Math 140 Lecture 2

Greg Maloney

with modifications by Todor Milev

University of Massachusetts Boston

September 4-6, 2013

Outline

- A Catalog of Essential Functions
 - Polynomials
 - Power Functions
 - Rational Functions
 - Algebraic Functions
 - Transcendental Functions

Outline

- A Catalog of Essential Functions
 - Polynomials
 - Power Functions
 - Rational Functions
 - Algebraic Functions
 - Transcendental Functions
- New Functions from Old Functions
 - Transformations of Functions
 - Combinations of Functions

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

If we interpret x as an indeterminate formal expression, rather than a number, we say that f(x) is a polynomial (rather than a polynomial function).

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$					
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$					
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes				
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes				
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4			
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$\begin{vmatrix} 3x^2 - \frac{1}{2}x + \sqrt{x} \\ 3x^2 - \frac{1}{2}x + \sqrt{2} \end{vmatrix}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4			
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$\begin{vmatrix} 3x^2 - \frac{1}{2}x + \sqrt{x} \\ 3x^2 - \frac{1}{2}x + \sqrt{2} \end{vmatrix}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1		
6					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a_2
$x^4 - x + 1$	Yes	4	1		
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$\begin{vmatrix} 3x^2 - \frac{1}{2}x + \sqrt{x} \\ 3x^2 - \frac{1}{2}x + \sqrt{2} \end{vmatrix}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$\begin{vmatrix} 3x^2 - \frac{1}{2}x + \sqrt{x} \\ 3x^2 - \frac{1}{2}x + \sqrt{2} \end{vmatrix}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$\begin{vmatrix} 3x^2 - \frac{1}{2}x + \sqrt{x} \\ 3x^2 - \frac{1}{2}x + \sqrt{2} \end{vmatrix}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$\begin{vmatrix} 3x^2 - \frac{1}{2}x + \sqrt{x} \\ 3x^2 - \frac{1}{2}x + \sqrt{2} \end{vmatrix}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes				
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes				
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$\begin{vmatrix} 3x^2 - \frac{1}{2}x + \sqrt{x} \\ 3x^2 - \frac{1}{2}x + \sqrt{2} \end{vmatrix}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0			
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0			
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6		
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6		
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^{2} - \frac{1}{2}x + \sqrt{x} 3x^{2} - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x} \\ 3x^2 - \frac{1}{2}x + \sqrt{2}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes				
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes				
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a_2
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$ $3x^2 - \frac{1}{2}x + \sqrt{2}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2			
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a_2
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$ $3x^2 - \frac{1}{2}x + \sqrt{2}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2			
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a_2
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$		
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a_2
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$		
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a_2
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$	$-\frac{1}{2}$	
$3x^2 - \frac{1}{2x} + \sqrt{2}$				-	

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$	$-\frac{1}{2}$	
$3x^2 - \frac{1}{2x} + \sqrt{2}$				_	

Polynomials

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$	$-\frac{1}{2}$	3
$3x^2 - \frac{1}{2x} + \sqrt{2}$				_	

Polynomials

Definition (Polynomial Function)

A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a ₂
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$	$-\frac{1}{2}$	3
$3x^2 - \frac{1}{2x} + \sqrt{2}$				_	

Polynomials

Definition (Polynomial Function)

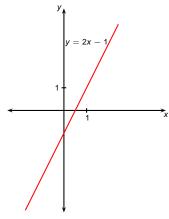
A polynomial function is a function *f* of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

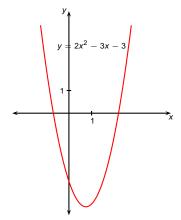
f(x)	Polynomial?	Degree	a_0	a ₁	a_2
$x^4 - x + 1$	Yes	4	1	– 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$	$-\frac{1}{2}$	3
$3x^2 - \frac{1}{2x} + \sqrt{2}$	No				

• Linear functions are polynomial (functions).



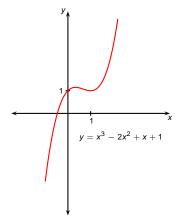
Linear

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.



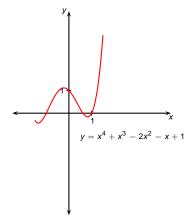
Quadratic

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.



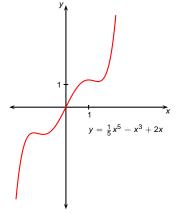
Cubic

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.



Quartic

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.



Quintic

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = x^a$$
.

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = x^a$$
.

x = base.

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = x^a$$
.

x =base. a =exponent or power.

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a \quad .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

```
If a - positive integer (1, 2, 3, ...)
then x^a = polynomial function.
x^n = \underbrace{x ... x}_{n \text{ times}} when n-integer.
(x^a)^b = (xy)^b = x^{a+b} =
```

 $x^{-a} =$

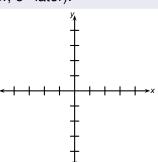
Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x \dots x}_{n \text{ times}}$ when n-integer. $(x^a)^b = (xy)^b = x^{a+b} = x^{-a} =$



Definition (Power Function)

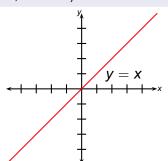
Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}_{n \text{ times}}$ when n-integer. $(x^a)^b = (xy)^b =$

 $x^{a+b} = x^{-a} =$



Definition (Power Function)

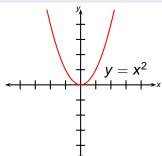
Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x \dots x}_{}$ when n-integer.

$$(x^{a})^{b} = (xy)^{b} = (xy)^{b} = x^{a+b} = x^{-a} =$$



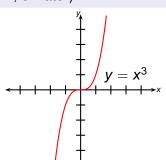
Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x \dots x}_{n \text{ times}}$ when n-integer. $(x^a)^b = (xy)^b = x^{a+b} = x^{-a} =$



Definition (Power Function)

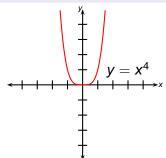
Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x \dots x}_{}$ when n-integer.

$$(x^{a})^{b} = (xy)^{b} = x^{a+b} = x^{-a} =$$



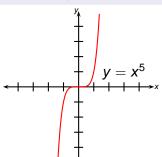
Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}_{n \text{ times}}$ when n-integer. $(x^a)^b = (xy)^b = x^{a+b} = x^{-a} =$



Definition (Power Function)

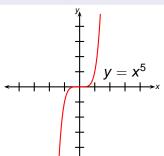
Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}$ when n-integer.

$$(x^{a})^{b} = (xy)^{b} = (xy)^{b} = x^{a+b} = x^{-a} =$$



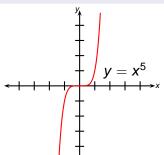
Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}_{n \text{ times}}$ when n-integer. $(x^a)^b = \underbrace{x^{ab}}_{x^{ab}}$ $(xy)^b = \underbrace{x^{a+b}}_{x^{a+b}} = \underbrace{x^{-a}}_{x^{-a}}$



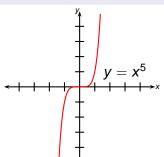
Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x \dots x}_{n \text{ times}}$ when n-integer. $(x^a)^b = x^{ab}$ $(xy)^b = x^{a+b} = x^{a+b} = x^{-a} = x^{-a}$



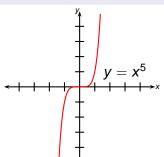
Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x \dots x}_{n \text{ times}}$ when n-integer. $(x^a)^b = x^{ab}$ $(xy)^b = x^b y^b$ $x^{a+b} = x^{-a} = x^{-a}$



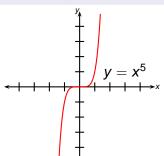
Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x \dots x}_{n \text{ times}}$ when n-integer. $(x^a)^b = x^{ab}$ $(xy)^b = x^b y^b$ $x^{a+b} = x^{-a} = x^{-a}$



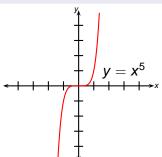
Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x = base. a = exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x \dots x}_{n \text{ times}}$ when n-integer. $(x^a)^b = x^{ab}$ $(xy)^b = x^b y^b$ $x^{a+b} = x^a x^b$ $x^{-a} =$



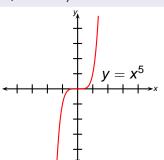
Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x \dots x}_{n \text{ times}}$ when n-integer. $(x^a)^b = x^{ab}$ $(xy)^b = x^b y^b$ $x^{a+b} = x^a x^b$



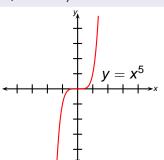
Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}_{n \text{ times}}$ when n-integer. $(x^a)^b = x^{ab}$ $(xy)^b = x^b y^b$ $x^{a+b} = x^a x^b$ $x^{-a} = \frac{1}{\sqrt{a}}$



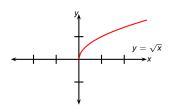
• n - positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the n^{th} root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.

- n positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the n^{th} root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.

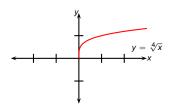
- n positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the n^{th} root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by $2^{m+1}\sqrt{-x} := -2^{m+1}\sqrt{|x|}$.

- n positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the n^{th} root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by $2^{m+1}\sqrt{-x} := -2^{m+1}\sqrt{|x|}$.
- In this course, even roots of negative numbers are not defined (domain of even root function: $[0, \infty)$).

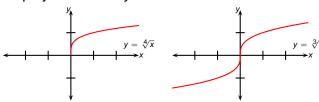
- n positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the n^{th} root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by $\sqrt[2m+1]{-x} := -\sqrt[2m+1]{|x|}$.
- In this course, even roots of negative numbers are not defined (domain of even root function: $[0, \infty)$).
- The graph of \sqrt{x} is the top half of the parabola $x = y^2$.



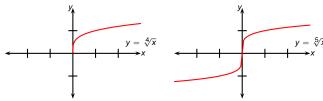
- n positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the n^{th} root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by $2^{m+1}\sqrt[4]{-x} := -2^{m+1}\sqrt[4]{|x|}$.
- In this course, even roots of negative numbers are not defined (domain of even root function: $[0, \infty)$).
- The graph of \sqrt{x} is the top half of the parabola $x = y^2$. Similarly for $y = \sqrt[2m]{x}$, we graph top of $x = y^{2m}$.



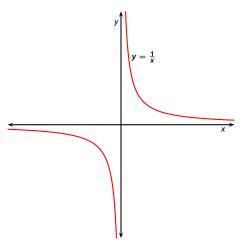
- n positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the n^{th} root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by $\sqrt[2m+1]{-x} := -\sqrt[2m+1]{|x|}$.
- In this course, even roots of negative numbers are not defined (domain of even root function: $[0, \infty)$).
- The graph of \sqrt{x} is the top half of the parabola $x = y^2$. Similarly for $y = \sqrt[2m]{x}$, we graph top of $x = y^{2m}$.
- The graph of the cube root $f(x) = \sqrt[3]{x}$ is the graph of the polynomial $x = y^3$.



- n positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the n^{th} root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by 2m+1/2 = -2m+1/2 |x|.
- In this course, even roots of negative numbers are not defined (domain of even root function: $[0, \infty)$).
- The graph of \sqrt{x} is the top half of the parabola $x = y^2$. Similarly for $y = \sqrt[2m]{x}$, we graph top of $x = y^{2m}$.
- The graph of the cube root $f(x) = \sqrt[3]{x}$ is the graph of the polynomial $x = y^3$. Similarly for $y = \sqrt[2m+1]{x}$, we graph $x = y^{2m+1}$.



 $f(x) = x^{-1} = \frac{1}{x}$ is called the reciprocal function. Its graph has equation $y = \frac{1}{x}$, or xy = 1, and is an hyperbola with the coordinate axes as its asymptotes.



Rational Functions

Definition (Rational Function)

A rational function is a quotient of two polynomials; that is, a function of the form

$$f(x)=\frac{g(x)}{h(x)},$$

where g and h are polynomials.

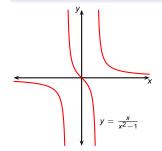
Rational Functions

Definition (Rational Function)

A rational function is a quotient of two polynomials; that is, a function of the form

$$f(x)=\frac{g(x)}{h(x)},$$

where g and h are polynomials.



Example $(x/(x^2-1))$

The function

$$f(x) = \frac{x}{x^2 - 1}$$

is a rational function.

Algebraic Functions

Definition (Algebraic Function)

A function in x that can be constructed using x, constants, and finitely many of the operations +,-,*,/, and $\sqrt[n]{}$ is an algebraic function.

Algebraic Functions

Definition (Algebraic Function)

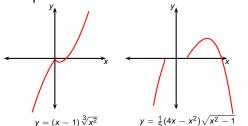
A function in x that can be constructed using x, constants, and finitely many of the operations +,-,*,/, and $\sqrt[n]{}$ is an algebraic function. Outside of Calculus I: function f(x) = algebraic if it satisfies a polynomial equation with polynomial coefficients, i.e., $a_0(x) + a_1(x)f(x) + \cdots + a_n(x)(f(x))^n = 0$ for some polynomials $a_i(x)$.

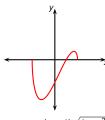
Algebraic Functions

Definition (Algebraic Function)

A function in x that can be constructed using x, constants, and finitely many of the operations +, -, *, /, and $\sqrt[n]{}$ is an algebraic function. Outside of Calculus I: function f(x) = algebraic if it satisfies a polynomial equation with polynomial coefficients, i.e., $a_0(x) + a_1(x)f(x) + \cdots + a_n(x)(f(x))^n = 0$ for some polynomials $a_i(x)$.

Examples.





 $y = (x-1)\sqrt{4-x^2}$

Transcendental functions include many classes of functions.

Transcendental functions include many classes of functions.

• Trigonometric functions such as $\cos x$, $\sin x$, $\tan x$, etc.

Transcendental functions include many classes of functions.

- Trigonometric functions such as $\cos x$, $\sin x$, $\tan x$, etc.
- Exponential functions such as 2^x , $\left(\frac{1}{2}\right)^x$, 5^x , e^x , etc.

Transcendental functions include many classes of functions.

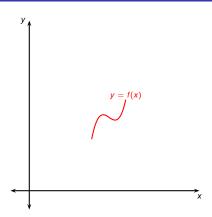
- Trigonometric functions such as cos x, sin x, tan x, etc.
- Exponential functions such as 2^x , $\left(\frac{1}{2}\right)^x$, 5^x , e^x , etc.
- The logarithm function ln x.

Transcendental functions include many classes of functions.

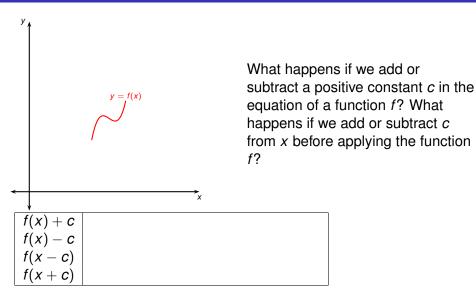
- Trigonometric functions such as cos x, sin x, tan x, etc.
- Exponential functions such as 2^x , $\left(\frac{1}{2}\right)^x$, 5^x , e^x , etc.
- The logarithm function ln x.
- And many more.

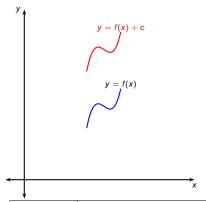
Transcendental functions include many classes of functions.

- Trigonometric functions such as $\cos x$, $\sin x$, $\tan x$, etc.
- Exponential functions such as 2^x , $\left(\frac{1}{2}\right)^x$, 5^x , e^x , etc.
- The logarithm function ln x.
- And many more.
- Outside of Calculus I: by definition, a function is transcendental if it is not algebraic, i.e., if it satisfies no polynomial equation with polynomial coefficients.



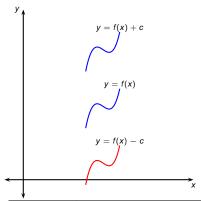
What happens if we add or subtract a positive constant c in the equation of a function f? What happens if we add or subtract c from x before applying the function f?





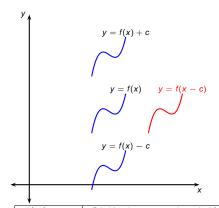
What happens if we add or subtract a positive constant c in the equation of a function f? What happens if we add or subtract c from x before applying the function f?

f(x) + c Shift the graph of f(x) c units up. f(x) - c f(x - c) f(x + c)



What happens if we add or subtract a positive constant c in the equation of a function f? What happens if we add or subtract c from x before applying the function f?

f(x) + c Shift the graph of f(x) c units up. Shift the graph of f(x) c units down. f(x - c) f(x + c)



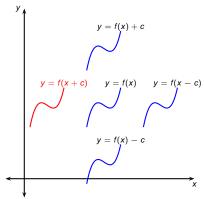
What happens if we add or subtract a positive constant c in the equation of a function f? What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$

 $f(x) - c$

f(x+c)

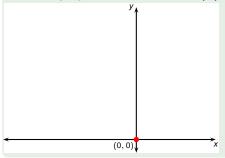
Shift the graph of f(x) c units up. Shift the graph of f(x) c units down. Shift the graph of f(x) c units right.



What happens if we add or subtract a positive constant c in the equation of a function f? What happens if we add or subtract c from x before applying the function f?

f(x) + c Shift the graph of f(x) c units up. f(x) - c Shift the graph of f(x) c units down. f(x - c) Shift the graph of f(x) c units right. f(x + c) Shift the graph of f(x) c units left.

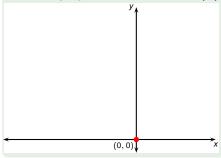
Draw a graph of the function $f(x) = x^2 + 6x + 10$.



Draw a graph of the function $f(x) = x^2 + 6x + 10$.

Complete the square:

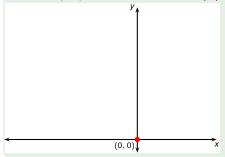
Draw a graph of the function
$$f(x) = x^2 + 6x + 10$$
.



Complete the square:

$$f(x) = x^2 + 6x + 10$$

Draw a graph of the function
$$f(x) = x^2 + 6x + 10$$
.

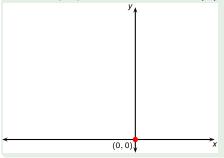


Complete the square:

$$f(x) = x^2 + 6x + 10$$

= $(x^2 + 6x) + 10$

Draw a graph of the function
$$f(x) = x^2 + 6x + 10$$
.

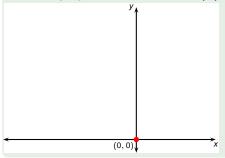


Complete the square:

$$f(x) = x^2 + 6x + 10$$

= $(x^2 + 6x + 9) + 10 - 9$

Draw a graph of the function $f(x) = x^2 + 6x + 10$.



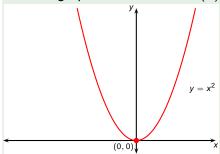
Complete the square:

$$f(x) = x^{2} + 6x + 10$$

$$= (x^{2} + 6x + 9) + 10 - 9$$

$$= (x + 3)^{2} + 1$$

Draw a graph of the function $f(x) = x^2 + 6x + 10$.



Complete the square:

$$f(x) = x^2 + 6x + 10$$

= $(x^2 + 6x + 9) + 10 - 9$
= $(x+3)^2 + 1$

Draw a graph of the function $f(x) = x^2 + 6x + 10$.

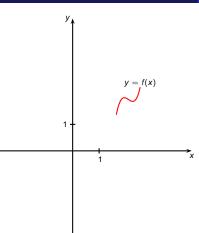


Complete the square:

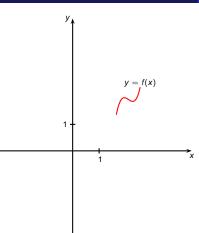
$$f(x) = x^{2} + 6x + 10$$

$$= (x^{2} + 6x + 9) + 10 - 9$$

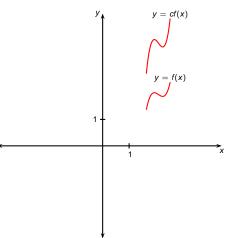
$$= (x + 3)^{2} + 1$$



cf(x) (1/c)f(x) -f(x)

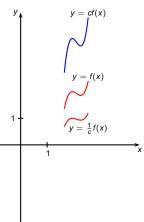


cf(x) (1/c)f(x) -f(x)



 $\frac{cf(x)}{(1/c)f(x)} \\
-f(x)$

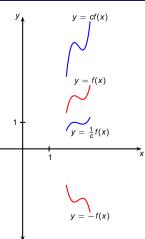
Stretch the graph of f(x) vertically by a factor of c.



 $\frac{cf(x)}{(1/c)f(x)}$

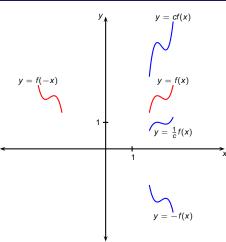
Stretch the graph of f(x) vertically by a factor of c. Compress the graph of f(x) vertically by a factor of c.

-t(x)

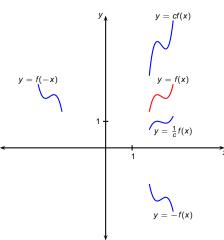


cf(x) (1/c)f(x) -f(x) f(-x)

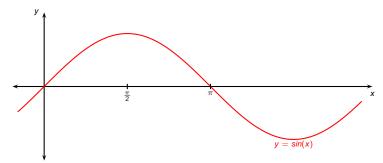
Stretch the graph of f(x) vertically by a factor of c. Compress the graph of f(x) vertically by a factor of c. Reflect the graph of f(x) in the x-axis.

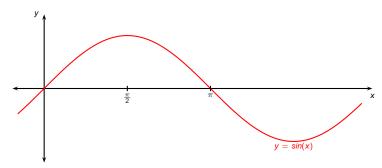


cf(x)(1/c)f(x)-f(x) Stretch the graph of f(x) vertically by a factor of c. Compress the graph of f(x) vertically by a factor of c. Reflect the graph of f(x) in the x-axis. Reflect the graph of f(x) in the y-axis.

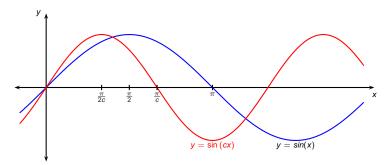


	,
cf(x)	Stretch the graph of $f(x)$ vertically by a factor of c .
(1/c)f(x)	Compress the graph of $f(x)$ vertically by a factor of c .
-f(x)	Reflect the graph of $f(x)$ in the x -axis.
f(-x)	Reflect the graph of $f(x)$ in the y-axis.

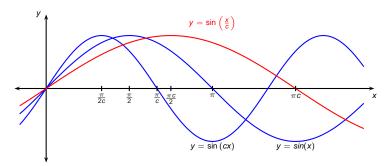




1170	
f(cx)	
f((1/c)x)	



<u> </u>	
f(cx)	Compress the graph of $f(x)$ horizontally by a factor of c .
f((1/c)x)	



f(cx)	Compress the graph of $f(x)$ horizontally by a factor of c .
f((1/c)x)	Stretch the graph of $f(x)$ horizontally by a factor of c .

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0\\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

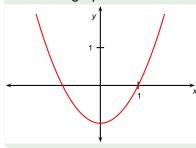
This tells us how to draw the graph of y = |f(x)|: the part of the graph above the x-axis remains the same; the part below the x-axis is reflected about the x-axis.

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the x-axis remains the same; the part below the x-axis is reflected about the x-axis.

Example

Draw the graph of the function $f(x) = |x^2 - 1|$.



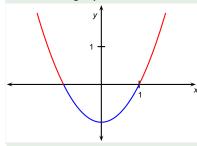
• Draw the graph of $f(x) = x^2 - 1$.

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the *x*-axis remains the same; the part below the *x*-axis is reflected about the *x*-axis.

Example

Draw the graph of the function $f(x) = |x^2 - 1|$.



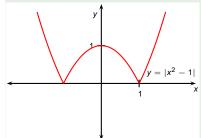
- Draw the graph of $f(x) = x^2 1$.
- Identify the part(s) below the x-axis.

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the *x*-axis remains the same; the part below the *x*-axis is reflected about the *x*-axis.

Example

Draw the graph of the function $f(x) = |x^2 - 1|$.



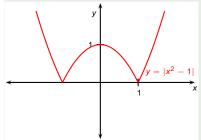
- Draw the graph of $f(x) = x^2 1$.
 - Identify the part(s) below the *x*-axis.
 - Flip those parts over the x-axis.

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the *x*-axis remains the same; the part below the *x*-axis is reflected about the *x*-axis.

Example

Draw the graph of the function $f(x) = |x^2 - 1|$.



- Draw the graph of $f(x) = x^2 1$.
 - Identify the part(s) below the *x*-axis.
 - Flip those parts over the x-axis.

Combinations of Functions

Two functions f and g can be combined to form new functions f+g, f-g, fg, and f/g. The sum and difference functions are defined by the formulas

$$(f+g)(x) = f(x) + g(x),$$
 $(f-g)(x) = f(x) - g(x).$

If *A* is the domain of *f* and *B* is the domain of *g*, then the domain of f + g and f - g is $A \cap B$, the intersection of *A* and *B*. The product and quotient functions are defined by the formulas

$$(fg)(x) = f(x)g(x), \qquad \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}.$$

These functions also have the domain $A \cap B$, with one exception: in the quotient function, we aren't allowed to divide by 0, so we must exclude those values of x that make g(x) = 0. We write this domain as

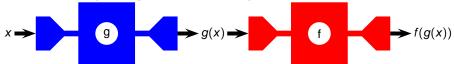
$$\{x\in A\cap B|\ g(x)\neq 0\}.$$

Definition (Composition of f and g)

If f and g are two functions, then the composition of f and g is written $f \circ g$ and is defined by the formula

$$(f\circ g)(x)=f(g(x)).$$

Imagine f and g as machines taking some input and producing some output. Then $f \circ g$ corresponds to attaching both machines end-to-end so that the output of g becomes the input of f.

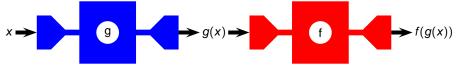


Definition (Composition of f and g)

If f and g are two functions, then the composition of f and g is written $f \circ g$ and is defined by the formula

$$(f\circ g)(x)=f(g(x)).$$

Imagine f and g as machines taking some input and producing some output. Then $f \circ g$ corresponds to attaching both machines end-to-end so that the output of g becomes the input of f.



The domain of $f \circ g$ is the set of all numbers x in the domain of g such that g(x) is in the domain of f. If the domain of f is A and the domain of g is B, we write this as

$$\{x \in B | g(x) \in A\}.$$

If
$$f(x) = \sqrt{x}$$
 and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g$$

$$g \circ f$$

$$g \circ g$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g$$

 $(f \circ g)(x)$

$$g \circ f$$

$$g \circ g$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g$$

$$(f \circ g)(x)$$

$$= f(g(x))$$

$$g \circ f$$

$$g \circ g$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g$$

$$(f \circ g)(x)$$

$$= f(g(x))$$

$$= f(\sqrt{2-x})$$

$$g \circ f$$

$$g \circ g$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g$$

$$(f \circ g)(x)$$

$$= f(g(x))$$

$$= f(\sqrt{2-x})$$

$$= \sqrt{\sqrt{2-x}}$$

$$g \circ g$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g$$

$$(f \circ g)(x)$$

$$= f(g(x))$$

$$= f(\sqrt{2-x})$$

$$= \sqrt{\sqrt{2-x}}$$

$$= \sqrt[4]{2-x}$$

$$g \circ g$$

Lecture 2 September 4-6, 2013

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g \qquad g \circ f$$

$$(f \circ g)(x)$$

$$= f(g(x))$$

$$= f(\sqrt{2-x})$$

$$= \sqrt{\sqrt{2-x}}$$

$$= \sqrt[4]{2-x}$$
Domain:
$$(-\infty, 2].$$

 $g \circ g$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g \qquad g \circ f \qquad g \circ g$$

$$(f \circ g)(x) \qquad (g \circ f)(x)$$

$$= f(g(x))$$

$$= f(\sqrt{2-x})$$

$$= \sqrt{\sqrt{2-x}}$$

$$= \sqrt[4]{2-x}$$
Domain:
$$(-\infty, 2].$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g \qquad g \circ f \qquad g \circ g$$

$$(f \circ g)(x) \qquad (g \circ f)(x)$$

$$= f(g(x)) \qquad = g(f(x))$$

$$= f(\sqrt{2-x})$$

$$= \sqrt{\sqrt{2-x}}$$

$$= \sqrt[4]{2-x}$$
Domain:
$$(-\infty, 2].$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g \qquad g \circ f \qquad g \circ g$$

$$(f \circ g)(x) \qquad (g \circ f)(x)$$

$$= f(g(x)) \qquad = g(f(x))$$

$$= f(\sqrt{2-x}) \qquad = g(\sqrt{x})$$

$$= \sqrt{\sqrt{2-x}}$$

$$= \sqrt[4]{2-x}$$
Domain:
$$(-\infty, 2].$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g \qquad g \circ f \qquad g \circ g$$

$$(f \circ g)(x) \qquad (g \circ f)(x)$$

$$= f(g(x)) \qquad = g(f(x))$$

$$= f(\sqrt{2-x}) \qquad = g(\sqrt{x})$$

$$= \sqrt{\sqrt{2-x}} \qquad = \sqrt{2-\sqrt{x}}$$

$$= \sqrt[4]{2-x}$$
Domain:
$$(-\infty, 2].$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g \qquad g \circ f \qquad g \circ g$$

$$(f \circ g)(x) \qquad (g \circ f)(x)$$

$$= f(g(x)) \qquad = g(f(x))$$

$$= f(\sqrt{2-x}) \qquad = g(\sqrt{x})$$

$$= \sqrt{\sqrt{2-x}} \qquad = \sqrt{2-\sqrt{x}}$$

$$= \sqrt[4]{2-x} \qquad Domain :$$

$$Domain : \qquad [0,4].$$

$$(-\infty, 2].$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g \qquad g \circ f \qquad g \circ g$$

$$(f \circ g)(x) \qquad (g \circ f)(x) \qquad (g \circ g)(x)$$

$$= f(g(x)) \qquad = g(f(x))$$

$$= f(\sqrt{2-x}) \qquad = g(\sqrt{x})$$

$$= \sqrt{\sqrt{2-x}} \qquad = \sqrt{2-\sqrt{x}}$$

$$= \sqrt[4]{2-x} \qquad Domain :$$

$$Domain : \qquad [0,4].$$

$$(-\infty, 2].$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g \qquad g \circ f \qquad g \circ g \qquad (f \circ g)(x) \qquad (g \circ f)(x) \qquad (g \circ g)(x)$$

$$= f(g(x)) \qquad = g(f(x)) \qquad = g(g(x))$$

$$= f(\sqrt{2-x}) \qquad = g(\sqrt{x})$$

$$= \sqrt{\sqrt{2-x}} \qquad = \sqrt{2-\sqrt{x}}$$

$$= \sqrt[4]{2-x} \qquad Domain : \qquad Domain : \qquad [0,4].$$

$$(-\infty, 2].$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g \qquad g \circ f \qquad g \circ g \qquad (f \circ g)(x) \qquad (g \circ f)(x) \qquad (g \circ g)(x)$$

$$= f(g(x)) \qquad = g(f(x)) \qquad = g(g(x)) \qquad = g(\sqrt{2-x})$$

$$= \sqrt{\sqrt{2-x}} \qquad = \sqrt{2-\sqrt{x}} \qquad = g(\sqrt{2-x})$$

$$= \sqrt[4]{2-x} \qquad Domain : \qquad Domain : \qquad [0,4].$$

$$(-\infty, 2].$$

 $(-\infty, 2]$.

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.

$$f \circ g \qquad g \circ f \qquad g \circ g$$

$$(f \circ g)(x) \qquad (g \circ f)(x) \qquad (g \circ g)(x)$$

$$= f(g(x)) \qquad = g(f(x)) \qquad = g(g(x))$$

$$= f(\sqrt{2-x}) \qquad = g(\sqrt{x}) \qquad = g(\sqrt{2-x})$$

$$= \sqrt[4]{2-x} \qquad Domain :$$

$$Domain : \qquad [0,4].$$

 $(-\infty, 2]$.

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each function and its domain.