users initial preference, and therefore 

affects states irrelevant to the entropy calculation.  

  The entropy rate measure has been shown to produce 

different results (of statistical significance) for various 

interactive planning techniques, and to correlate to 

objective and subjective measures of team performance 

[12]. Here we investigate more closely the six out of 

thirty-six trials where the participants changed strategies 

for working with the robot, and map those events to 

changes in the entropy rate. 

    1)  Subject 1, Group A 

  The user’s preference at the beginning of the 

experiment was to: “place the screws down in the order 

B-A-C and for Abbie to drill them in that order during 

placement.” In the first two rounds, the user followed this 

preference. However, at the third and final round, the user 

changed the sequence from B-A-C to A-C-B, which 

caused the increase in the entropy rate. At the task 

execution, the user followed the predefined sequence B-

A-C, and the entropy decreased again. 

    2)  Subject 2, Group A 

  This subject follows a pattern of action that is similar 

to Subject 1. The user’s preference was to place screws in 

the sequence A-C-B, and have the robot drill after each 

placement. The user followed his preference for the first 

two rounds, but then at the third training round he 

changed the sequence to C-A-B. The user did this 

consciously, saying he “wanted to see the response of the 

system to bimodal preferences.” 

 
Fig. 6. Subject 1 

 

 
Fig. 7. Subject 2 

 

    3)  Subject 3, Group A 

  The user followed the preferred sequence of A-C-B 

for the first two rounds. Then, at the final training 

round the user placed screws according to the sequence 

B-A-C. Finally, at the task execution the user followed 

the sequence A-B-C, a strategy inconsistent with all 

the previous training rounds. The entropy decreased 

from the first training round to execution, but not 

significantly. 

 
Fig. 8. Subject 3 

 

    4)  Subject 4, Group B 

The participant stated their preference as “B-C-A, 

Abbie drills while I place the next screw”, and trained 

with the robot using reinforcement learning with reward 

assignment. The participant was consistent in all 

training rounds, however, the robot did not converge to 

the users preferences. In particular, the robot learnt to 

drill screw B when the user was placing screw A, but 

then waited for the participant to finish placing the rest 



 

of the screws, before drilling them. Therefore, although 

the entropy rate decreases at each iteration, the slope is 

less steep than for subjects (e.g. Subject #7), whose 

mental model converged with the robot teaming model 

during training. 

 
Fig. 9. Subject 4                    

            

    5)  Subject 5, Group B 

The user started with a preference of placing screws in 

the order of C-B-A, with Abbie “drilling them as they 

are put in place”. At the second round, the participant 

changed the sequence and placed the screws in the 

order A-B-C. We see that the entropy remained nearly 

constant rather than decreasing. It may seem counter-

intuitive that the entropy did not increase, even though 

the user changed sequences. The explanation is that the 

user changed his preferred sequence early in the 

training process, when the entropy of the Markov-chain 

was still high. Furthermore, when we calculate the 

entropy of the Markov-chain, we use the states reached 

when following the preferred policy of the user. Since 

the robot has not learned that it should drill the 

screws after placement, following the participants 

preference, these states are not reached and their entropy 

remains constant. Therefore, the effect on the entropy 

rate when the participant changed the sequence is small 

in this case. During task execution, the user expressed 

confusion that the robot did not follow his preference of 

drilling the screw upon placement. The user waited for 

the robot to drill before giving up and placing all the 

screws by himself. This is illustrated by the change in 

slope of the entropy rate at task execution in Figure 10. 

               
                     Fig. 10 Subject 5                 
              

    6)  Subject 6, Group A 

The participant followed her preference of placing 

the screws in the order C-B-A, but then at the task 

execution switched to the sequence A-B-C without 

realizing it. The robot had learned her preference of 

C-B-A during training, and the result of the change of 

strategies at execution was a sharp increase in the 

entropy, as illustrated.  

 
                         Fig. 11. Subject 6        
                     

    7)  Subject 7, Group A 

This is an example of a participant that remained 

consistent with his preferences, during the training 

round and task execution. The robot learned his 

preference. Note the difference in the magnitude of the 

entropy rate decrease, compared to Subject #4, whose 

mental model did not converge with the robot teaming 

model. 

 
                         Fig. 12. Subject 7        

B.  Discussion 

  Relatively few of the thirty-six subjects changed 

strategies or otherwise demonstrated inconsistencies in 

execution. With the small sample size (six subjects) we 

are not able to demonstrate that the observed increases 

in entropy rate are of statistical significance. Nonetheless, 

each of the observed increases in entropy rate can be 

directly linked to changes or inconsistencies in human 

behavior. Our post-hoc analysis of this small data set 

provides support that the entropy rate is sensitive to 

changes in the human’s strategy, and reflects the robot’s 

increase in uncertainty about the human’s next actions. 

We believe these initial results provide adequate support 

to justify large scale human subject experiments aimed at 

investigating entropy rate as a component of a dynamic 

assessment of risk in human-robot collaboration.  

  As a next step we will use changes in entropy rate 

to adapt robot motions. Given probability distributions of 

the human teammate’s next actions, we can determine 

with what probability the human worker will occupy 

various locations in the workspace shared with the 

robot. If we know with high probability that the human 

worker will reach toward location C next, we can utilize 



 

task and human motion models to determine what portion 

of the shared workspace will be occupied through space 

and time by the worker while he or she executes the task. 

The anticipated obstructed space can be reformulated as 

a cost function as input for a robot motion planner, 

which will change robot motion parameters (e.g. speed 

and path) to maneuver around the person. When the 

human teammate deviates from the robot’s probabilistic 

model of human action-intent (manifested as a sudden 

increase in entropy rate), the robot will plan risk-aware 

motions and action selections (e.g. by slowing down, or 

choosing to execute actions that maintain a wider berth 

around the human). 

  There are several reasons why incorporating such 

adaptations would be beneficial. A robot which does 

not adapt to a human worker and simply performs a pre-

set sequence of actions has to stop any time the human 

worker is in the way of the robot’s next task. 

Additionally, precedence complications could arise when 

the human worker performs a task which needs to be 

done prior to a certain robot action. For example, if the 

human places screws to be drilled by the robot in a 

sequence other than the robots pre-programmed plan, the 

robot will have to sit idle until the human places a 

screw at the robot’s anticipated drilling location. These 

problems could potentially lead to significant decreases in 

efficiency, especially if the pre-programmed sequence the 

robot is using is significantly different from the worker’s 

preferred order of actions. A robot that adapts to the 

uncertainty inherent in working with a human will 

mitigate these problems and will result in a more 

efficient and human-friendly system. 

VII.  CONCLUSIONS 

  In this paper we build on our prior investigation, which 

evaluates the convergence of a robot’s computational 

teaming model and a human teammate’s mental model, 

by computing the entropy rate of the Markov chain. We 

present and analyze the six out of thirty-six human trials 

where the human participant switched execution 

strategies while working with the robot. We conduct a 

post-hoc analysis of this small data set and show that the 

entropy rate appears to be sensitive to changes in the 

human’s strategy and reflects the resulting increase in 

uncertainty about the human’s next actions. With the 

small sample size (six subjects) we are not able to 

demonstrate that the observed increases in entropy rate 

are of statistical significance. Nonetheless, the observed 

increases in entropy rate can be directly linked to changes 

or inconsistencies in human behavior. We believe these 

initial results provide adequate support to justify large 

scale human subject experiments aimed at investigating 

entropy rate as a component of a dynamic assessment of 

risk in human-robot collaboration. 
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