
 Qiang Xu CUHK, Fall 2013

Part.3 .1

ENGG 5101

Advanced Computer Architecture

Lecture 03 – Basic Concepts

XU, Qiang (Johnny) 徐強

 Qiang Xu CUHK, Fall 2013

Part.3 .2

The Instruction Set Architecture (ISA)

instruction set architecture

software

hardware

The interface description separating
the software and hardware

 Qiang Xu CUHK, Fall 2013

Part.3 .3

ISA Design Considerations

¨ Functionality and flexibility for software
development

¨ Implementation efficiency in available technology

¨ Backward compatibility

How to design a long-lasting ISA under changes in usage and
technology?

 Qiang Xu CUHK, Fall 2013

Part.3 .4

Fundamental Instructions

¨ Computation instructions
* Integer arithmetic/logic instructions, e.g., add, and,

mult
* Floating-point instructions

¨ Memory transfer instructions
* Loads/Stores

¨ Control instructions
* Conditional branch
* Unconditional jump

 Qiang Xu CUHK, Fall 2013

Part.3 .5

Number of Memory Operands in ALU Ops

¨  Consider a HLL statement C<- A + B

¨ With 3 memory operands (memory-to-memory instruction)
* ADD C,A,B

¨ With 1 memory operand and 1 register operand
*  LW R1,A
*  ADD R1,B
*  SW R1,C

¨ With no memory operand (Load/Store architecture)
*  LW R1,A
*  LW R2,B
*  ADD R3,R1,R2
*  SW R3,C

 Qiang Xu CUHK, Fall 2013

Part.3 .6

ISA Classification based on Operand Locations

Virtually every new architecture designed after 1980 uses a
load-store register architecture! Why?

 Qiang Xu CUHK, Fall 2013

Part.3 .7

¨  ISA encoding determines code size and decoding complexity
*  Decoding is simplified if instruction format is highly predictable

ISA Classification based on Encoding

 Qiang Xu CUHK, Fall 2013

Part.3 .8

Addressing Modes

MODE EXAMPLE MEANING

REGISTER ADD R4,R3 reg[R4] <- reg[R4] +reg[R3]

IMMEDIATE ADD R4, #3 reg[R4] <- reg[R4] + 3

DISPLACEMENT ADD R4, 100(R1) reg[R4] <- reg[R4] + Mem[100 +
reg[R1]]

REGISTER INDIRECT ADD R4, (R1) reg[R4] <- reg[R4] + Mem[reg[R1]]

INDEXED ADD R3, (R1+R2) reg[R3] <- reg[R3] + Mem[reg[R1] +
reg[R2]]

DIRECT OR ABSOLUTE ADD R1, (1001) reg[R1] <- reg[R1] + Mem[1001]

MEMORY INDIRECT ADD R1, @R3 reg[R1] <- reg[R1] +
Mem[Mem[Reg[3]]]

POST INCREMENT ADD R1, (R2)+ ADD R1, (R2) then R2 <- R2+d

PREDECREMENT ADD R1, -(R2) R2 <- R2-d then ADD R1, (R2)

PC-RELATIVE BEZ R1, 100 if R1==0, PC <- PC+100

PC-RELATIVE JUMP 200 Concatenate bits of PC and offset

 Qiang Xu CUHK, Fall 2013

Part.3 .9

Actual Use of Addressing Modes

¨ Displacement and Immediate are the most common
addressing modes
* 16 bits is usually enough for both types of values

 Qiang Xu CUHK, Fall 2013

Part.3 .10

Actual Use of Addressing Modes

¨ More complex addressing modes can be

synthesized
* Memory indirect: LW R1, @(R2)

»  LW R3, 0(R2)
»  LW R1, 0(R3)

* Post increment: LW R1, (R2)++
»  LW R1, 0(R2)
»  ADDI R2, R2, #size

 Qiang Xu CUHK, Fall 2013

Part.3 .11

RISC vs. CISC

¨ Complex vs. Reduced Instruction Set Computers

¨ RISC design philosophy
*  load-store architecture
* Fixed/hybrid instruction lengths
*  limited addressing modes
*  limited operations

 Qiang Xu CUHK, Fall 2013

Part.3 .12

RISC vs. CISC
¨  The definition of CISC/RISC is not directly related to

implementation!
¨  Today’s CISC machines are usually implemented internally as

RISC using microcode, with some translation overhead

 Qiang Xu CUHK, Fall 2013

Part.3 .13

Important ISAs and Implementations

ISA Company Implementations Type

System 370 IBM IBM 370/3081 CISC--Legacy

x86 Intel Intel 386,
Intel Pentium,
 AMD Turion

CISC-Legacy

Motorola68000 Motorola Motorola 68020 CISC-Legacy

Sun SPARC Sun
Microsystems

SPARC T2 RISC

PowerPC IBM/Motorola PowerPC-6 RISC

ARM ARM ARM Coretex A8
Apple A5/A6/A7

Qualcomm
Snapdragon
NVida Tegra

…

RISC

MIPS MIPS/SGI MIPS10000 RISC

IA-64 Intel Itanium-2 RISC

 Qiang Xu CUHK, Fall 2013

Part.3 .14

Core ISA Used in This Course

Types Opcode Assembly code Meaning Comments
Data Transfers LB, LH, LW, LD LW R1,#20(R2) R1<=MEM[(R2)+20] for bytes, half-words

SB, SH, SW, SD SW R1,#20(R2) MEM[(R2)+20]<=(R1) words, and double words

L.S, L.D L.S F0,#20(R2) F0<=MEM[(R2)+20] single/double float load

S.S, S.D S.S F0,#20(R2) MEM[(R2)+20]<=(F0) single/double float store

ALU operations ADD, SUB, ADDU, SUBU ADD R1,R2,R3 R1<=(R2)+(R3) add/sub signed or
unsigned

ADDI, SUBI, ADDIU,
SUBIU

ADDI R1,R2,#3 R1<=(R2)+3 add/sub immediate
signed or unsigned

AND, OR, XOR, AND R1,R2,R3 R1<=(R2).AND.(R3) bitwise logical AND, OR,
XOR

ANDI, ORI, XORI, ANDI R1,R2,#4 R1<=(R2).ANDI.4 bitwise AND, OR, XOR
immediate

SLT, SLTU SLT R1,R2,R3 R1<=1 if R2<R3
else R1<=0

test on R2,R3 outcome in
R1,

signed or unsigned
comparison

SLTI, SLTUI SLTI R1,R2,#4 R1<=1 if R2<4
else R1<=0

test R2 outcome in R1,
signed or unsigned

comparison

 Qiang Xu CUHK, Fall 2013

Part.3 .15

Types Opcode Assembly code Meaning Comments
Branches/Jumps BEQZ, BNEZ BEQZ R1,label PC<=label if (R1)=0 conditional branch-

equal 0/not equal 0

BEQ, BNE BNE R1,R2,label PC<=label if (R1)=(R2) conditional branch-
equal/not equal

J J target PC<=target target is an immediate
field

JR JR R1 PC<=(R1) target is in register

JAL JAL target R1<=(PC)+4;
PC<=target

jump to target after
saving

the return address in
R31

Floating point ADD.S,SUB.S,MUL.S,
DIV.S

ADD.S F1,F2,F3 F1<=(F2)+(F3) float arithmetic single
precision

ADD.D,SUB.D,MUL.D,
DIV.D

ADD.D F0,F2,F4 F0<=(F2)+(F4) float arithmetic
double precision

Core ISA Used in This Course

 Qiang Xu CUHK, Fall 2013

Part.3 .16

Instruction Formats

LW Rt, displacement(Rs)
SW Rt, displacement(Rs)
ADDI Rt, Rs, immediate
BEQ Rt, Rs, offset

ADD Rd, Rt, Rs

J target
JAL target

I-type

R-type

J-type

 Qiang Xu CUHK, Fall 2013

Part.3 .17

The Five Instruction Execution Steps

¨  IFetch: Instruction Fetch and Update PC
¨  Dec: Instruction Decode, Register Read, Sign Extend

Offset
¨  Exec: Execute R-type; Calculate Memory Address;

Branch Comparison; Branch and Jump Completion
¨ Mem: Memory Read; Memory Write Completion; R-type

Completion (RegFile write)
¨ WB: Memory Read Completion (RegFile write)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WB

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

 Qiang Xu CUHK, Fall 2013

Part.3 .18

A Pipelined MIPS Processor
¨  Start the next instruction before the current one has

completed
*  improves throughput - total amount of work done in a given

time
*  instruction latency (execution time, delay time, response

time - time from the start of an instruction to its
completion) is not reduced

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WB lw

Cycle 7 Cycle 6 Cycle 8

sw IFetch Dec Exec Mem WB

R-type IFetch Dec Exec Mem WB

»  clock cycle (pipeline stage time) is limited by the slowest stage
»  for some instructions, some stages are wasted cycles

 Qiang Xu CUHK, Fall 2013

Part.3 .19

MIPS Pipeline Datapath
¨ Require State registers between each pipeline stage

to isolate them

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data IF

et
ch

/D
ec

D
ec

/E
xe

c

Ex
ec

/M
em

M
em

/W
B

IF:IFetch ID:Dec EX:Execute MEM:
MemAccess

WB:
WriteBack

System Clock

Sign
Extend

 Qiang Xu CUHK, Fall 2013

Part.3 .20

MIPS Pipeline Control Path
¨ All control signals can be determined during Decode
* and held in the state registers between pipeline stages

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

 Qiang Xu CUHK, Fall 2013

Part.3 .21

Pipelining the MIPS ISA

¨ What makes it easy
* all instructions are the same length (32 bits)

»  can fetch in the 1st stage and decode in the 2nd stage
*  few instruction formats (three) with symmetry across

formats
»  can begin reading register file in 2nd stage

* memory operations can occur only in loads and stores
»  can use the execute stage to calculate memory addresses

* each MIPS instruction writes at most one result (i.e.,
changes the machine state) and does so near the end
of the pipeline (MEM and WB)

 Qiang Xu CUHK, Fall 2013

Part.3 .22

Graphically Representing MIPS Pipeline

¨ Can help with answering questions like:
* How many cycles does it take to execute this code?
* What is the ALU doing during cycle 4?
* Is there a hazard, why does it occur, and how can it

be fixed?

A
LU

IM Reg DM Reg

 Qiang Xu CUHK, Fall 2013

Part.3 .23

Why Pipeline? For Performance!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg
A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

Once the
pipeline is full,
one instruction

is completed
every cycle, so

CPI = 1

Time to fill the pipeline

 Qiang Xu CUHK, Fall 2013

Part.3 .24

Can Pipelining Get Us Into Trouble?

¨ Yes: Pipeline Hazards
*  structural hazards: attempt to use the same resource

by two different instructions at the same time
* data hazards: attempt to use data before it is ready

»  An instruction’s source operand(s) are produced by a prior
instruction still in the pipeline

*  control hazards: attempt to make a decision about
program control flow before the condition has been
evaluated and the new PC target address calculated

»  branch instructions

¨ Can always resolve hazards by waiting
* pipeline control must detect the hazard
* and take action to resolve hazards

 Qiang Xu CUHK, Fall 2013

Part.3 .25

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
LU

Mem Reg Mem Reg

A
LU

Mem Reg Mem Reg

A
LU

Mem Reg Mem Reg
A
LU

Mem Reg Mem Reg

A
LU

Mem Reg Mem Reg

A Single Memory Would Be a Structural Hazard

Reading data from
memory

Reading instruction
from memory

Fix with separate instr and data caches (I$ and D$)

 Qiang Xu CUHK, Fall 2013

Part.3 .26

How About Register File Access?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg
A
LU

IM Reg DM Reg

Fix register file
access hazard by
doing reads in the
second half of the
cycle and writes in

the first half

add $1,

add $2,$1,

clock edge that controls
register writing

clock edge that controls
loading of pipeline state

registers

 Qiang Xu CUHK, Fall 2013

Part.3 .27

Register Usage Can Cause Data Hazards

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

¨ Dependencies backward in time cause hazards

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

Read before write data hazard

 Qiang Xu CUHK, Fall 2013

Part.3 .28

Loads Can Cause Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9
A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

¨ Dependencies backward in time cause hazards

Load-use data hazard

 Qiang Xu CUHK, Fall 2013

Part.3 .29

stall

stall

One Way to “Fix” a Data Hazard

I
n
s
t
r.

O
r
d
e
r

add $1,

A
LU

IM Reg DM Reg

sub $4,$1,$5

and $6,$1,$7

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

Can fix data
hazard by

waiting – stall –
but impacts CPI

 Qiang Xu CUHK, Fall 2013

Part.3 .30

Another Way to “Fix” a Data Hazard

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

Fix data hazards
by forwarding

results as soon as
they are available
to where they are

needed

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

 Qiang Xu CUHK, Fall 2013

Part.3 .31

Datapath with Forwarding Hardware
PCSrc

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

ALU
cntrl

Branch

Forward
Unit

ID/EX.RegisterRt

ID/EX.RegisterRs

EX/MEM.RegisterRd

MEM/WB.RegisterRd

 Qiang Xu CUHK, Fall 2013

Part.3 .32

Forwarding with Load-use Data Hazards

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

¨ Will still need one stall cycle even with forwarding

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

 Qiang Xu CUHK, Fall 2013

Part.3 .33

stall

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9
A
LU

IM Reg DM Reg
A
LU

IM Reg DM

A
LU

IM Reg DM Reg
A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg
A
LU

IM Reg DM Reg sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

Forwarding with Load-use Data Hazards

 Qiang Xu CUHK, Fall 2013

Part.3 .34

Load-use Hazard Detection Unit

¨ Need a Hazard detection Unit in the ID stage that
inserts a stall between the load and its use

¨ Insert a “bubble” between the lw instruction (in

the EX stage) and the load-use instruction (in the
ID stage) (i.e., insert a noop in the execution
stream)
* Set the control bits in the EX, MEM, and WB control

fields of the ID/EX pipeline register to 0 (noop). The
Hazard Unit controls the mux that chooses between the
real control values and the 0’s.

 Qiang Xu CUHK, Fall 2013

Part.3 .35

Adding the Hazard Hardware

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB
Control

ALU
cntrl

Branch

PCSrc

Forward
Unit

Hazard
Unit

0
1

ID/EX.RegisterRt

0

ID/EX.MemRead

 Qiang Xu CUHK, Fall 2013

Part.3 .36

flush

Jumps Incur One Stall

I
n
s
t
r.

O
r
d
e
r

j

j target

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

¨ Fortunately, jumps are very infrequent – only 3% of
the SPECint instruction mix

¨ Jumps not decoded until ID, so one flush is needed

Fix jump
hazard by
waiting –

stall – but
affects CPI

A
LU

IM Reg DM Reg

 Qiang Xu CUHK, Fall 2013

Part.3 .37

Supporting ID Stage Jumps

ID/EX

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

EX/MEM

MEM/WB

Control

ALU
cntrl

Forward
Unit

Branch

PCSrc

Shift
left 2

Add

Shift
left 2

Jump

PC+4[31-28]

0

 Qiang Xu CUHK, Fall 2013

Part.3 .38

Branch Instructions Cause Control Hazards

I
n
s
t
r.

O
r
d
e
r

lw

Inst 4

Inst 3

beq

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

¨ Dependencies backward in time cause hazards

 Qiang Xu CUHK, Fall 2013

Part.3 .39

stall

stall

stall

One Way to “Fix” a Control Hazard

I
n
s
t
r.

O
r
d
e
r

beq

A
LU

IM Reg DM Reg

lw

A
LU

IM Reg DM Reg

A
LU

 Inst 3 IM Reg DM

Fix branch
hazard by
waiting –

stall – but
affects CPI

 Qiang Xu CUHK, Fall 2013

Part.3 .40

Moving Branch Decisions Earlier in Pipe
¨ Move the branch decision hardware back to the EX

stage
* Reduces the number of stall (flush) cycles to two
* Adds an and gate and a 2x1 mux to the EX timing path

¨ Add hardware to compute the branch target address
and evaluate the branch decision to the ID stage
* Reduces the number of stall (flush) cycles to one

(like with jumps)
»  But now need to add forwarding hardware in ID stage

* Computing branch target address can be done in parallel
with RegFile read (done for all instructions – only used when
needed)
* Comparing the registers can’t be done until after RegFile

read, so comparing and updating the PC adds a mux, a
comparator, and an and gate to the ID timing path

¨ For deeper pipelines, branch decision points can be
even later in the pipeline, incurring more stalls

 Qiang Xu CUHK, Fall 2013

Part.3 .41

Delayed Decision
¨ If the branch hardware has been moved to the ID

stage, then we can eliminate all branch stalls with
delayed branches which are defined as always
executing the next sequential instruction after the
branch instruction – the branch takes effect after
that next instruction
* MIPS compiler moves an instruction to immediately after

the branch that is not affected by the branch (a safe
instruction) thereby hiding the branch delay

¨ With deeper pipelines, the branch delay grows
requiring more than one delay slot
* Delayed branches have lost popularity compared to more

expensive but more flexible (dynamic) hardware branch
prediction
* Growth in available transistors has made hardware branch

prediction relatively cheaper

 Qiang Xu CUHK, Fall 2013

Part.3 .42

Scheduling Branch Delay Slots

¨  A is the best choice, fills delay slot and reduces IC
¨  In B and C, the sub instruction may need to be copied, increasing IC
¨  In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

 Qiang Xu CUHK, Fall 2013

Part.3 .43

Static Branch Prediction

¨ Resolve branch hazards by assuming a given outcome
and proceeding without waiting to see the actual
branch outcome
¨ Predict not taken – always predict branches will not

be taken, continue to fetch from the sequential
instruction stream, only when branch is taken does
the pipeline stall
* If taken, flush instructions after the branch (earlier in the

pipeline)
»  in IF, ID, and EX stages if branch logic in MEM – three stalls
»  In IF and ID stages if branch logic in EX – two stalls
»  in IF stage if branch logic in ID – one stall

* ensure that those flushed instructions haven’t changed the
machine state – automatic in the MIPS pipeline since
machine state changing operations are at the tail end of
the pipeline (MemWrite (in MEM) or RegWrite (in WB))
*  restart the pipeline at the branch destination

 Qiang Xu CUHK, Fall 2013

Part.3 .44

flush

Flushing with Misprediction (Not Taken)

4 beq $1,$2,2 I
n
s
t
r.

O
r
d
e
r

A
LU

IM Reg DM Reg

16 and $6,$1,$7

20 or r8,$1,$9

A
LU

IM Reg DM Reg
A
LU

IM Reg DM Reg
A
LU

IM Reg DM Reg 8 sub $4,$1,$5

¨ To flush the IF stage instruction, assert IF.Flush
to zero the instruction field of the IF/ID pipeline
register (transforming it into a noop)

 Qiang Xu CUHK, Fall 2013

Part.3 .45

Branching Structures
¨ Predict not taken works well for “top of the loop”

branching structures
Loop: beq $1,$2,Out
 1nd loop instr

 .
 .
 .

 last loop instr
 j Loop

Out: fall out instr

* But such loops have jumps at
the bottom of the loop to
return to the top of the loop –
and incur the jump stall
overhead

¨ Predict not taken doesn’t work well for “bottom of
the loop” branching structures Loop: 1st loop instr

 2nd loop instr
 .
 .
 .

 last loop instr
 bne $1,$2,Loop
 fall out instr

 Qiang Xu CUHK, Fall 2013

Part.3 .46

Static Branch Prediction, con’t
¨ Resolve branch hazards by assuming a given

outcome and proceeding
¨ Predict taken – predict branches will always be

taken
* Predict taken always incurs one stall cycle (if branch

destination hardware has been moved to the ID stage)
* Is there a way to “cache” the address of the branch

target instruction ??
¨ As the branch penalty increases (for deeper

pipelines), a simple static prediction scheme will
hurt performance. With more hardware, it is
possible to try to predict branch behavior
dynamically during program execution
¨ Dynamic branch prediction – predict branches at

run-time using run-time information

 Qiang Xu CUHK, Fall 2013

Part.3 .47

Dynamic Branch Prediction

¨ A branch prediction buffer (aka branch history
table (BHT)) in the IF stage addressed by the
lower bits of the PC, contains a bit passed to the
ID stage through the IF/ID pipeline register that
tells whether the branch was taken the last time it
was execute
* Prediction bit may predict incorrectly (may be a wrong

prediction for this branch this iteration or may be from a
different branch with the same low order PC bits) but the
doesn’t affect correctness, just performance

»  Branch decision occurs in the ID stage after determining that
the fetched instruction is a branch and checking the prediction
bit

* If the prediction is wrong, flush the incorrect
instruction(s) in pipeline, restart the pipeline with the
right instruction, and invert the prediction bit

»  A 4096 bit BHT varies from 1% misprediction (nasa7, tomcatv)
to 18% (eqntott)

 Qiang Xu CUHK, Fall 2013

Part.3 .48

Branch Target Buffer

¨ The BHT predicts when a branch is taken, but does
not tell where its taken to!
* A branch target buffer (BTB) in the IF stage can cache

the branch target address, but we also need to fetch the
next sequential instruction. The prediction bit in IF/ID
selects which “next” instruction will be loaded into IF/ID
at the next clock edge

»  Would need a two read port
instruction memory

¨ If the prediction is correct, stalls can be avoided no
matter which direction they go

* Or the BTB can cache the
branch taken instruction while the
instruction memory is fetching
the next sequential instruction Read

Address

Instruction
Memory

PC
 0

BTB

 Qiang Xu CUHK, Fall 2013

Part.3 .49

1-bit Prediction Accuracy

¨ A 1-bit predictor will be incorrect twice when not
taken

¨ For 10 times through the loop we have a 80%
prediction accuracy for a branch that is taken 90%
of the time

*  Assume predict_bit = 0 to start (indicating
branch not taken) and loop control is at the
bottom of the loop code
*  First time through the loop, the predictor

mispredicts the branch since the branch is
taken back to the top of the loop; invert
prediction bit (predict_bit = 1)
*  As long as branch is taken (looping),

prediction is correct
*  Exiting the loop, the predictor again

mispredicts the branch since this time the
branch is not taken falling out of the loop;
invert prediction bit (predict_bit = 0)

Loop: 1st loop instr
 2nd loop instr

 .
 .
 .

 last loop instr
 bne $1,$2,Loop
 fall out instr

 Qiang Xu CUHK, Fall 2013

Part.3 .50

2-bit Predictors
¨ A 2-bit scheme can give 90% accuracy since a

prediction must be wrong twice before the
prediction bit is changed

Predict
Taken

Predict
Not Taken

Predict
Taken

Predict
Not Taken

Taken
Not taken

Not taken

Not taken

Not taken

Taken
Taken

Taken

Loop: 1st loop instr
 2nd loop instr

 .
 .
 .

 last loop instr
 bne $1,$2,Loop
 fall out instr

wrong on loop
fall out

0

1 1

right 9 times

right on 1st
iteration

0 ¨ BHT also
stores the
initial FSM
state

10 11

01
00

 Qiang Xu CUHK, Fall 2013

Part.3 .51

Dealing with Exceptions
¨  Exceptions (aka interrupts) are just another form of control

hazard. Exceptions arise from
*  R-type arithmetic overflow
*  Trying to execute an undefined instruction
*  An I/O device request
*  An OS service request (e.g., a page fault, TLB exception)
*  A hardware malfunction

¨  The pipeline has to stop executing the offending instruction
in midstream, let all prior instructions complete, flush all
following instructions, set a register to show the cause of
the exception, save the address of the offending instruction,
and then jump to a prearranged address (the address of the
exception handler code)
¨  The software (OS) looks at the cause of the exception and
“deals” with it

 Qiang Xu CUHK, Fall 2013

Part.3 .52

Two Types of Exceptions

¨  Interrupts – asynchronous to program execution
*  caused by external events
*  may be handled between instructions, so can let the

instructions currently active in the pipeline complete before
passing control to the OS interrupt handler
*  simply suspend and resume user program

¨  Traps – synchronous to program execution
*  caused by internal events
*  condition must be remedied by the trap handler for that

instruction, so much stop the offending instruction midstream
in the pipeline and pass control to the OS trap handler
*  the offending instruction may be retried (or simulated by the

OS) and the program may continue or it may be aborted

 Qiang Xu CUHK, Fall 2013

Part.3 .53

Where in the Pipeline Exceptions Occur

¨ Arithmetic overflow

¨ Undefined instruction

¨ TLB or page fault

¨ I/O service request

¨ Hardware malfunction
A
LU

IM Reg DM Reg

Stage(s)? Synchronous?
EX

ID

IF, MEM

any

any

yes

yes

yes

no

no

q Beware that multiple exceptions can occur
simultaneously in a single clock cycle

 Qiang Xu CUHK, Fall 2013

Part.3 .54

Dealing with Multicycle Operations

 Qiang Xu CUHK, Fall 2013

Part.3 .55

Dealing with Multicycle Operations

 Qiang Xu CUHK, Fall 2013

Part.3 .56

Reminders

¨ Next few lectures are about advanced topics in
unicore processors

¨ Homework1 will be online this week, research

essay topic needs to be determined soon.

