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1 Introduction

A probability model consists of a sample space (which in turn defines a set of events),

and a probability function, also known as a probability distribution.

1.1 Sample Space

The sample space Ω is a set of basic outcomes. For example,

• Sample space for a single coin toss: {H, T}

• Sample space for tossing two coins: {HH, TT, HT, TH}

• Sample space for tossing three coins: {HHH, HHT, HTH, HTT, THH, THT, TTH,

TTH }

• Sample space for picking a word: set of all words in vocabulary.

• Sample space for picking a sequence of 2 words: set of all pairs of words {(the, the),

(the, and), (and, the), (and, and), ...}.

1.2 Event

An atomic event is a single member of the sample space. (The event of getting HHH on a

3-coin toss.)

An event, generally, is a collection of atomic events, i.e., a subset of the sample space.

(The event of getting at least two heads, which is {HHH, HHT, HTH, THH}.)
The event space is the set of all possible events. By this definition, it is the power set of

the sample space, and has size 2|Ω|. (|Ω| denotes the size of the sample space Ω.)
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1.3 Probability function

A probability function is defined on the sample space.

P : Ω→ [0, 1] (1)

which says that the domain of the function is Ω (the sample space) and the range is all

real numbers from 0 to 1. The function must also obey the constraint that the sum of the

probabilities of all the atomic events should be 1

∑
ω∈Ω

P (ω) = 1 (2)

1.3.1 Continuous and discrete distributions

Probability functions can be continuous or discrete. A continuous function is one where the

sample space is continuous. For example, if you have to build a probability distribution

of the amount of rain on a given day, you will need to define probabilities for every real

number value for inches of rainfall. In language, we generally do not deal with continuous

distributions, since our sample space consists of discrete linguistic units. However, they come

up in other related domains like speech processing or computer vision.

1.3.2 Uniform and non-uniform distributions

A uniform distribution assigns equal probability to every atomic event. For example, in a

3-coin toss, all 8 possibilities are equally likely, so P (ω) = 1/8 for all ω.

With uniform distributions, we can derive the probability of a non-atomic event A simply

by counting. That is,

P (A) =
|A|
|Ω|

(3)

The probability of getting at least two heads is

P ({HHH,HHT,HTH, THH}) = 4/8 = 0.5 (4)

When the distribution is not uniform, we need to invoke the principles of how probabilities

combine arithmetically for different combinations of events.
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2 Computing Complex Event Probabilities

A good rule of thumb is that the intersection of events (‘and’) implies multiplication of the

individual event probabilities, and the union (‘or’) implies addition – with some caveats.

2.1 And = Multiplication under Independent Events

The probability of A ∩B ∩ C – an intersection of multiple events – is given by

P (A ∩B ∩ C) = P (A)P (B)P (C) (5)

when the events are independent.

With a biased coin where P (H) = 0.7:

P (HH) = P (H)P (H) = 0.72 = 0.490

P (HHH) = P (H)P (H)P (H) = 0.73 = 0.343

P (TTT ) = P (T )P (T )P (T ) = 0.33 = 0.027

P (HTT ) = P (H)P (T )P (T ) = 0.7 ∗ 0.32 = 0.063

P (at least one H) = 1− P (TTT ) = 1− 0.33 = 0.973

This general rule of P (AB) = P (A)P (B) that we have used in the coin examples is only

valid because the coin tosses are independent of one another. For most real world events,

the independence assumption may not be true.

For example, looking at the event that it is sunny on a given day, the probability that

it is sunny tomorrow (S1) is not independent of the event that it is sunny today (S0). Let

P (S0, S1) denote the probability that it is sunny today and tomorrow.1

P (S0, S1) = P (S0)P (S1|S0) (6)

where P (S1|S0) is the probability that it is sunny tomorrow given that it is sunny today.

Keep in mind that the following equation also holds true.

P (S0, S1) = P (S1)P (S0|S1) (7)

Which way that you factor a joint probability into a product of conditional probabilities

depends only on how much information you are given. In the cases of chronological events,

1Note that the joint probability of events A and B can interchangeably be denoted by P (AB), P (A,B),

or P (A ∩B).
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or reading left to right in a text, it just happens to be that the probability of something

happening in the future will be conditioned on the past, rather than the other way around.

2.2 Or = Addition under Disjoint Events

The probability of A ∪B ∪ C – a union of multiple events – can be derived by

P (A ∪B ∪ C) = P (A) + P (B) + P (C) (8)

when the events are disjoint from one another. For example, under the same 0.7/0.3

biased coin:

P (H ∪ T ) = P (H) + P (T )

= 0.7 + 0.3 = 1.0

P (HHH ∪ TTT ) = P (HHH) + P (TTT )

= 0.73 + 0.33 = 0.370

P (first coin is T) = P (THH ∪ THT ∪ TTH ∪ TTT )

= 0.3 · 0.72 + 0.3 · 0.7 · 0.3 + 0.32 · 0.7 + 0.33 = 0.300

P (exactly two H) = P (HHT ∪HTH ∪ THH)

= 0.72 · 0.3 + 0.7 · 0.3 · 0.7 + 0.3 · 0.72 = 0.450

P (exactly two T) = P (TTH ∪ THT ∪HTT )

= 0.32 · 0.7 + 0.3 · 0.7 · 0.3 + 0.7 · 0.32 = 0.063

P (exactly two H or exactly two T) = P (exactly two H) + P (exactly two T) = 0.513

However, if we are looking for the probability of ‘exactly two H or the first coin is T’, we

cannot simply sum the probability of ‘exactly two H’ and the probability of ‘first coin is T’,

since the events intersect at THH.

Sample space HHH HHT HTH HTT THH THT TTH TTT

Exactly 2 H x x x

First coin is T x x x x

Notice that summing P (exactly two H) + P (first coin is T) amounts to double counting

the probability at the intersection. So,
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P (exactly two H or first coin is T)

= P (exactly two H) + P (first coin is T)− P (exactly two H and first coin is T)

= P (exactly two H) + P (first coin is T)− P (THH)

= 0.450 + 0.300− 0.147 = 0.603

3 Bayes Rule

Bayes Rule follows from the factorization of joint probability.

P (A ∩B) = P (A)P (B|A)

P (A ∩B) = P (B)P (A|B)

Therefore,

P (B|A) =
P (B)P (A|B)

P (A)
(9)

3.1 Application to Learning

Bayes Rule comes up pretty much everywhere! A notable appearance is when we want to

estimate the probability of a model θ given observed data X (for example, the probability

of having a disease given a positive test, or the probability of a certain grammar given a set

of English sentences).

P (θ|X) =
P (θ)P (X|θ)

P (X)
(10)

The factor P (θ) is known as the prior: i.e., our prior estimate of the model that we

may have from world knowledge – we may know that a disease is rare and P (θ) = 0.01.

When we have no world knowledge, we set the prior to be uniform: P (θ) equally likely for

all θ. For example, if we do not know whether a disease is rare, we will set P (disease) =

P (no disease) = 0.5.

P (X|θ) is known as the likelihood of the model. This is the probability that θ assigns

to the observed data X.

The quantity on the left-hand side, P (θ|X), is the posterior estimate of the model given

the observed data.
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